JPH06274958A - Magneto-optical recording medium, method for recording and reproducing information using the medium - Google Patents
Magneto-optical recording medium, method for recording and reproducing information using the mediumInfo
- Publication number
- JPH06274958A JPH06274958A JP6665693A JP6665693A JPH06274958A JP H06274958 A JPH06274958 A JP H06274958A JP 6665693 A JP6665693 A JP 6665693A JP 6665693 A JP6665693 A JP 6665693A JP H06274958 A JPH06274958 A JP H06274958A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- recording
- magneto
- magnetic layer
- reproducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気光学効果を利用し
てレーザー光により情報の記録/再生を行う光磁気記録
媒体及び該媒体を用いた情報記録或は再生方法に関し、
特に線記録密度、トラック密度を向上して、媒体の高密
度化を可能とする光磁気記録媒体及び該媒体を用いた情
報の記録或は再生方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information with a laser beam by utilizing a magneto-optical effect, and an information recording / reproducing method using the medium.
In particular, the present invention relates to a magneto-optical recording medium capable of improving the linear recording density and the track density to increase the density of the medium and a method of recording or reproducing information using the medium.
【0002】[0002]
【従来の技術】書き換え可能な高密度記録方式として、
半導体レーザーの熱エネルギーを用いて、磁性薄膜に磁
区を書き込んで情報を記録し、磁気光学効果を用いて、
この情報を読み出す光磁気記録媒体が注目されている。2. Description of the Related Art As a rewritable high density recording system,
Using the thermal energy of a semiconductor laser to write magnetic domains in a magnetic thin film to record information, using the magneto-optical effect,
Attention has been paid to a magneto-optical recording medium for reading this information.
【0003】近年、この光磁気記録媒体の記録密度を高
めて更に大容量の記録媒体とする要求が、高まってい
る。In recent years, there is an increasing demand for increasing the recording density of this magneto-optical recording medium to make it a recording medium having a larger capacity.
【0004】ところで、光磁気記録媒体等の光ディスク
の線記録密度は、主として再生層のS/Nによって決め
られており、これは信号のビット列の周期と再生光学系
のレーザー波長、対物レンズの開口数に大きく依存す
る。By the way, the linear recording density of an optical disk such as a magneto-optical recording medium is mainly determined by the S / N of the reproducing layer, which is the period of the signal bit string, the laser wavelength of the reproducing optical system, and the aperture of the objective lens. Depends heavily on the number.
【0005】即ち、再生光学系のレーザー波長λと対物
レンズの開口数NAが決まると、検出限界となるビット
の周期はλ/2NAに決まる。That is, when the laser wavelength λ of the reproducing optical system and the numerical aperture NA of the objective lens are determined, the bit period which becomes the detection limit is determined to be λ / 2NA.
【0006】一方、トラック密度は、主としてクロスト
ークによって制限されている。このクロストークは、主
として媒体面上でのレーザービームの分布(プロファイ
ル)で決まり、前記ビットの周期同様にλ/2NAの関
数で表される。On the other hand, the track density is limited mainly by crosstalk. This crosstalk is mainly determined by the distribution (profile) of the laser beam on the medium surface, and is represented by a function of λ / 2NA like the bit period.
【0007】従って、従来の光ディスクで高密度化を実
現するためには、再生光学系のレーザー波長を短くし、
対物レンズの開口数NAを大きくする必要がある。Therefore, in order to realize high density in the conventional optical disc, the laser wavelength of the reproducing optical system is shortened,
It is necessary to increase the numerical aperture NA of the objective lens.
【0008】しかしながら、レーザー波長や対物レンズ
の開口数の改善にも限度がある。このため、記録媒体の
構成や読み取り方法を工夫し、記録密度を改善する技術
が開発されている。However, there is a limit to the improvement of the laser wavelength and the numerical aperture of the objective lens. Therefore, a technique for improving the recording density by devising the configuration of the recording medium and the reading method has been developed.
【0009】たとえば、特開平3−93058において
は、再生層と記録層からなる媒体を用いて、情報の再生
前に再生層の磁化の向きを一方向に揃えた後に、記録層
に保持された情報を再生層に転写して再生時の符号間干
渉を減少させ、光の回折限界以下の周期の情報を再生可
能とし、線記録密度及びトラック密度の向上を試みてい
る。For example, in Japanese Laid-Open Patent Publication No. 3-93058, a medium composed of a reproducing layer and a recording layer is used, and the magnetization direction of the reproducing layer is aligned in one direction before reproducing information, and then the information is held in the recording layer. Information is transferred to the reproducing layer to reduce intersymbol interference at the time of reproducing, information of a period below the diffraction limit of light can be reproduced, and an attempt is made to improve linear recording density and track density.
【0010】[0010]
【発明が解決しようとする課題】しかしながら特開平3
−93058記載の光磁気情報再生方法では、再生層の
磁化をレーザービームが照射される前に一方向に揃えて
おかなければならない。そのため従来の装置に再生層の
初期化用磁石を追加することが必要となる。このため前
記再生方法は、光磁気記録再生装置が複雑化し、コスト
が高くなる、小型化が難しい等の問題点を有している。[Patent Document 1] Japanese Unexamined Patent Application Publication No.
In the magneto-optical information reproducing method described in -93058, the magnetization of the reproducing layer must be aligned in one direction before being irradiated with the laser beam. Therefore, it is necessary to add a reproducing layer initialization magnet to the conventional device. Therefore, the reproducing method has problems that the magneto-optical recording / reproducing apparatus becomes complicated, the cost becomes high, and it is difficult to reduce the size.
【0011】又、特開平3−93058記載の光磁気記
録媒体に対して、磁界変調記録を行う場合には、記録層
をレーザービームによってキュリー温度あるいは補償温
度以上に加熱しこの状態で記録情報に応じて外部磁界
を、極性を反転しながら印加するのだが、この磁界変調
記録によって形成される記録ピットの形状は、図4
(b)に示す様に、記録媒体の移行方向に湾曲して膨出
する急峻な曲線を持つ円弧上、もしくは三日月状とな
る。When performing magnetic field modulation recording on the magneto-optical recording medium described in JP-A-3-93058, the recording layer is heated to a Curie temperature or a compensation temperature or higher by a laser beam and recorded information is recorded in this state. Accordingly, the external magnetic field is applied while reversing the polarity. The shape of the recording pit formed by this magnetic field modulation recording is as shown in FIG.
As shown in (b), it is on a circular arc having a steep curve that bulges and bulges in the transfer direction of the recording medium, or a crescent shape.
【0012】これは、再生層、記録層等よりなる磁性層
の熱伝導率が比較的低いことによる蓄熱効果によるもの
である。即ち、レーザービーム照射位置近傍の等温分布
は、図4(a)に示す様に、レーザービームの進行方向
に長軸を有する楕円形状分布となる、しかもレーザービ
ームの後端部(進行方向に対する後端部)で温度が高く
なることから、その分布が後端部側で曲率が急峻とな
り、記録ピット形状も急峻な湾曲形状いわば三日月状を
示すものとなるのである。This is due to the heat storage effect due to the relatively low thermal conductivity of the magnetic layer including the reproducing layer and the recording layer. That is, as shown in FIG. 4A, the isothermal distribution near the laser beam irradiation position is an elliptical distribution having a major axis in the direction of travel of the laser beam, and the rear end of the laser beam Since the temperature becomes high at the end portion, the distribution thereof has a steep curvature on the rear end portion side, and the recording pit shape also exhibits a steep curved shape, that is, a crescent shape.
【0013】そして、この様な記録ピットの形状が顕著
な三日月状となると、図6に示される様に再生用レーザ
ービームの再生可能な領域となる高温領域に1つの記録
ピットのほかに、これと隣り合う先方の記録ピットの両
端の尾が入り込んで来てしまい再生情報のS/N(C/
N)の低下をもたらす。即ち、本来の解像度の向上を阻
害する。When such a shape of the recording pit becomes a prominent crescent shape, as shown in FIG. 6, in addition to one recording pit in the high temperature area which is a reproducible area of the reproducing laser beam, And the tails of both ends of the recording pit of the other side adjacent to come in and the S / N (C /
N) is brought about. That is, the original improvement in resolution is hindered.
【0014】[0014]
【課題を解決するための手段及び作用】本発明は、この
様な問題に鑑みなされたもので、装置を小型化でき、且
つ磁界変調記録方式を用いて情報の記録を行っても記録
ピットの形状が顕著な三日月状にならず、情報再生時の
解像度の改善、すなわちS/N(C/N)の向上が図れ
る光磁気記録媒体及び該媒体を用いた情報記録方法及び
再生方法の提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is possible to reduce the size of an apparatus and to record a recording pit even if information is recorded using a magnetic field modulation recording system. (EN) Provided are a magneto-optical recording medium capable of improving resolution at the time of reproducing information, that is, improving S / N (C / N), and an information recording method and a reproducing method using the medium, without forming a remarkable crescent moon shape. To aim.
【0015】そして、上記目的は、室温で面内磁化膜
で、昇温すると垂直磁化膜となる第1磁性層と室温、昇
温時において垂直磁化膜からなる第2磁性層と熱伝導層
を有する光磁気記録媒体によって達成される。The above object is to provide an in-plane magnetized film at room temperature, a first magnetic layer which becomes a perpendicular magnetized film when the temperature is raised, a room temperature, and a second magnetic layer which is a perpendicular magnetized film when the temperature is raised and a heat conduction layer. It is achieved by the magneto-optical recording medium having.
【0016】又、室温で面内磁化膜で、昇温すると垂直
磁化膜となる第1磁性層と室温、昇温時において垂直磁
化膜からなる第2磁性層と熱伝導層を有する光磁気記録
媒体に光スポットを照射しながら、情報に応じて変調さ
れた外部磁界を印加することにより前記第2磁性層の前
記光スポット内の昇温領域においてのみ情報の記録を行
なうことにより達成される。Further, a magneto-optical recording having an in-plane magnetized film at room temperature, a first magnetic layer which becomes a perpendicular magnetized film when the temperature is raised, a second magnetic layer which is a perpendicular magnetized film when the temperature is raised, and a heat conduction layer. This is achieved by applying an external magnetic field modulated according to information while irradiating the medium with a light spot, and recording information only in a temperature rising region in the light spot of the second magnetic layer.
【0017】又、室温で面内磁化膜で、昇温すると垂直
磁化膜となる第1磁性層と室温、昇温時において垂直磁
化膜からなる第2磁性層と熱伝導層を有する光磁気記録
媒体に光スポットを照射し、前記光スポット内の昇温領
域のみ前記第1磁性層を垂直磁化膜にすると共に前記第
1磁性層と第2磁性層とを交換結合させ、前記第2磁性
層の情報に基づく磁化方向に対して安定な方向に前記第
1磁性層の磁化を揃え、前記第1磁性層の垂直磁化膜部
分の影響による前記光スポットの反射光の磁気光学変化
により情報の再生を行うことにより達成される。Further, a magneto-optical recording having an in-plane magnetized film at room temperature, which has a first magnetic layer which becomes a perpendicular magnetized film when heated, and a second magnetic layer which is a perpendicular magnetized film when heated, and a heat conduction layer. The medium is irradiated with a light spot, the first magnetic layer is made to be a perpendicular magnetization film only in a temperature rising region in the light spot, the first magnetic layer and the second magnetic layer are exchange-coupled, and the second magnetic layer is formed. Information is reproduced by aligning the magnetization of the first magnetic layer in a direction that is stable with respect to the magnetization direction based on the above information, and magneto-optically changing the reflected light of the light spot due to the influence of the perpendicularly magnetized film portion of the first magnetic layer. It is achieved by performing.
【0018】[0018]
【実施例】以下、図面を用いて本発明の光磁気記録媒体
及び情報記録方法、情報再生方法について詳しく説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The magneto-optical recording medium, information recording method and information reproducing method of the present invention will be described in detail below with reference to the drawings.
【0019】本発明の光磁気記録媒体は、図1(a),
(b)にその一例の略断面図を示す様に、少なくとも室
温で面内磁化膜で、昇温すると垂直磁化膜となる再生層
(第1磁性層)と室温、昇温時において垂直磁化膜から
なる記録層(第2磁性層)と前記記録層に対し、直接的
或は間接的に積層された熱を良く伝搬する熱伝導体層と
からなる。The magneto-optical recording medium of the present invention is shown in FIG.
As shown in a schematic cross-sectional view of an example thereof in (b), a reproducing layer (first magnetic layer) which is an in-plane magnetized film at least at room temperature and becomes a perpendicularly magnetized film when heated, and a perpendicularly magnetized film when heated to room temperature. A recording layer (second magnetic layer) and a heat conductor layer which is directly or indirectly laminated on the recording layer and which propagates heat well.
【0020】再生層としては、例えば希土類−鉄族非晶
質合金、例えば、GdCo,GdFeCo,GdTbFeCo,GdDyFeCo,NdGd
FeCoなどが望ましい。好ましくは、磁気異方性が小さい
もの、室温とキュリー温度の間に補償温度があるものが
望ましい。As the reproducing layer, for example, a rare earth-iron group amorphous alloy such as GdCo, GdFeCo, GdTbFeCo, GdDyFeCo, NdGd.
FeCo or the like is preferable. It is preferable that the magnetic anisotropy is small and the compensation temperature is between room temperature and the Curie temperature.
【0021】又、記録層としては、垂直磁気異方性が大
きいもの、例えば希土類−鉄族非晶質合金、例えば、Tb
FeCo,DyFeCo,TbDyFeCoなど、もしくはガーネット、ある
いは、白金族ー鉄族周期構造膜、例えば、Pt/Co,Pd/Co
白金族−鉄族合金、例えばPtCo,PdCoなどが望ましい。The recording layer has a large perpendicular magnetic anisotropy, for example, a rare earth-iron group amorphous alloy such as Tb.
FeCo, DyFeCo, TbDyFeCo, etc., or garnet, or platinum group-iron group periodic structure film, for example, Pt / Co, Pd / Co
Platinum group-iron group alloys such as PtCo and PdCo are desirable.
【0022】又、再生層と記録層には、Cr,Al,Ti,Pt,Nb
などの耐食性改善のための元素添加を行なっても良い。The reproducing layer and the recording layer are made of Cr, Al, Ti, Pt, Nb.
It is also possible to add elements for improving corrosion resistance such as.
【0023】又、熱伝導体層は、Al,AlNx,AlTa,AlTi,Al
Cr,Cu などが好ましい。又、図1(a)で示されるよう
に熱伝導体層と記録層との間に誘電体層を設けても良
い。この誘電体層としては、SiNx,AlNx,AlOx,TaOx,SiOx
などが良い。The heat conductor layer is made of Al, AlNx, AlTa, AlTi, Al.
Cr, Cu and the like are preferable. Further, as shown in FIG. 1A, a dielectric layer may be provided between the heat conductor layer and the recording layer. As this dielectric layer, SiNx, AlNx, AlOx, TaOx, SiOx
And so on.
【0024】以下に本発明の情報記録及び再生方法を説
明する。The information recording and reproducing method of the present invention will be described below.
【0025】まず本発明の光磁気記録媒体の記録層に情
報信号を記録する。記録は記録層がキュリー温度以上に
なるようなパワーのレーザービームを照射しながら外部
磁界を変調して行う。この時、本発明の上述の光磁気記
録媒体によれば熱伝導体層が設けられていることから、
その放熱効果によって、その等温分布曲線は、図3
(a)に示す様に等方的なほぼ真円曲線となるので、記
録ピット形状も急峻な湾曲形状いわば三日月状になるこ
とが回避される。First, an information signal is recorded on the recording layer of the magneto-optical recording medium of the present invention. Recording is performed by modulating the external magnetic field while irradiating a laser beam with a power that causes the recording layer to have a Curie temperature or higher. At this time, since the thermal conductor layer is provided according to the above-described magneto-optical recording medium of the present invention,
Due to the heat radiation effect, the isothermal distribution curve is shown in FIG.
As shown in (a), since it is an isotropic and almost perfect circular curve, it is possible to prevent the recording pit shape from becoming a sharp curved shape, that is, a crescent shape.
【0026】従って、磁界変調記録によって形成した記
録ピットは図3(b)に示す様に緩やかな湾曲した形状
となる。Therefore, the recording pit formed by the magnetic field modulation recording has a gently curved shape as shown in FIG. 3 (b).
【0027】次に、情報再生時には、媒体に再生レーザ
ービームを照射するが、このとき照射部分の温度が上昇
し、図3(a)に示す様な温度分布を持つ。この場合、
光スポット内の中央部近傍が最も高温となる。Next, at the time of reproducing information, the medium is irradiated with a reproducing laser beam. At this time, the temperature of the irradiated portion rises and has a temperature distribution as shown in FIG. 3 (a). in this case,
The highest temperature is near the center of the light spot.
【0028】ところで単層の磁性薄膜について、飽和磁
化をMS 、垂直磁気異方性定数をKuとした時、 K⊥=Ku−2πMS 2 で定義される実効的垂直磁気異方性定数K⊥により、磁
化の主な向きが決定されることが知られている。ここで
2πMs 2は反磁界エネルギーである。With respect to a single-layer magnetic thin film, when the saturation magnetization is M S and the perpendicular magnetic anisotropy constant is Ku, the effective perpendicular magnetic anisotropy constant K defined by K⊥ = Ku-2πM S 2 It is known that ⊥ determines the main direction of magnetization. Here, 2πM s 2 is the demagnetizing energy.
【0029】ここで、再生層に例えば室温とキュリー温
度の間に補償温度をもつものを用いれば、室温では、M
Sが大きく K⊥<0 となり面内磁化膜であるが再生時には温度が上昇するた
め2πMS 2が急激に小さくなってKuとの大小関係が逆
転し K⊥>0 となって面内磁化膜とすることができる。(Kuも温度
上昇と共に若干減少するが、2πMs2と比較するとそ
の減少率は一般に小さい。)If a reproducing layer having a compensation temperature between room temperature and the Curie temperature is used, at room temperature, M
Although S is large and K⊥ <0, it is an in-plane magnetized film, but since the temperature rises during reproduction, 2πM S 2 suddenly becomes small and the magnitude relationship with Ku is reversed, and K⊥> 0 and in-plane magnetized film is obtained. Can be (Ku also decreases slightly as the temperature rises, but the decrease rate is generally small compared to 2πMs 2. )
【0030】即ち、光スポットの一部である高温部にお
いてのみ再生層の磁化が垂直磁化膜となる様に、再生時
のレーザー光の強度及び線速度を考慮して再生層の飽和
磁化MS 、垂直磁気異方性定数Kuを設定しておけば、
光スポット内の高温部のみが垂直磁化膜となり、他の部
分は面内磁化膜という状態が実現する。垂直磁化膜であ
る再生層は記録層と交換結合によって磁気的に結合され
るので、再生層の磁化方向は記録層の情報に基づく磁化
方向に対して安定な方向にならわされる。即ち、記録層
に記録された情報が再生層に転写される。そして、転写
されている情報は、再生層の磁気光学効果(詳しくは再
生層から反射されたレーザー光の磁気光学効果)によっ
て光学信号に変換されて検出される。この場合、光スポ
ット内の再生層が面内磁化膜の部分は磁気光学効果が生
じない。That is, the saturation magnetization M S of the reproducing layer is taken into consideration in consideration of the intensity and linear velocity of the laser beam during reproduction so that the magnetization of the reproducing layer becomes a perpendicularly magnetized film only in the high temperature portion which is a part of the light spot. If the perpendicular magnetic anisotropy constant Ku is set,
Only the high temperature part in the light spot becomes the perpendicular magnetization film, and the other part becomes the in-plane magnetization film. Since the reproducing layer, which is a perpendicularly magnetized film, is magnetically coupled to the recording layer by exchange coupling, the magnetization direction of the reproducing layer is aligned with the magnetization direction based on the information of the recording layer. That is, the information recorded in the recording layer is transferred to the reproducing layer. Then, the transferred information is converted into an optical signal and detected by the magneto-optical effect of the reproducing layer (specifically, the magneto-optical effect of the laser beam reflected from the reproducing layer). In this case, the magneto-optical effect does not occur in the portion where the reproducing layer in the light spot is the in-plane magnetized film.
【0031】以上の様に、本発明の光磁気記録媒体を用
いた情報再生方法においては、初期化磁界を必要とせず
に、ビット周期がレーザー光のビーム径よりも小さい場
合においても、符号間干渉が抑えられ、高C/Nで情報
の再生が行える。As described above, in the information reproducing method using the magneto-optical recording medium of the present invention, even when the bit period is smaller than the beam diameter of the laser beam without requiring an initializing magnetic field, the intersymbol Interference is suppressed, and information can be reproduced with high C / N.
【0032】又、この光磁気記録媒体に記録された記録
ピットを再生用のレーザビームで読み出す場合、図5に
示す様に、例えばレーザー光による読みだし(再生)の
ためのレーザビームスポットの再生可能なウインドウ領
域に読み出しを行なうとする本来の1つの記録ビットの
みを存在させることができ、他の隣接の記録ビットの端
部が入り込んでくることを回避できる。When the recording pits recorded on this magneto-optical recording medium are read by a reproducing laser beam, as shown in FIG. 5, for example, reproduction of a laser beam spot for reading (reproducing) by laser light is performed. It is possible to allow only one originally recorded bit to be read out in a possible window area, and to prevent the end of another adjacent recorded bit from entering.
【0033】従って、S/N(C/N)の改善、ひいて
は、再生解像度(分解能)の改善を図ることができる。Therefore, it is possible to improve the S / N (C / N) and eventually the reproduction resolution.
【0034】〔実験例1〕直流マグネトロンスパッタリ
ング装置に、Si、Tb,Gd,Fe,Co,Alの各
ターゲットを取り付け、φ130mmのプリグルーブの
あるポリカーボネイト基板を基板ホルダーに固定した
後、1×10-5Pa以下の高真空になるまでチャンバー
内をクライオポンプで真空排気した。[Experimental Example 1] Each target of Si, Tb, Gd, Fe, Co, and Al was attached to a DC magnetron sputtering apparatus, a polycarbonate substrate with a pre-groove of φ130 mm was fixed to a substrate holder, and then 1 × 10. The interior of the chamber was evacuated with a cryopump until a high vacuum of -5 Pa or less was obtained.
【0035】真空排気をしながらArガスを0.4Pa
となるまでチャンバー内に導入した後、干渉層であるS
iN層を800Å成膜し、ついで再生層であるGdFe
Co層を400Å成膜し、次いで記録層であるTbFe
Co層を400Å成膜し、次いで干渉層としてSiN層
を300Å成膜し、熱伝導層としてAlCr層を600
Å成膜して図2(a)の構成の光磁気記録媒体を得た。Ar gas is supplied to 0.4 Pa while evacuating.
After being introduced into the chamber until
An iN layer of 800 Å was formed, and then a reproduction layer of GdFe was formed.
Co layer of 400 Å is formed, and then TbFe which is a recording layer is formed.
Co layer of 400Å is deposited, then SiN layer of 300Å is deposited as an interference layer, and AlCr layer of 600 is deposited as a heat conduction layer.
A film was formed to obtain a magneto-optical recording medium having the structure shown in FIG.
【0036】SiN層成膜時にはArガスに加えてN2
ガスを導入し、直流反応性スパッタにより成膜した。G
dFeCo層、TbFeCo層は、Gd,Fe,Co,
Tbの各ターゲットに直流パワーを印加して成膜した。When the SiN layer is formed, N 2 is added in addition to Ar gas.
A gas was introduced, and a film was formed by DC reactive sputtering. G
The dFeCo layer and the TbFeCo layer are composed of Gd, Fe, Co,
A DC power was applied to each target of Tb to form a film.
【0037】GdFeCo再生層の組成は、補償温度が
280℃でキュリー温度は350℃以上となるように設
定した。The composition of the GdFeCo reproducing layer was set so that the compensation temperature was 280 ° C. and the Curie temperature was 350 ° C. or higher.
【0038】TbFeCo記録層の組成は、室温でTM
リッチ(補償温度が室温以下)でキュリー温度は210
℃となる様に設定した。The composition of the TbFeCo recording layer is TM at room temperature.
Rich (compensation temperature is below room temperature) and Curie temperature is 210
The temperature was set to be ° C.
【0039】次に、この光磁気記録媒体を用いて、記録
再生特性を測定した。Next, the recording / reproducing characteristics were measured using this magneto-optical recording medium.
【0040】測定装置の対物レンズのN.A.は0.5
5,レーザー波長は780nmとした。記録パワーは8
〜10mW、線速度9m/s(回転速度2400rp
m,半径36mm)として、記録層に5.8〜15MH
zのキャリア信号を磁界変調方式で書き込み、C/N比
の記録周波数依存性を調べた。印加磁界は、±200O
eとした。N.V. of the objective lens of the measuring device. A. Is 0.5
5. The laser wavelength was 780 nm. Recording power is 8
-10mW, linear velocity 9m / s (rotation speed 2400rp
m, radius 36 mm) and 5.8 to 15 MH in the recording layer
The z carrier signal was written by the magnetic field modulation method, and the recording frequency dependence of the C / N ratio was examined. Applied magnetic field is ± 200O
e.
【0041】結果を表に1に示した。再生パワーは、C
/N比がmaxとなる値に設定した。The results are shown in Table 1. Playback power is C
The value was set so that the / N ratio was max.
【0042】〔実験例2〕直流マグネトロンスパッタリ
ング装置に、Si、Tb,Gd,Fe,Co,Alの各
ターゲットを取り付け、φ130mmのプリグルーブの
あるポリカーボネイト基板を基板ホルダーに固定した
後、1×10-5Pa以下の高真空になるまでチャンバー
内をクライオポンプで真空排気した。[Experimental Example 2] Each target of Si, Tb, Gd, Fe, Co and Al was attached to a DC magnetron sputtering apparatus, and a polycarbonate substrate having a pre-groove of 130 mm in diameter was fixed to a substrate holder and then 1 × 10. The interior of the chamber was evacuated with a cryopump until a high vacuum of -5 Pa or less was obtained.
【0043】真空排気をしながらArガスを0.4Pa
となるまでチャンバー内に導入した後、干渉層であるS
iN層を800Å成膜し、ついで再生層であるGdFe
Co層を400Å成膜し、次いで記録層であるTbFe
Co層を400Å成膜し、次いで熱伝導層としてAlC
r層を600Å成膜して図2(a)の構成の光磁気記録
媒体を得た。Ar gas was supplied at 0.4 Pa while evacuation was performed.
After being introduced into the chamber until
An iN layer of 800 Å was formed, and then a reproduction layer of GdFe was formed.
Co layer of 400 Å is formed, and then TbFe which is a recording layer is formed.
Co layer of 400Å is formed, and then AlC is used as a heat conduction layer
An r layer of 600 Å was formed to obtain a magneto-optical recording medium having the structure shown in FIG.
【0044】SiN層成膜時にはArガスに加えてN2
ガスを導入し、直流反応性スパッタにより成膜した。G
dFeCo層、TbFeCo層は、Gd,Fe,Co,
Tbの各ターゲットに直流パワーを印加して成膜した。At the time of forming the SiN layer, in addition to Ar gas, N 2
A gas was introduced, and a film was formed by DC reactive sputtering. G
The dFeCo layer and the TbFeCo layer are composed of Gd, Fe, Co,
A DC power was applied to each target of Tb to form a film.
【0045】GdFeCo再生層の組成は、補償温度が
280℃でキュリー温度は400℃以上となるように設
定した。The composition of the GdFeCo reproducing layer was set so that the compensation temperature was 280 ° C. and the Curie temperature was 400 ° C. or higher.
【0046】TbFeCo記録層の組成は、室温でTM
リッチ(補償温度が室温以下)でキュリー温度は220
℃となる様に設定した。The composition of the TbFeCo recording layer is TM at room temperature.
Rich (compensation temperature is below room temperature) and Curie temperature is 220
The temperature was set to be ° C.
【0047】次に、この光磁気記録媒体を用いて、記録
再生特性を測定した。Next, the recording / reproducing characteristics were measured using this magneto-optical recording medium.
【0048】測定装置の対物レンズのN.A.は0.5
5,レーザー波長は780nmとした。記録パワーは8
〜10mW、線速度9m/s(回転速度2400rp
m,半径36mm)として、記録層に5.8〜15MH
zのキャリア信号を磁界変調方式で書き込み、C/N比
の記録周波数依存性を調べた。印加磁界は、±180O
eとした。N.V. of the objective lens of the measuring device. A. Is 0.5
5. The laser wavelength was 780 nm. Recording power is 8
-10mW, linear velocity 9m / s (rotation speed 2400rp
m, radius 36 mm) and 5.8 to 15 MH in the recording layer
The z carrier signal was written by the magnetic field modulation method, and the recording frequency dependence of the C / N ratio was examined. Applied magnetic field is ± 180O
e.
【0049】結果を表1に示した。再生パワーは、C/
N比がmaxとなる値に設定した。The results are shown in Table 1. Playback power is C /
The N ratio was set to a value that maximized.
【0050】〔比較実験例〕直流マグネトロンスパッタ
リング装置に、Si、Tb,Gd,Fe,Co,Alの
各ターゲットを取り付け、φ130mmのプリグルーブ
のあるポリカーボネイト基板を基板ホルダーに固定した
後、1×10-5Pa以下の高真空になるまでチャンバー
内をクライオポンプで真空排気した。[Comparative Experimental Example] Si, Tb, Gd, Fe, Co, and Al targets were attached to a DC magnetron sputtering apparatus, and a polycarbonate substrate having a pre-groove of 130 mm in diameter was fixed to a substrate holder, and then 1 × 10. The interior of the chamber was evacuated with a cryopump until a high vacuum of -5 Pa or less was obtained.
【0051】真空排気をしながらArガスを0.4Pa
となるまでチャンバー内に導入した後、干渉層であるS
iN層を800Å成膜し、ついで再生層であるGdFe
Co層を400Å成膜し、次いで記録層であるTbFe
Co層を400Å成膜し、次いで保護層としてSiN層
を300Å成膜して図2(a)の構成の光磁気記録媒体
を得た。Ar gas was supplied at 0.4 Pa while evacuation was performed.
After being introduced into the chamber until
An iN layer of 800 Å was formed, and then a reproduction layer of GdFe was formed.
Co layer of 400 Å is formed, and then TbFe which is a recording layer is formed.
A Co layer of 400 Å was formed, and then a SiN layer of 300 Å was formed as a protective layer to obtain a magneto-optical recording medium having the structure of FIG.
【0052】SiN層成膜時にはArガスに加えてN2
ガスを導入し、直流反応性スパッタにより成膜した。G
dFeCo層、TbFeCo層は、Gd,Fe,Co,
Tbの各ターゲットに直流パワーを印加して成膜した。At the time of forming the SiN layer, in addition to Ar gas, N 2
A gas was introduced, and a film was formed by DC reactive sputtering. G
The dFeCo layer and the TbFeCo layer are composed of Gd, Fe, Co,
A DC power was applied to each target of Tb to form a film.
【0053】GdFeCo再生層の組成は、補償温度が
280℃でキュリー温度は400℃以上となるように設
定した。The composition of the GdFeCo reproducing layer was set so that the compensation temperature was 280 ° C. and the Curie temperature was 400 ° C. or higher.
【0054】TbFeCo記録層の組成は、室温でTM
リッチ(補償温度が室温以下)でキュリー温度は220
℃となる様に設定した。The composition of the TbFeCo recording layer was TM at room temperature.
Rich (compensation temperature is below room temperature) and Curie temperature is 220
The temperature was set to be ° C.
【0055】次に、この光磁気記録媒体を用いて、記録
再生特性を測定した。Next, using this magneto-optical recording medium, recording / reproducing characteristics were measured.
【0056】測定装置の対物レンズのN.A.は0.5
5,レーザー波長は780nmとした。記録パワーは8
〜10mW、線速度9m/s(回転速度2400rp
m,半径36mm)として、記録層に5.8〜15MH
zのキャリア信号を磁界変調方式で書き込み、C/N比
の記録周波数依存性を調べた。印加磁界は、±180O
eとした。N.V. of the objective lens of the measuring device. A. Is 0.5
5. The laser wavelength was 780 nm. Recording power is 8
-10mW, linear velocity 9m / s (rotation speed 2400rp
m, radius 36 mm) and 5.8 to 15 MH in the recording layer
The z carrier signal was written by the magnetic field modulation method, and the recording frequency dependence of the C / N ratio was examined. Applied magnetic field is ± 180O
e.
【0057】結果を表1に示した。再生パワーは、C/
N比がmaxとなる値に設定した。The results are shown in Table 1. Playback power is C /
The N ratio was set to a value that maximized.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【発明の効果】本発明の光磁気記録媒体及び該媒体の情
報記録方法及び再生方法を用いれば、初期化磁石が不要
な簡素な装置を用いて、レーザービームスポット径より
小さい磁区の再生が可能となり、線記録密度をさらに向
上した高密度記録の達成が可能となり、C/Nが向上し
た。By using the magneto-optical recording medium and the information recording method and reproducing method of the medium of the present invention, it is possible to reproduce a magnetic domain smaller than the laser beam spot diameter by using a simple device which does not require an initializing magnet. Therefore, it is possible to achieve high density recording with further improved linear recording density, and C / N is improved.
【図1】本発明の光磁気記録媒体の膜構成を示す模式図FIG. 1 is a schematic diagram showing a film structure of a magneto-optical recording medium of the present invention.
【図2】本発明の光磁気記録媒体の他の膜構成を示す模
式図FIG. 2 is a schematic diagram showing another film configuration of the magneto-optical recording medium of the present invention.
【図3】(a)本発明の光磁気記録媒体における、記録
時の等温線を示した図 (b)本発明の光磁気記録媒体における、記録ピットの
パターンを示す図3A is a diagram showing isotherms during recording in the magneto-optical recording medium of the present invention. FIG. 3B is a diagram showing recording pit patterns in the magneto-optical recording medium of the present invention.
【図4】(a)従来の光磁気記録媒体における、記録時
の等温線を示した図 (b)従来の光磁気記録媒体における、記録ピットのパ
ターンを示す図FIG. 4A is a diagram showing an isotherm at the time of recording in a conventional magneto-optical recording medium. FIG. 4B is a diagram showing a pattern of recording pits in the conventional magneto-optical recording medium.
【図5】本発明の光磁気記録媒体に形成される記録ピッ
トとレーザービームの再生可能領域の関係を示す図FIG. 5 is a diagram showing a relationship between recording pits formed on a magneto-optical recording medium of the present invention and a reproducible area of a laser beam.
【図6】従来の光磁気記録媒体に形成される記録ピット
とレーザービームの再生可能領域の関係を示す図FIG. 6 is a diagram showing a relationship between recording pits formed on a conventional magneto-optical recording medium and a reproducible area of a laser beam.
Claims (3)
化膜となる第1磁性層と室温、昇温時において垂直磁化
膜からなる第2磁性層と熱伝導層を有することを特徴と
する光磁気記録媒体。1. An in-plane magnetized film at room temperature, which comprises a first magnetic layer which becomes a perpendicular magnetized film when the temperature is raised, a room temperature, a second magnetic layer which is made of a perpendicular magnetized film when the temperature is raised, and a heat conduction layer. And a magneto-optical recording medium.
化膜となる第1磁性層と室温、昇温時において垂直磁化
膜からなる第2磁性層と熱伝導層を有する光磁気記録媒
体に光スポットを照射しながら、情報に応じて変調され
た外部磁界を印加することにより前記第2磁性層の前記
光スポット内の昇温領域においてのみ情報の記録を行な
うことを特徴とする光磁気記録媒体の情報記録方法。2. A magneto-optical recording comprising an in-plane magnetized film at room temperature, a first magnetic layer which becomes a perpendicular magnetized film when heated, and a second magnetic layer which is a perpendicular magnetized film when heated, and a heat conduction layer. Information is recorded only in a temperature rising region in the light spot of the second magnetic layer by applying an external magnetic field modulated according to information while irradiating the medium with a light spot. Information recording method for magnetic recording medium.
化膜となる第1磁性層と室温、昇温時において垂直磁化
膜からなる第2磁性層と熱伝導層を有する光磁気記録媒
体に光スポットを照射し、前記光スポット内の昇温領域
のみ前記第1磁性層を垂直磁化膜にすると共に前記第1
磁性層と第2磁性層とを交換結合させ、前記第2磁性層
の情報に基づく磁化方向に対して安定な方向に前記第1
磁性層の磁化を揃え、前記第1磁性層の垂直磁化膜部分
の影響による前記光スポットの反射光の磁気光学変化に
より情報の再生を行うことを特徴とする光磁気記録媒体
の情報再生方法。3. A magneto-optical recording comprising an in-plane magnetized film at room temperature, a first magnetic layer which becomes a perpendicular magnetized film when heated, and a second magnetic layer which is a perpendicular magnetized film when heated, and a heat conductive layer. The medium is irradiated with a light spot, and the first magnetic layer is formed as a perpendicular magnetization film only in the temperature rising region in the light spot and the first magnetic layer is formed.
The magnetic layer and the second magnetic layer are exchange-coupled with each other, and the first magnetic layer is oriented in a stable direction with respect to the magnetization direction based on the information of the second magnetic layer.
An information reproducing method for a magneto-optical recording medium, characterized in that the magnetizations of the magnetic layers are aligned and information is reproduced by magneto-optical change of reflected light of the light spot under the influence of the perpendicularly magnetized film portion of the first magnetic layer.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6665693A JPH06274958A (en) | 1993-03-25 | 1993-03-25 | Magneto-optical recording medium, method for recording and reproducing information using the medium |
EP93306690A EP0586175B1 (en) | 1992-08-28 | 1993-08-24 | A magnetooptical recording medium and information recording and reproducing methods using the recording medium |
ES93306690T ES2176194T3 (en) | 1992-08-28 | 1993-08-24 | MAGNETOPOPTIC RECORDING SUPPORT AND RECORDING AND REPRODUCTION METHODS OF INFORMATION USED IN RECORDING SUPPORT. |
DE69331924T DE69331924T2 (en) | 1992-08-28 | 1993-08-24 | Magneto-optical recording medium and information recording and reproducing method therewith |
EP01201745A EP1143434A3 (en) | 1992-08-28 | 1993-08-24 | A magnetooptical recording medium and information recording and reproducing methods using the recording medium |
US08/643,833 US5616428A (en) | 1992-08-28 | 1996-05-07 | Magnetooptical recording medium and information recording and reproducing methods using the recording medium |
US08/774,721 US5889739A (en) | 1992-08-28 | 1997-01-03 | Magnetooptical recording medium and information recording and reproducing methods using the recording medium |
US09/820,734 USRE38501E1 (en) | 1992-08-28 | 2001-03-30 | Magnetooptical recording medium and information recording and reproducing methods using the recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6665693A JPH06274958A (en) | 1993-03-25 | 1993-03-25 | Magneto-optical recording medium, method for recording and reproducing information using the medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06274958A true JPH06274958A (en) | 1994-09-30 |
Family
ID=13322165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6665693A Withdrawn JPH06274958A (en) | 1992-08-28 | 1993-03-25 | Magneto-optical recording medium, method for recording and reproducing information using the medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06274958A (en) |
-
1993
- 1993-03-25 JP JP6665693A patent/JPH06274958A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3072812B2 (en) | Magneto-optical recording medium and method of reproducing information from the medium | |
US5889739A (en) | Magnetooptical recording medium and information recording and reproducing methods using the recording medium | |
US5830589A (en) | Magneto-optical recording medium, and information reproducing method using the medium | |
US5862105A (en) | Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method | |
JP3078145B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPH06124500A (en) | Magneto-optical recording medium and playback method of this medium | |
JP3164975B2 (en) | Magneto-optical recording medium and information reproducing method using the medium | |
JP3297513B2 (en) | Magneto-optical recording medium and information reproducing method using the medium | |
EP0668585B1 (en) | Information recording method and system using a magneto-optical medium | |
JP2001126328A (en) | Magneto-optical recording medium | |
JP3626050B2 (en) | Magneto-optical recording medium and recording method thereof | |
JP3093340B2 (en) | Magneto-optical recording medium | |
JPH08180482A (en) | Magneto-optical recording medium and information reproducing method using the same | |
JP3101462B2 (en) | Magneto-optical recording medium and information reproducing method using the medium | |
JPH06274958A (en) | Magneto-optical recording medium, method for recording and reproducing information using the medium | |
JP2001126327A (en) | Magneto-optical recording medium | |
USRE38501E1 (en) | Magnetooptical recording medium and information recording and reproducing methods using the recording medium | |
JPWO2002035540A1 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH07254176A (en) | Magneto-optical recording medium and method for reproducing information with same medium | |
JPH06309729A (en) | Magneto-optical recording medium and method for reproducing information with the same | |
JPH06309716A (en) | Magneto-optical recording medium and reproducing method using the same | |
JPH08315436A (en) | Magneto-optical recording medium and information recording and reproducing method using that medium | |
JPH0696479A (en) | Magneto-optical recording medium | |
JP2000021036A (en) | Magnetic recording medium and its reproducing method | |
JPH08203152A (en) | Method of reproducing magneto-optical recording medium and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000530 |