[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06261423A - Method and system for supplying power to in-pipe running unit - Google Patents

Method and system for supplying power to in-pipe running unit

Info

Publication number
JPH06261423A
JPH06261423A JP5047653A JP4765393A JPH06261423A JP H06261423 A JPH06261423 A JP H06261423A JP 5047653 A JP5047653 A JP 5047653A JP 4765393 A JP4765393 A JP 4765393A JP H06261423 A JPH06261423 A JP H06261423A
Authority
JP
Japan
Prior art keywords
pipe
traveling device
primary coil
coil
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5047653A
Other languages
Japanese (ja)
Inventor
Takashi Kikuta
隆 菊田
Yoshiaki Yoshida
吉明 吉田
Yoshiyuki Yamada
良行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP5047653A priority Critical patent/JPH06261423A/en
Publication of JPH06261423A publication Critical patent/JPH06261423A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To provide a method and system for feeding power to an in-pipe running unit in which safety is enhanced without accompanying extreme fatigue. CONSTITUTION:A primary coil 2 is disposed on the outside of a pipe 1 with respect to a battery 13 carried on a running unit 11 and feeding power to a running motor 12. A secondary coil 6 is carried on the running unit 11 in the pipe 1 and the battery 13 is charged by electromagnetic induction from the primary coil 12 to the secondary coil 6 through the wall of the pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス供給管等に対し
て、管内の点検、補修等を行うために用いる管内走行装
置への給電方法及びその給電装置に関し、詳述すると、
走行装置に搭載され、走行装置の負荷に電力を供給する
蓄電池に対して、充電用の電力を供給する管内走行装置
への給電方法並びにその給電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying power to a traveling device in a pipe used for inspecting and repairing the inside of a gas supply pipe, etc.
The present invention relates to a method of supplying power to a in-pipe travel device that supplies electric power for charging a storage battery that is mounted on the travel device and that supplies electric power to a load of the travel device, and a power supply device thereof.

【0002】[0002]

【従来の技術】従来、この種の管内走行装置への給電方
法並びにその給電装置としては、図6に示すように、蓄
電池の容量と消費電力の関係によるが、充電後の走行に
より蓄電池が完全に放電してしまう前に再充電できる間
隔で、予め点検対象である管aの内部の所定の位置に充
電用の電極tを設置したステーションを設けて、走行装
置bに搭載された蓄電池cへの充電を行うように構成し
たものが提案されている(特願平3−65139号)。
2. Description of the Related Art Conventionally, as shown in FIG. 6, a power feeding method and a power feeding apparatus for this type of in-pipe running device depend on the relationship between the capacity of the storage battery and power consumption. A station having a charging electrode t installed in advance at a predetermined position inside the pipe a to be inspected at an interval allowing recharging before being discharged to the storage battery c mounted on the traveling device b. It has been proposed that the battery is configured to be charged (Japanese Patent Application No. 3-65139).

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来の
技術では、予め点検対象となる管の内部の所定箇所に充
電用の電極を設置するために、既設の配管位置まで土砂
を掘り起こした後に、管の一部を切断して電極を取り付
けるという煩雑な作業が必要となるばかりでなく、不測
の事態により設置された電極と電極の間で走行装置の蓄
電池が完全に放電した場合には、その地点の土砂を掘り
起こして管の一部または全部を切断して、走行装置を充
電するか或いは取り出す必要があり、既設の配管の一部
を切断するという作業は、安全対策上極めて注意を払っ
て行う必要があり、また多大な疲労を伴う作業であると
いう欠点があった。本発明の目的は上述した従来欠点を
解消し、安全性に優れ、しかも極端な疲労を招く事のな
い管内走行装置への給電方法並びにその給電装置を提供
することにある。
However, in the above-mentioned conventional technique, in order to previously install the charging electrode at a predetermined position inside the pipe to be inspected, after excavating the earth and sand to the existing pipe position, , Not only the complicated work of cutting a part of the tube and attaching the electrode is necessary, but also when the storage battery of the traveling device is completely discharged between the installed electrodes due to an unexpected situation, It is necessary to dig up the earth and sand at that point and cut a part or all of the pipe to charge or take out the traveling device, and the work of cutting a part of the existing pipe is extremely careful for safety measures. However, there is a drawback that it is a work that requires a lot of fatigue. An object of the present invention is to solve the above-mentioned conventional drawbacks, to provide a method of supplying power to a pipe traveling device that is excellent in safety and does not cause extreme fatigue, and a power supply device thereof.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による管内走行装置への給電方法の特徴構成
は、走行装置に搭載され、走行装置の負荷に電力を供給
する蓄電池に対して、管の外部に一次コイルを配置する
とともに、管の内部の走行装置に二次コイルを搭載し
て、前記蓄電池に充電する電力を、前記一次コイルから
前記二次コイルへ管壁を介した電磁誘導により供給する
点にある。そして、管内走行装置への給電装置の特徴構
成は、走行装置に搭載され、走行装置の負荷に電力を供
給する蓄電池に対して、充電用の電力を供給する管内走
行装置への給電装置であって、管の外部に配置した一次
コイルと、管の内部の走行装置に搭載され、前記一次コ
イルから管壁を介した電磁誘導により電力を供給する二
次コイルとで構成してある点にある。
In order to achieve this object, a characteristic configuration of a method for supplying power to a traveling device in a pipe according to the present invention is a storage battery mounted on the traveling device and supplying electric power to a load of the traveling device. , A primary coil is arranged outside the pipe, a secondary coil is mounted on a traveling device inside the pipe, and electric power for charging the storage battery is transferred from the primary coil to the secondary coil via a pipe wall. It is at the point of supplying by induction. The characteristic configuration of the power supply device for the in-pipe travel device is a power supply device for the in-pipe travel device that supplies power for charging to a storage battery that is mounted on the travel device and supplies power to the load of the travel device. The primary coil disposed outside the pipe and the secondary coil mounted on the traveling device inside the pipe and supplying electric power from the primary coil by electromagnetic induction through the pipe wall. .

【0005】[0005]

【作用】つまり、管内に位置する走行装置に搭載された
二次コイルに対して、管外の一次コイルから管壁を介し
て電磁誘導により間接的に電力を供給し、二次コイルに
伝達された電力を蓄電池に充電するのである。詳述する
と、走行装置に二次コイルを設けて、所定の間隔で管外
周部に一次コイルを設置しておけば、走行装置を一次コ
イルの設置位置に移動させた後に、一次コイルから管壁
を介した電磁誘導により二次コイルに電力を供給するの
であり、不測の事態によりそのような一次コイルを設置
した位置以外の位置で走行装置の蓄電池が完全に放電し
た場合であっても、その地点の土砂を掘り起こして管の
外周部に充電用の一次コイルを設置して充電することに
なる。
That is, electric power is indirectly supplied from the primary coil outside the pipe to the secondary coil mounted on the traveling device located inside the pipe by electromagnetic induction through the pipe wall, and the power is transmitted to the secondary coil. The stored power is charged to the storage battery. To be more specific, if the traveling device is provided with a secondary coil and the primary coil is installed on the outer peripheral portion of the pipe at a predetermined interval, after the traveling device is moved to the installation position of the primary coil, the primary coil is removed from the pipe wall. Power is supplied to the secondary coil by electromagnetic induction via the, and even if the storage battery of the traveling device is completely discharged at a position other than the position where such a primary coil is installed due to an unexpected situation, The earth and sand at the point will be dug up, and a primary coil for charging will be installed on the outer circumference of the pipe for charging.

【0006】[0006]

【発明の効果】従って本発明によれば、走行装置を充電
するためにわざわざ既設の配管を切断して、蓄電池を充
電するための電極を設置するという安全対策上多大な注
意を払う必要があり、また多大な疲労を伴う作業を行わ
なくとも、配管の外壁に充電用の一次コイルを設置する
だけの極めて容易な作業で充電用のステーションを構築
することができ、しかも、不測の事態により設置された
電極と電極の間で走行装置の蓄電池が完全に放電した場
合であっても、その地点の土砂を掘り起こして充電用の
一次コイルを設置しさえすれば、同様に極めて容易な作
業で充電でき、従って、安全性に優れ、しかも極端な疲
労を招く事のない管内走行装置への給電方法並びにその
給電装置を提供することができるようになった。
Therefore, according to the present invention, it is necessary to take great care as a safety measure to disconnect the existing pipe and install the electrode for charging the storage battery in order to charge the traveling device. Also, it is possible to build a charging station with a very easy operation of installing the primary coil for charging on the outer wall of the pipe without performing work that requires a great deal of fatigue. Even if the storage battery of the traveling device is completely discharged between the electrodes that have been charged, it is just as easy to charge by digging up the soil at that point and installing a primary coil for charging. Therefore, it is possible to provide a method of supplying power to the in-pipe traveling device that is excellent in safety and does not cause extreme fatigue, and a power supply device thereof.

【0007】[0007]

【実施例】以下に、実施例を説明する。管内走行装置1
1は、鋳鉄製の鋼管でなる都市ガス供給用の配管1の内
部を走行して、配管1の内部の点検、管内面の処理等の
作業を行うもので、図2に示すように、走行車体10の
前後に走行車輪10a,10bを取り付けて構成してあ
り、その走行装置11に走行車輪10bを駆動する走行
用電動モータ12、走行用電動モータ12へ電力を供給
する蓄電池13、蓄電池13への充電を行う充電回路1
4等を搭載してある。
EXAMPLES Examples will be described below. In-pipe traveling device 1
Reference numeral 1 is for traveling inside a pipe 1 for supplying city gas, which is a steel pipe made of cast iron, to perform work such as inspection of the inside of pipe 1 and treatment of the inner surface of the pipe. As shown in FIG. Traveling wheels 10a and 10b are attached to the front and rear of the vehicle body 10, and a traveling electric motor 12 for driving the traveling wheels 10b to the traveling device 11, a storage battery 13 for supplying electric power to the traveling electric motor 12, and a storage battery 13 Circuit 1 for charging
It is equipped with 4 etc.

【0008】走行装置11には、配管1の内部状態を監
視するテレビカメラ等の各種のセンシング手段15、管
内の補修等を行う溶接機等の作業装置16、センシング
手段15によるセンシングデータを管外部に出力するデ
ータ送信機18、管外部から指示される操向、或いは走
行データ等を受信するデータ受信機19、及び、送受信
用のアンテナ20等を搭載してあり、センシング手段1
5からのセンシングデータ(配管1の内部状態データや
走行装置11の位置データ等)を処理してデータ送信機
18に出力したり、データ受信機19による受信データ
に基づいて走行用電動モータ12や作業装置16を駆動
制御するマイクロプロセッサが組み込まれた制御装置1
7を設けてあり、以て、管外部の操作者は、送受信機1
8,19を通して走行装置11の位置を確認しながら配
管1の保守点検作業を行う。
The traveling device 11 has various sensing means 15 such as a television camera for monitoring the internal condition of the pipe 1, a working device 16 such as a welding machine for repairing the inside of the pipe, and sensing data from the sensing means 15 outside the pipe. The sensing means 1 is equipped with a data transmitter 18 for outputting to a vehicle, a data receiver 19 for receiving steering data or traveling data instructed from the outside of the pipe, and an antenna 20 for transmission and reception.
The sensing data from 5 (such as the internal state data of the pipe 1 and the position data of the traveling device 11) is processed and output to the data transmitter 18, or the electric motor 12 for traveling based on the data received by the data receiver 19 Control device 1 incorporating a microprocessor for driving and controlling the work device 16
7 is provided, so that the operator outside the pipe is
Maintenance work of the pipe 1 is performed while confirming the position of the traveling device 11 through 8 and 19.

【0009】上述の配管1には、数百メートルの間隔で
充電用のステーションSを設けてある。詳述すると、各
ステーションSには、図1に示すように、断面視”コ”
の字形の鉄心2aに銅線2bを巻回してなる一次コイル
2を、その鉄心2aの両端部の磁極が管の外壁面1aに
接当するように設置してあり、電源部3、発振回路4を
介してその銅線2bに交流電力が供給される。
The above-mentioned pipe 1 is provided with charging stations S at intervals of several hundred meters. More specifically, as shown in FIG.
A primary coil 2 formed by winding a copper wire 2b around a square-shaped iron core 2a is installed so that the magnetic poles at both ends of the iron core 2a contact the outer wall surface 1a of the tube. AC power is supplied to the copper wire 2 b via the cable 4.

【0010】走行装置11には、同じく断面視”コ”の
字形の鉄心6aに銅線6bを巻回してなる二次コイル6
がパンタグラフ機構5により昇降自在に設けてあり、操
作者は、送信機18からのデータに基づいて蓄電池13
の残留電力が僅かであることを確認すると、走行装置1
1を最寄りのステーションSに走行させて、パンタグラ
フ機構5の作動により、鉄心6aの両端の磁極位置が前
記一次コイル2の両磁極位置に対応した位置であって管
1の内壁面1bに接当する位置に上昇させ、一次コイル
2から二次コイル6に管壁1を介して電磁誘導により電
力を供給する。二次コイル6に供給された電力は、整流
回路7で整流された後蓄電池13に充電される。即ち、
二次コイル6と整流回路7とで充電回路14を構成す
る。このようにして充電を繰り返し、長距離の配管1の
点検作業を進めるのである。
The traveling device 11 has a secondary coil 6 formed by winding a copper wire 6b around an iron core 6a having a U-shape in cross section.
Is provided so that it can be moved up and down by the pantograph mechanism 5, and the operator can operate the storage battery 13 based on the data from the transmitter 18.
After confirming that the residual power of the
1 is moved to the nearest station S, and the operation of the pantograph mechanism 5 causes the magnetic pole positions of both ends of the iron core 6a to correspond to both magnetic pole positions of the primary coil 2 and contact the inner wall surface 1b of the pipe 1. Then, electric power is supplied from the primary coil 2 to the secondary coil 6 through the tube wall 1 by electromagnetic induction. The power supplied to the secondary coil 6 is rectified by the rectifier circuit 7 and then charged in the storage battery 13. That is,
The secondary coil 6 and the rectifying circuit 7 form a charging circuit 14. In this way, the charging is repeated and the inspection work of the long-distance pipe 1 is advanced.

【0011】図3に示すような電力伝達機構を定量的に
解析すべく、図4に示すような等価回路に基づいて説明
する。ここでは、問題を簡単にするために漏れ磁束を考
慮していないが磁路が全て磁性体で構成されているため
大幅な狂いはない。また、図中の点Pは、一次鉄心とガ
ス管との隙間から右方向を見た磁気回路で、図からも判
るようにこの方式のエネルギー伝送効率(η=Φe /Φ
0 )は、Ry1とRd1には関係しない。
In order to quantitatively analyze the power transmission mechanism as shown in FIG. 3, description will be made based on an equivalent circuit as shown in FIG. Here, in order to simplify the problem, leakage magnetic flux is not taken into consideration, but since the magnetic path is entirely made of a magnetic material, there is no significant deviation. The point P in the figure is the magnetic circuit seen to the right from the gap between the primary core and the gas pipe. As can be seen from the figure, the energy transfer efficiency (η = Φ e / Φ
0 ) is not related to R y1 and R d1 .

【0012】ここに、 一次コイル ; 外部の励磁コイル 一次鉄心 ; 外部磁路 ly1 一次鉄心の磁路長〔m〕 sy1 一次鉄心の断面積〔m2 〕 d1 一次鉄心とガス管のギャップ〔m〕 ガス管 ; lp ガス管磁路長〔m〕 sp ガス管磁路断面積〔m2 〕 二次コイル ; ロボット搭載の受電用コイル 二次鉄心 ; 内部磁路 ly2 二次鉄心の磁路長〔m〕 sy2 二次鉄心の断面積〔m2 〕 d2 二次鉄心とガス管のギャップ〔m〕 であり、等価磁器回路の各パラメータは、以下のように
表される。 Vm ; 一次コイルの起磁力(コイル巻き数Nと1コイ
ル電流Iの積〔A〕 Φ0 ; Vm により発生する磁束〔Wb 〕 Φp ; ガス管を流れる磁束〔Wb 〕 Φe ; 二次コイルに流れる磁束〔Wb 〕 Ry1; 一次鉄心の磁気抵抗〔A/Wb 〕 Rd1; 一次鉄心とガス管との隙間の磁気抵抗〔A/W
b 〕 Rp ; ガス管の磁気抵抗〔A/Wb 〕 Rd2; 二次鉄心とガス管との隙間の磁気抵抗〔A/W
b 〕 Ry2; 二次鉄心の磁気抵抗〔A/Wb 〕
Where primary coil; external excitation coil primary iron core; external magnetic path ly1 magnetic path length of primary core [m] sy1 cross-sectional area of primary core [m 2 ] d1 gap between primary core and gas tube [m] Gas tube; lp gas tube magnetic path length [m] sp gas tube magnetic path cross-sectional area [m 2 ] secondary coil; robot power-receiving coil secondary iron core; internal magnetic path ly2 magnetic path length of secondary iron core [m Sy2 Cross-sectional area of secondary iron core [m 2 ] d2 Gap between secondary iron core and gas pipe [m], and each parameter of the equivalent porcelain circuit is expressed as follows. V m : Magnetomotive force of primary coil (product of coil winding number N and one coil current I [A] Φ 0 ; magnetic flux generated by V m [Wb] Φ p ; magnetic flux flowing in gas pipe [Wb] Φ e ; two Magnetic flux flowing in the secondary coil [Wb] R y1 ; magnetic resistance of primary iron core [A / Wb] R d1 ; magnetic resistance of gap between primary iron core and gas pipe [A / W
b] R p ; magnetic resistance of gas pipe [A / Wb] R d2 ; magnetic resistance of gap between secondary core and gas pipe [A / W
b] R y2 ; Magnetic resistance of secondary iron core [A / Wb]

【0013】図4に示す点Pから右側を考えると、磁束
に間には、 Φ0 =Φp +Φe なる関係があり、又、各分枝の起磁力は等しいとして、 Rp Φp =(Rd2+Ry2)Φe 両式より、 η=Φe /Φ0 =Rp /(Rp +Rd2+Ry2) 各分枝の磁気抵抗は、磁気回路の透磁率をμとすると、 Rp =lp /μ0 μp pd2=d2 /μ0 y2v2=ly2/μ0 μy2y2 ここに、Sp はガス管の磁路有効面積(簡単には表せな
い)とする。さらに話を簡単にするために、各磁性体の
比透磁率は等しく、且つ、磁路の面積は等しいと仮定す
る。即ち、 μp =μy2(=μr ) ,Sp =Sy2(=Sr ) 以上から、ガス管中の磁路長lp と二次鉄心の磁路長l
y2を等しいとすると、エネルギー伝送効率(η=Φe
Φ0 )は、
Considering the right side from the point P shown in FIG. 4, there is a relation of Φ 0 = Φ p + Φ e between the magnetic fluxes, and assuming that the magnetomotive forces of the branches are equal, R p Φ p = (R d2 + R y2 ) Φ e From both equations, η = Φ e / Φ 0 = R p / (R p + R d2 + R y2 ). If the magnetic resistance of each branch is μ, p = l p / μ 0 μ p S p R d2 = d 2 / μ 0 S y2 R v2 = l y2 / μ 0 μ y2 S y2 where S p is the magnetic path effective area of the gas pipe (briefly, It cannot be expressed). Further, for the sake of simplicity, it is assumed that the relative magnetic permeability of each magnetic substance is the same and the areas of the magnetic paths are the same. That is, μ p = μ y2 (= μ r ), S p = S y2 (= S r ) From the above, the magnetic path length l p in the gas pipe and the magnetic path length l of the secondary iron core are
If y2 is equal, the energy transfer efficiency (η = Φ e /
Φ 0 ) is

【0014】[0014]

【数1】 [Equation 1]

【0015】となる。数1から、もし二次鉄心とガス管
の間に磁路のギャップがなければ、エネルギー伝送効率
は0.5となり定性的に合致する。実際的な値として、
磁路の磁性体の比透磁率を(μr =100)とし、ギャ
ップ(d2 =0.2mm)、鉄心とガス管中の磁路の長
さを(ly2=10cm)とすると、 η=25% となり、一次コイルの25%が電送されることになる。
磁路の磁性体の比透磁率を(μr =1000)とし、ギ
ャップ(d2 =0.2mm)、鉄心とガス管中の磁路の
長さを(ly2=10cm)とすると、 η=4.5% となる。エネルギー伝送効率を高めるためには、以上の
解析から 1.エネルギーギャップを小さくすること 2.ガス管の透磁率より二次鉄心の透磁率を大きくする
こと 3.磁路長を長くすること の三点が挙げられる。エネルギーの絶対値伝送量を大き
くするには、以上の改良の他に、一次側のギャップd1
を小さくする(密着させる)と共に、一次鉄心の比透磁
率を大きくし、磁路全体の断面積を大きくして全体の磁
気抵抗を小さくするとよい。
[0015] From Equation 1, if there is no magnetic path gap between the secondary core and the gas pipe, the energy transfer efficiency becomes 0.5, which is qualitatively consistent. As a practical value,
If the relative permeability of the magnetic material of the magnetic path is (μ r = 100), the gap (d 2 = 0.2 mm), and the length of the magnetic path in the iron core and the gas pipe is ( ly 2 = 10 cm), then η = 25%, and 25% of the primary coil is transferred.
If the relative permeability of the magnetic material of the magnetic path is (μ r = 1000), the gap (d 2 = 0.2 mm), and the length of the magnetic path in the iron core and the gas tube is ( ly 2 = 10 cm), then η = 4.5%. In order to improve the energy transfer efficiency, from the above analysis, 1. To reduce the energy gap 1. 2. Make the permeability of the secondary core larger than that of the gas pipe. There are three points of increasing the magnetic path length. In order to increase the absolute energy transmission amount, in addition to the above improvements, the primary side gap d 1
It is preferable to decrease (closely contact), increase the relative permeability of the primary core, increase the cross-sectional area of the entire magnetic path, and reduce the overall magnetic resistance.

【0016】以下に別実施例を説明する。先の実施例で
は、走行装置11に、二次コイル6をパンタグラフ機構
5により昇降自在に設けたものを説明したが、図5に示
すように、車軸20及び車輪21,22が永久磁石でな
る走行車輪を構成して、配管の内壁に磁気吸着して走行
するものでは、車軸20にコイルを巻回して、二次鉄心
を車軸20及び車輪21,22として機能させることに
より、充電回路を構成してもよい。先の実施例では、走
行装置11による点検対象配管1は、都市ガス供給用の
配管1である場合を説明したが、対象となる配管はこれ
に限定するものではなく、、化学プラント内の配管等の
任意の配管を対象とすることができる。又、走行途中に
蓄電池8の容量が低下し、充電が必要な場合には、容量
を検出する回路を設けて、その値が所定値以下になった
ことを検出して、パンタグラフ機構を上昇させる等の充
電準備動作を、その容量が完全に無くなる前に、許容す
る制御回路を設けることで、円滑な充電作業が行えるよ
うにしてもよい。
Another embodiment will be described below. In the above embodiment, the traveling device 11 is described in which the secondary coil 6 is provided by the pantograph mechanism 5 so as to be movable up and down. However, as shown in FIG. 5, the axle 20 and the wheels 21 and 22 are permanent magnets. In a case where a traveling wheel is configured to travel by magnetically adsorbing to an inner wall of a pipe, a coil is wound around the axle 20 and the secondary core functions as the axle 20 and the wheels 21 and 22 to configure a charging circuit. You may. In the above embodiment, the pipe 1 to be inspected by the traveling device 11 has been described as being the pipe 1 for supplying city gas, but the pipe to be inspected is not limited to this, and the pipe in the chemical plant is not limited to this. It is possible to target any piping such as. In addition, when the capacity of the storage battery 8 decreases during traveling and it is necessary to charge the battery, a circuit for detecting the capacity is provided, and it is detected that the value becomes a predetermined value or less, and the pantograph mechanism is raised. A smooth charging operation may be performed by providing a control circuit that allows the charging preparation operation such as the above before the capacity is completely consumed.

【0017】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】給電装置の断面図FIG. 1 is a cross-sectional view of a power supply device.

【図2】配管内を走行する管内走行装置の断面図FIG. 2 is a cross-sectional view of an in-pipe traveling device that travels in the pipe.

【図3】計算モデルの説明図FIG. 3 is an explanatory diagram of a calculation model

【図4】等価回路図FIG. 4 Equivalent circuit diagram

【図5】別実施例を示す要部の断面図FIG. 5 is a sectional view of a main part showing another embodiment.

【図6】従来例を示す要部の断面図FIG. 6 is a sectional view of a main part showing a conventional example.

【符号の説明】[Explanation of symbols]

1 管 2 一次コイル 6 二次コイル 11 走行装置 12 走行用モータ 13 蓄電池 1 Tube 2 Primary Coil 6 Secondary Coil 11 Traveling Device 12 Traveling Motor 13 Storage Battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 良行 京都府京都市下京区中堂寺南町17 京都リ サーチパーク 株式会社関西新技術研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Yamada 17 Nakadoji Minami-cho, Shimogyo-ku, Kyoto City, Kyoto Prefecture Kyoto Research Park Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 走行装置(11)に搭載され、走行装置
(11)の負荷に電力を供給する蓄電池(13)に対し
て、管(1)の外部に一次コイル(2)を配置するとと
もに、管(1)の内部の走行装置(11)に二次コイル
(6)を搭載して、前記蓄電池(13)に充電する電力
を、前記一次コイル(2)から前記二次コイル(6)へ
管壁を介した電磁誘導により供給する管内走行装置への
給電方法。
1. A primary coil (2) is arranged outside a pipe (1) for a storage battery (13) mounted on a traveling device (11) and supplying electric power to a load of the traveling device (11). , A secondary coil (6) is mounted on a traveling device (11) inside the pipe (1), and electric power for charging the storage battery (13) is supplied from the primary coil (2) to the secondary coil (6). A power supply method to a traveling device in a pipe, which is supplied by electromagnetic induction through a pipe wall.
【請求項2】 走行装置に搭載され、走行装置(11)
の負荷に電力を供給する蓄電池(13)に対して、充電
用の電力を供給する管内走行装置への給電装置であっ
て、 管(1)の外部に配置した一次コイル(2)と、管
(1)の内部の走行装置(1)に搭載され、前記一次コ
イル(2)から管壁を介した電磁誘導により電力を供給
する二次コイル(6)とで構成してある管内走行装置へ
の給電装置。
2. A traveling device (11) mounted on a traveling device.
Is a power supply device for a traveling device in a pipe, which supplies electric power for charging, to a storage battery (13) which supplies electric power to a load of the pipe, and a primary coil (2) arranged outside the pipe (1); To an in-pipe traveling device which is mounted on the traveling device (1) inside (1) and which is composed of a secondary coil (6) for supplying electric power from the primary coil (2) by electromagnetic induction through a pipe wall. Power supply device.
JP5047653A 1993-03-09 1993-03-09 Method and system for supplying power to in-pipe running unit Pending JPH06261423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047653A JPH06261423A (en) 1993-03-09 1993-03-09 Method and system for supplying power to in-pipe running unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047653A JPH06261423A (en) 1993-03-09 1993-03-09 Method and system for supplying power to in-pipe running unit

Publications (1)

Publication Number Publication Date
JPH06261423A true JPH06261423A (en) 1994-09-16

Family

ID=12781217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047653A Pending JPH06261423A (en) 1993-03-09 1993-03-09 Method and system for supplying power to in-pipe running unit

Country Status (1)

Country Link
JP (1) JPH06261423A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788212A2 (en) * 1996-01-30 1997-08-06 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
EP0977297A1 (en) * 1997-11-20 2000-02-02 Seiko Epson Corporation Electronic device
WO2007055586A1 (en) * 2005-11-10 2007-05-18 Tdw Offshore Services As External wireless smartdump
DE102012221128A1 (en) 2012-11-20 2014-05-22 Robert Bosch Gmbh Method for loading electric car, involves making load coupling device of loading column device to approach load coupling device of electric vehicle up to determined spacing for loading vehicle
EP2971933A4 (en) * 2013-03-14 2016-11-16 Invodane Engineering Ltd Apparatus and method for in-line charging of a pipeline tool
CN108417370A (en) * 2018-03-21 2018-08-17 北京市燃气集团有限责任公司 The charging system and charging method of robot are detected for gas pipeline ultromotivity
WO2024178043A1 (en) * 2023-02-22 2024-08-29 Halliburton Energy Services, Inc. Wellbore tractor charging station

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788212A2 (en) * 1996-01-30 1997-08-06 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
EP0788212A3 (en) * 1996-01-30 1998-02-04 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
US5821731A (en) * 1996-01-30 1998-10-13 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
EP0977297A1 (en) * 1997-11-20 2000-02-02 Seiko Epson Corporation Electronic device
EP0977297A4 (en) * 1997-11-20 2000-02-16 Seiko Epson Corp Electronic device
WO2007055586A1 (en) * 2005-11-10 2007-05-18 Tdw Offshore Services As External wireless smartdump
DE102012221128A1 (en) 2012-11-20 2014-05-22 Robert Bosch Gmbh Method for loading electric car, involves making load coupling device of loading column device to approach load coupling device of electric vehicle up to determined spacing for loading vehicle
EP2971933A4 (en) * 2013-03-14 2016-11-16 Invodane Engineering Ltd Apparatus and method for in-line charging of a pipeline tool
US9728817B2 (en) 2013-03-14 2017-08-08 Invodane Engineering Ltd. Apparatus and method for in-line charging of a pipeline tool
CN108417370A (en) * 2018-03-21 2018-08-17 北京市燃气集团有限责任公司 The charging system and charging method of robot are detected for gas pipeline ultromotivity
WO2019179337A1 (en) * 2018-03-21 2019-09-26 北京市燃气集团有限责任公司 Charging system and method for self-powered inspection robot for gas pipeline
US11223231B2 (en) 2018-03-21 2022-01-11 Beijing Gas Group Company Limited Charging system and charging method for automatic force detection robot for gas pipeline
WO2024178043A1 (en) * 2023-02-22 2024-08-29 Halliburton Energy Services, Inc. Wellbore tractor charging station

Similar Documents

Publication Publication Date Title
JP4536131B2 (en) Insulated power feeder for moving objects
WO2015093513A1 (en) Parking assistance apparatus and system
CN105189869B (en) The construction method of paving structure body and paving structure body
EP3032700B1 (en) Shield device and contactless power supply system
US9902278B2 (en) Power supplying device, wireless power-supplying system, and bag unit
EP0788212A3 (en) Connection system and connection method for an electric automotive vehicle
EP2594425A1 (en) Method and device for designing a current supply and collection device for a transportation system using an electric vehicle
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
JPH06261423A (en) Method and system for supplying power to in-pipe running unit
EP4005832A1 (en) System for supplying power during travel
JP2020022340A (en) Device and system for non-contact power supply
US20050088056A1 (en) Automotive rotary electric machine
EP0816797A3 (en) Apparatus for and method of measuring corrosion degree of cable
JPH0686470A (en) Battery charging apparatus for forklift
KR100976345B1 (en) Automatic power apparatus and electric vehicle having the same and driving method thereof
JP2019161690A (en) Power supply device of power-assisted light vehicle
JP2023000406A (en) Power supply management device and abnormality determination method
JP2013090392A (en) Non-contact charging device and non-contact power supply facility
JP5322342B2 (en) Power generation system, moving body, power generation method, power generation means installation method, and magnetic field generation means installation method
JPH0993841A (en) Noncontact feeder system for ground mobile
JP7331394B2 (en) Power supply system while driving
CN109484217A (en) The unmanned navigation system of three-in-one electronic highway and method
JPH07170612A (en) Battery charging system
JP2023000390A (en) vehicle
JP2000329300A (en) Transfering and monitoring equipment for conduit