JPH06267529A - Monoblock storage battery - Google Patents
Monoblock storage batteryInfo
- Publication number
- JPH06267529A JPH06267529A JP5108723A JP10872393A JPH06267529A JP H06267529 A JPH06267529 A JP H06267529A JP 5108723 A JP5108723 A JP 5108723A JP 10872393 A JP10872393 A JP 10872393A JP H06267529 A JPH06267529 A JP H06267529A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- cells
- metal plate
- electrode plate
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、モノブロック蓄電池に
関するもので、特にその容積効率や出力密度の向上に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monoblock storage battery, and more particularly to improvement of its volumetric efficiency and output density.
【0002】[0002]
【従来の技術とその課題】鉛蓄電池をはじめとする各種
電池では、目的とする電圧を得るために単セルを直列に
接続して用いられている。例えば自動車用鉛蓄電池で
は、一つのブロック内に6セルが直列に接続されて入れ
られており(モノブロック)、12Vの電圧が得られる
ようになっている。2. Description of the Related Art In various batteries including lead acid batteries, single cells are connected in series to obtain a target voltage. For example, in a lead-acid battery for automobiles, 6 cells are connected in series in one block (monoblock), and a voltage of 12 V is obtained.
【0003】一般的なモノブロック鉛蓄電池を図5に示
した。鉛蓄電池用正負極板は、鉛合金製集電体上に活物
質を充填して作製されており、電流取り出しは、集電体
の一部分である極板耳によって行われる。正、負極板
1、3およびセパレータ2を重ね合わせ、同極性の極板
耳どうしを接続するためのストラップ16およびストラ
ップと一体になっているセル間接続柱17を形成して極
板群とする。ストラップやセル間接続柱は、それらの鉛
部品と極板耳とをバーナーで溶接する方法や、COSと
呼ばれる倒立させた極板耳を溶融鉛浴に浸せき凝固させ
る方法などによって形成される。極板群を電槽に挿入し
た後、隣接したセルのセル間接続柱どうしを電気抵抗溶
接することにより、各セルを直列接続して所定電圧のモ
ノブロック鉛蓄電池が完成する。A typical monoblock lead-acid battery is shown in FIG. The positive / negative electrode plate for a lead storage battery is manufactured by filling a lead alloy current collector with an active material, and current is taken out by an electrode plate ear which is a part of the current collector. The positive and negative electrode plates 1 and 3 and the separator 2 are superposed on each other, and a strap 16 for connecting the polar plate ears of the same polarity and an inter-cell connection pillar 17 integrated with the strap are formed to form a polar plate group. . The straps and inter-cell connecting columns are formed by a method of welding those lead parts and the electrode plate ears with a burner, or a method of soaking the inverted electrode plate ears called COS in a molten lead bath for solidification. After the electrode plate group is inserted into the battery case, the inter-cell connecting columns of the adjacent cells are electrically resistance welded to each other so that the cells are connected in series to complete the monoblock lead acid battery of a predetermined voltage.
【0004】モノブロック電池では、極板どうしを接続
するためのストラップや、セル間を接続するためのセル
間接続柱などの部品が必要となり、極板寸法が制限され
る、部品点数や工程数が多くなる、内部抵抗が大きい、
軽量化や容積効率(Wh/l)の向上が困難、といった
ような問題を有している。The monoblock battery requires parts such as straps for connecting the electrode plates and connecting columns for connecting the cells, which limits the size of the electrode plate, and the number of parts and the number of steps. , Internal resistance is large,
There are problems such as difficulty in weight reduction and improvement in volumetric efficiency (Wh / l).
【0005】また、鉛蓄電池の性能改善のため、集電体
に銅やチタンなどを用いたものも一部開発されている。
銅は鉛に比べ、電気抵抗や比重が小さく、鉛蓄電池の負
極電位では溶解しないことから、放電性能の向上や軽量
化を目的として負極集電体として用いられている。一
方、チタンは耐食性が高く、鉛蓄電池正極への適用が検
討されている。チタンの耐食性は不働態皮膜の生成に起
因していることから、そのままでは正極集電体として用
いることはできず、その表面に導電性酸化物皮膜を形成
するなどの処理を施すことが必要になる。適当な方法で
処理を施したチタン集電体を用いた電池は、非常に寿命
性能が優れていることがわかっている。しかし、銅やチ
タンを集電体に用いて極板耳を溶接する場合、その融点
が鉛に比べてかなり高いため、従来の方法では困難とな
り、極板耳の接続やセル間接続を行うための新しい方法
の開発が望まれている。Further, in order to improve the performance of the lead-acid battery, a part of the current collector using copper or titanium has been developed.
Copper has smaller electric resistance and specific gravity than lead and does not dissolve at the negative electrode potential of a lead storage battery, and is therefore used as a negative electrode current collector for the purpose of improving discharge performance and reducing weight. On the other hand, titanium has high corrosion resistance, and its application to the positive electrode of a lead storage battery is under study. Since the corrosion resistance of titanium is due to the formation of a passive film, it cannot be used as it is as a positive electrode current collector, and it is necessary to apply a treatment such as forming a conductive oxide film on its surface. Become. It has been found that a battery using a titanium current collector treated by an appropriate method has a very long life performance. However, when the electrode plate ears are welded using copper or titanium for the current collector, the melting point is much higher than that of lead, making it difficult with the conventional method to connect the electrode plate ears and cells. It is desired to develop a new method.
【0006】鉛蓄電池以外の電池、例えばアルカリ蓄電
池(ニッケル−カドミウム蓄電池、ニッケル−水素蓄電
池)、リチウム蓄電池などは、一部の試作品を除いてモ
ノブロック蓄電池はつくられておらず、高電圧が必要な
場合には単セル電池を組み合わせて用いられている。こ
れは、鉛蓄電池の場合は、集電体等に用いている鉛合金
の融点が低いため、セル間接続などの溶接が容易に行え
るが、これらの電池では、集電体にニッケルなどの融点
の高い金属を用いているため、セル間の気密を保ったま
まセル間溶接を行うことが困難なためである。Batteries other than lead storage batteries, such as alkaline storage batteries (nickel-cadmium storage batteries, nickel-hydrogen storage batteries) and lithium storage batteries, do not have monoblock storage batteries, except for some prototypes. When necessary, a single cell battery is used in combination. This is because in the case of lead storage batteries, the melting point of the lead alloy used for the current collector, etc. is low, so welding such as between cells can be performed easily.However, in these batteries, the current collector has a melting point such as nickel. This is because it is difficult to perform the inter-cell welding while maintaining the airtightness between the cells because a metal having a high temperature is used.
【0007】図6はアルカリ蓄電池で試作されているモ
ノブロック電池のセル間接続を示したものである。極板
耳を長めに作製し、セル間隔壁の方向に折り曲げ、セル
間接続用ねじ18によって隣接セルどうしを接続してい
る。この方法は、セル間の気密不良が発生し易い、極板
耳の長さが極板ごとに異なり量産が困難、極板耳が長い
ことによる短絡の危険、電気抵抗が大きいといった問題
を有している。FIG. 6 shows the connection between cells of a monoblock battery prototyped with an alkaline storage battery. The electrode plate ears are made long, bent in the direction of the cell spacing wall, and the adjacent cells are connected by the inter-cell connecting screw 18. This method has problems that airtightness between cells is likely to occur, that the length of the electrode plate ears varies from electrode plate to plate, mass production is difficult, the risk of short circuit due to long electrode plate ears, and large electrical resistance. ing.
【0008】アルカリ蓄電池やリチウム蓄電池などは、
鉛蓄電池に比べ、エネルギー密度が高いという特徴を持
っているため単セル電池を組み合わせた使い方でも問題
なかったが、近年電気自動車用をはじめとしてさらなる
軽量化、容積効率や重量エネルギー密度(Wh/kg)
の向上などの要求が強くなってきており、量産可能で性
能的に問題のないモノブロック蓄電池の開発が不可欠と
なってきている。Alkaline storage batteries and lithium storage batteries are
Compared to lead-acid batteries, it has a higher energy density, so there was no problem in using it in combination with a single-cell battery, but in recent years it has become even lighter, especially for electric vehicles, and volume efficiency and weight energy density (Wh / kg )
With the increasing demands for improvement of the battery, it is indispensable to develop a monoblock storage battery that can be mass-produced and has no performance problem.
【0009】[0009]
【課題を解決するための手段】本発明は、上述した問題
点を解消するもので、すなわち集電体に高融点金属を用
いた場合でも極板耳どうしの接続やセル間の接続を良好
に行うことができ、またモノブロック蓄電池の容積効率
や出力密度を増大させるという効果も得られるものであ
る。その要旨とするところは、くし状部分を有するセル
間接続用金属板のくし状部分に極板耳部を差し込み、該
耳部と該金属板とを溶接することにより、セル間の接続
を行ない、該金属板の周囲に樹脂を充填することにより
セル間を封口したことを特徴とするものである。Means for Solving the Problems The present invention solves the above-mentioned problems. That is, even when a high melting point metal is used for the current collector, the connection between the electrode ears and the connection between the cells are improved. It is also possible to obtain the effect of increasing the volumetric efficiency and output density of the monoblock storage battery. The gist of the point is to connect the cells by inserting the electrode plate ears into the comb-shaped part of the inter-cell connecting metal plate having the comb-shaped parts and welding the ears and the metal plate. It is characterized in that the cells are sealed by filling a resin around the metal plate.
【0010】[0010]
【作用】セル間接続にくし状部分を有する金属板を用
い、このくし状部分に極板の耳部を差し込み、耳部と金
属板とを溶接することによりセル間を接続する構成であ
るから、鉛よりも融点の高い銅やチタンなどの低い電気
抵抗の金属が使用でき、セル間の封口は金属板の周囲に
樹脂を充填することにより行うので、容積効率や出力密
度の高いモノブロック蓄電池の製造が容易となる。Since the metal plate having the comb-like portion is used for the cell-to-cell connection, the ears of the electrode plate are inserted into the comb-like portion, and the ears and the metal plate are welded to connect the cells. , A metal with a low electric resistance such as copper or titanium, which has a higher melting point than lead, can be used, and the sealing between cells is performed by filling the resin around the metal plate, so a monoblock storage battery with high volume efficiency and high output density. Is easy to manufacture.
【0011】[0011]
【実施例】以下、実施例により本発明を説明する。 (実施例1)JIS形式26B17相当(公称電圧12
V,5時間率容量21Ah、高さ203mm,幅127
mm,長さ167mm)の本発明によるものおよび従来
形のモノブロック密閉式鉛蓄電池を作製した。本発明の
電池の概略図を図1に、従来形を図5に示した。正、負
極板には表1に示したものを用いた。EXAMPLES The present invention will be described below with reference to examples. (Example 1) JIS type 26B17 equivalent (nominal voltage 12
V, 5 hour rate capacity 21Ah, height 203mm, width 127
mm, length 167 mm) and conventional monoblock sealed lead acid batteries of the present invention were prepared. A schematic view of the battery of the present invention is shown in FIG. 1, and a conventional type is shown in FIG. The positive and negative electrode plates shown in Table 1 were used.
【0012】[0012]
【表1】 [Table 1]
【0013】電池No.1,5で用いた正極集電体は、
鉛−0.1%カルシウム−1.0%錫合金を鋳造して作
った厚み2mmの格子を用い、また電池No.1,3,
5で用いた負極集電体は、鉛−0.1%カルシウム合金
を鋳造して作った厚み1.5mmの格子を用いた。Battery No. The positive electrode current collector used in Nos. 1 and 5 is
A 2 mm-thick grid made by casting lead-0.1% calcium-1.0% tin alloy was used. 1, 3,
As the negative electrode current collector used in Example 5, a 1.5 mm-thick grid made by casting a lead-0.1% calcium alloy was used.
【0014】電池No.2,4では、銅製エキスパンド
格子に鉛メッキを約20μmの厚みで施したものを負極
集電体として用いた。銅製エキスパンド格子は、厚み
0.3mmの銅板をエキスパンド加工して作製した。Battery No. In Nos. 2 and 4, a copper expanded grid plated with lead in a thickness of about 20 μm was used as a negative electrode current collector. The expanded grid made of copper was prepared by expanding a copper plate having a thickness of 0.3 mm.
【0015】電池No.3,4で正極集電体として用い
たチタン集電体は、厚み0.5mmのチタン板をエキス
パンド加工してチタンエキスパンド格子としたものを用
いた。そして表面をワイヤーブラシで研磨、沸騰塩酸に
よるエッチングを行った。この表面に錫とアンチモンの
複合酸化物被膜を厚み1μm、その上にα−PbO2層
を厚み100μm形成させた。酸化物被膜は三塩化アン
チモン、塩化第二錫、ブチルアルコールからなる溶液に
格子を浸漬後、500℃で10分間焼成して形成させ
た。α−PbO2 層は酸化物被膜を形成させた格子を水
酸化鉛、水酸化ナトリウムからなるα−PbO2 メッキ
浴中で通電することにより形成した。Battery No. As the titanium current collector used as the positive electrode current collector in 3 and 4, a titanium plate having a thickness of 0.5 mm was expanded to form a titanium expanded grid. Then, the surface was polished with a wire brush and etched with boiling hydrochloric acid. On this surface, a composite oxide film of tin and antimony was formed with a thickness of 1 μm, and an α-PbO 2 layer was formed thereon with a thickness of 100 μm. The oxide film was formed by immersing the grid in a solution containing antimony trichloride, stannic chloride and butyl alcohol, and then baking the grid at 500 ° C. for 10 minutes. The α-PbO 2 layer was formed by energizing the lattice on which the oxide film was formed in an α-PbO 2 plating bath containing lead hydroxide and sodium hydroxide.
【0016】集電体の寸法は、本発明品では高さ170
mm、幅110mmとし、従来品では高さ140mm、
幅110mmとした。本発明の電池では、従来形のよう
にストラップを形成しなくてもよいために、極板高さを
約1.2倍と大きくすることができた。The size of the collector is 170 in the present invention.
mm, width 110 mm, conventional product height 140 mm,
The width was 110 mm. In the battery of the present invention, since it is not necessary to form a strap unlike the conventional type, the electrode plate height can be increased to about 1.2 times.
【0017】極板は通常の方法でペースト状活物質を所
定量充填し、熟成、乾燥を行った。The electrode plate was filled with a predetermined amount of the paste-like active material by a conventional method, aged and dried.
【0018】本発明の電池は、次の様にして組み立て
た。正、負極板と微細ガラス繊維セパレータ(リテイナ
ーマット)とを重ね合わせ極板群とし電槽に挿入した。
次に、図2に示すような、セル間接続用金属板のくし状
部13の隙間に極板耳を差し込み、極板耳と金属板とを
接続した。セル間接続用金属板は銅製で厚み0.5mm
のものを用いた。The battery of the present invention was assembled as follows. Positive and negative electrode plates and a fine glass fiber separator (retainer mat) were superposed on each other to form an electrode plate group, which was inserted into a battery case.
Next, as shown in FIG. 2, electrode ears were inserted into the gaps between the comb-shaped portions 13 of the metal plates for connecting cells to connect the electrode ears to the metal plates. The metal plate for cell connection is made of copper and has a thickness of 0.5 mm
I used the one.
【0019】極板耳が、鉛および銅のもの(電池No.
1−正負極、No.2−正負極、No.3−負極、N
o.4−負極)は、はんだづけにより極板耳と金属板と
の接続を行った。Electrode ears of lead and copper (Battery No.
1-positive and negative electrodes, No. 2-positive and negative electrodes, No. 3-negative electrode, N
o. 4- (negative electrode) was connected to the electrode plate ears and the metal plate by soldering.
【0020】極板耳がチタンのもの(No.3−正極、
No.4−正極)は、図4に示したように、極板耳を折
り曲げ、折り曲げた部分をスポット溶接してセル間接続
用金属板と接続した。スポット溶接の条件は、溶接電流
値9000A、溶接時間10サイクル、電極加圧力0.
4kgとした。The electrode plate has titanium ears (No. 3-positive electrode,
No. As shown in FIG. 4, the positive electrode (4-positive electrode) was bent at the electrode plate ears, and the bent portion was spot-welded to be connected to the inter-cell connecting metal plate. The conditions for spot welding are: welding current value of 9000 A, welding time of 10 cycles, electrode pressure of 0.
It was 4 kg.
【0021】両端のセルには、図3に示した端セル用金
属板14を接続し、端子部15をふたを通してふた上部
に出し、端子とした。The metal plates 14 for end cells shown in FIG. 3 were connected to the cells at both ends, and the terminal portion 15 was passed through the lid to the upper portion of the lid to form terminals.
【0022】次に電池を倒立させ、エポキシ樹脂をふた
裏に注入、充填し、固化させた。この時、金属板が露出
すると電解液である硫酸に触れ、腐食されてしまうので
金属板は、完全にエポキシ樹脂で封口されるようにし
た。また、セル間隔壁の上部もエポキシ樹脂に埋まりセ
ル間の気密が保たれるようにした。Next, the battery was inverted, and epoxy resin was injected into the back of the lid, filled, and solidified. At this time, when the metal plate is exposed, it is exposed to sulfuric acid as an electrolytic solution and corroded, so that the metal plate is completely sealed with an epoxy resin. The upper part of the cell spacing wall was also filled with epoxy resin so that the airtightness between the cells was maintained.
【0023】電池No.5の従来形電池は、通常の方法
で極板を積層し、極板耳部をCOS溶接してストラップ
およびセル間接続柱を形成し極板群とした。これらを電
槽に挿入し、セル間を電気抵抗溶接し、ふたを熱溶着し
てモノブロック電池とした。Battery No. In the conventional battery of No. 5, the electrode plates were laminated by a usual method, and the electrode plate ears were COS-welded to form straps and inter-cell connecting columns to form an electrode plate group. These were inserted into a battery case, electric resistance welding was performed between cells, and a lid was heat-welded to obtain a monoblock battery.
【0024】次にこれらの電池に硫酸を注入し、所定の
方法によって電槽化成を行ない、化成終了後、弁を取り
付け、電池を完成させた。Next, sulfuric acid was injected into these batteries, and battery formation was performed by a predetermined method. After the formation was completed, valves were attached to complete the batteries.
【0025】容量試験として、5時間率放電(25℃、
4.2A放電、終止電圧10.2V)、および低温高率
放電(−15℃,150A放電、終止電圧6.0V)を
おこなった。この結果を表2に示す。As a capacity test, a 5-hour rate discharge (25 ° C.,
4.2 A discharge, final voltage 10.2 V) and low temperature high rate discharge (-15 ° C., 150 A discharge, final voltage 6.0 V) were performed. The results are shown in Table 2.
【0026】[0026]
【表2】 [Table 2]
【0027】5時間率放電時間を比較すると、本発明の
電池は従来品に比べ約1.2倍の容量を有していること
がわかった。これは、極板寸法が約1.2倍と大きいた
めに活物質量も多くなっているためである。容積効率を
表3に示す。容積効率は次式で求めた。 容積効率(Wh/l)=放電容量(Ah)×平均放電電
圧(V)/電池容積Comparing the 5-hour discharge time, it was found that the battery of the present invention had a capacity about 1.2 times that of the conventional product. This is because the size of the electrode plate is as large as about 1.2 times and the amount of active material is also increased. The volume efficiency is shown in Table 3. The volumetric efficiency was calculated by the following formula. Volume efficiency (Wh / l) = discharge capacity (Ah) × average discharge voltage (V) / battery volume
【0028】[0028]
【表3】 表3に示したように、本発明の電池では容積効率が向上
していることがわかる。[Table 3] As shown in Table 3, it can be seen that the battery of the present invention has improved volumetric efficiency.
【0029】表2によると低温高率放電においても、本
発明の電池では活物質量が多くなっているために放電容
量が大きくなっていることがわかる。また、電池の内部
抵抗に影響を受ける5秒目電圧を比べてみる。電池N
o.1で8.5V、No.2で8.4Vというように本
発明の電池の方が、0.1V電圧が高くなっている。こ
れは、電気抵抗の小さい銅製のセル間接続用金属板を用
いたため電池の内部抵抗が小さくなったからである。同
様に負極集電体に銅製エキスパンド格子を用いたもので
も、内部抵抗が小さくなり5秒目電圧が高くなってい
る。また、チタンは鉛に比べ、その電気抵抗が約2倍と
大きいことから、チタンを正極集電体に用いたものでは
5秒目電圧が0.1V低くなっている(電池No.1で
8.5V、No.3で8.4V)。しかし本発明の電池
では、セル間接続部の抵抗が小さいために、5秒目電圧
は従来品の電池No.5の8.4Vと同じになってい
る。 (実施例2)次に、公称電圧10.8V、容量100A
hのモノブロック・リチウム蓄電池を試作した場合を例
に挙げて本発明を説明する。電池寸法は、高さ120m
m、幅110mm、長さ300mmであり、電池内で公
称電圧3.6Vのセルが3個直列に接続されている。It can be seen from Table 2 that the discharge capacity of the battery of the present invention is large due to the large amount of active material even at low temperature and high rate discharge. Also, compare the voltage at the 5th second, which is affected by the internal resistance of the battery. Battery N
o. No. 1 at 8.5V, No. The battery of the present invention has a higher voltage of 0.1 V, such as 2 at 8.4 V. This is because the internal resistance of the battery was reduced because a copper-made metal plate for cell connection having a low electric resistance was used. Similarly, even in the case where a copper expanded grid is used for the negative electrode current collector, the internal resistance is small and the voltage at the fifth second is high. Further, since titanium has an electric resistance that is about twice as high as that of lead, the voltage at the fifth second is 0.1 V lower in the case where titanium is used for the positive electrode current collector (8 in battery No. 1). 0.5V, 8.4V for No. 3). However, in the battery of the present invention, since the resistance of the cell-to-cell connecting portion is small, the voltage at the fifth second is the same as that of the conventional battery No. It is the same as 8.4V of 5. (Example 2) Next, a nominal voltage of 10.8 V and a capacity of 100 A
The present invention will be described by taking as an example a case where a monoblock lithium storage battery of h is manufactured as an example. Battery size is 120m high
m, width 110 mm, length 300 mm, and three cells having a nominal voltage of 3.6 V are connected in series in the battery.
【0030】正極集電体には、厚み0.02mmのアル
ミニウム板をエキスパンド加工して作成したエキスパン
ド格子を用いた。アルミニウム以外にもチタンやステン
レスなどが正極集電体として使用可能である。この集電
体上に、活物質としてコバルト酸リチウムをテフロンで
練膏したものを充填し、正極板とした。活物質充填後の
正極板の厚みは約0.2mmである。そして正極板を、
厚み0.03mmの微孔性ポリプロピレンからなる袋状
セパレータに挿入した。As the positive electrode current collector, an expanded grid prepared by expanding an aluminum plate having a thickness of 0.02 mm was used. In addition to aluminum, titanium, stainless steel or the like can be used as the positive electrode current collector. On this current collector, lithium cobalt oxide as an active material plastered with Teflon was filled to prepare a positive electrode plate. The thickness of the positive electrode plate after filling with the active material is about 0.2 mm. And the positive plate
It was inserted into a bag-shaped separator made of microporous polypropylene having a thickness of 0.03 mm.
【0031】負極集電体には、厚み0.02mmの発泡
ニッケル板を用いた。負極集電体の材質は、ニッケル以
外にも銅などが使用可能である。集電体上に活物質とし
てカーボンをポリフッ化ビニリデンで練膏したものを充
填して負極板とした。活物質充填後の負極板の厚みは約
0.2mmである。A foamed nickel plate having a thickness of 0.02 mm was used as the negative electrode current collector. As the material of the negative electrode current collector, copper or the like can be used in addition to nickel. A negative electrode plate was prepared by filling a collector with carbon as an active material plastered with polyvinylidene fluoride. The thickness of the negative electrode plate after filling the active material is about 0.2 mm.
【0032】正、負極板とも寸法は、高さ100mm、
幅100mmとした。The dimensions of both the positive and negative plates are 100 mm in height,
The width was 100 mm.
【0033】電槽は、ポリプロピレンからなり表面にア
ルミ箔を張り付けたラミネート構造としている。これ
は、電池外部から電池内部への水蒸気の透過を防止する
ためである。The battery case is made of polypropylene and has a laminated structure in which an aluminum foil is attached to the surface. This is to prevent the permeation of water vapor from the outside of the battery into the inside of the battery.
【0034】図7は、本発明の電池のセル間接続部を拡
大して示した概略図である。FIG. 7 is an enlarged schematic view of an inter-cell connecting portion of the battery of the present invention.
【0035】セパレータに入った正極板と負極板とをそ
れぞれ200枚ずつ交互に積層し、電槽に挿入した。そ
して、極板耳をセル間接続用金属板のくし状部に差し込
み、極板耳と金属板とを接続した。金属板には、厚さ
0.5mmのニッケル板に、4.5mmおきに0.5m
m幅のスリットが設けられており、極板耳は10枚ずつ
重ね合わせてこのスリットに差し込まれている。極板耳
の厚みが薄く、極板耳どうしの間隔も狭いことから、極
板耳を多数重ね合わせてスリットに差し込んでも、図6
の電池の場合のように極板耳の長さを変える必要はな
く、また作業性も良好であった。端セルは、実施例1の
場合と同様に端子部が一体となった金属板を用いた。正
極集電体は、材質がアルミニウムなので、アルミニウム
用フラックスを用いてはんだづけを行った。アルミニウ
ム用フラックスとしては、トリエタノールアミン、ホウ
フッ化水素酸、ホウフッ化カドミウムの混合溶液を用い
た。負極集電体は材質がニッケルなので、通常のはんだ
づけによりニッケル製の金属板との接続を行った。The positive electrode plate and the negative electrode plate, which were contained in the separator, were alternately laminated, 200 sheets each, and were inserted into the battery case. Then, the electrode plate ears were inserted into the comb-shaped portions of the metal plates for connecting cells to connect the electrode plate ears to the metal plates. For the metal plate, a nickel plate with a thickness of 0.5 mm and 0.5 m at intervals of 4.5 mm
An m-width slit is provided, and the electrode plate ears are inserted in the slit by superimposing 10 sheets each. Since the electrode plate ears are thin and the gap between the electrode plate ears is narrow, even if a large number of electrode plate ears are stacked and inserted into the slit,
It was not necessary to change the length of the electrode plate ears as in the case of the battery No. 3, and the workability was good. As the end cell, a metal plate with integrated terminal portions was used as in the case of Example 1. Since the positive electrode current collector is made of aluminum, it was soldered using a flux for aluminum. As the aluminum flux, a mixed solution of triethanolamine, borohydrofluoric acid, and cadmium borofluoride was used. Since the material of the negative electrode current collector is nickel, the negative electrode current collector was connected to a nickel metal plate by ordinary soldering.
【0036】セル間接続用金属板の接続が終わった後、
電池を倒立させ、ポリプロピレンの溶融浴中に極板耳の
部分まで浸漬・凝固させて引き上げた。これにより、セ
ル間接続用金属板は、完全にポリプロピレンで覆われた
状態とすることができ、またセル間隔壁上部もポリプロ
ピレンにより覆われて、セル間の気密を保つことができ
るようになった。この上に、電槽と同じようにポリプロ
ピレンからなり表面にアルミ箔を張ったふたを熱溶着し
た。この時、端子部はふた上部から外にでるようにして
いる。After the connection of the metal plates for connecting cells is completed,
The battery was inverted, soaked and solidified in a polypropylene melt bath up to the ears of the electrode plate and pulled up. As a result, the metal plate for connecting cells can be completely covered with polypropylene, and the upper part of the cell spacing wall is also covered with polypropylene, so that airtightness between cells can be maintained. . On top of this, a lid made of polypropylene and having an aluminum foil on the surface was heat-welded in the same manner as in the battery case. At this time, the terminal part is designed to come out from the upper part of the lid.
【0037】その後、各セル上部のふたに電解液注液用
の穴を開け、電解液を所定量注液した。電解液は、エチ
レンカーボネート、ジエチルカーボネート、ジメチルカ
ーボネートの混合溶液にLiPF6 を1モル溶解させた
ものを用いた。After that, a hole for injecting the electrolytic solution was opened in the lid on the top of each cell, and a predetermined amount of the electrolytic solution was injected. As the electrolytic solution, a solution obtained by dissolving 1 mol of LiPF 6 in a mixed solution of ethylene carbonate, diethyl carbonate and dimethyl carbonate was used.
【0038】注液終了後は注液口に、開放圧が8kg/
cm2 の弁を溶着した。After completion of the injection, the opening pressure is 8 kg /
A cm 2 valve was welded.
【0039】こうして完成したモノブロック・リチウム
蓄電池は、金箱19に入れた。図8にできあがった電池
の図を示した。今回作成したリチウム蓄電池で用いた正
負極活物質は、充電状態で活物質の体積が大きくなるた
め、充電時に電槽が変形するおそれがある。金箱に入れ
たのはこの変形を防止するためである。The monoblock lithium storage battery thus completed was placed in the metal box 19. FIG. 8 shows a diagram of the completed battery. The positive and negative electrode active materials used in the lithium storage battery prepared this time have a large volume of the active material in a charged state, so that the battery case may be deformed during charging. It was placed in a metal box to prevent this deformation.
【0040】この電池を次の条件で寿命試験に供した。
1回の放電・充電を1サイクルとしている。This battery was subjected to a life test under the following conditions.
One discharge / charge is one cycle.
【0041】 放電 20A×5時間(放電深度100%) 充電 12.3V(最大電流50A)×3時間 温度 30℃ 寿命試験500サイクル時点での容量は、初期の95%
であり、寿命性能には問題がみられなかった。Discharge 20A × 5 hours (discharge depth 100%) Charging 12.3V (maximum current 50A) × 3 hours Temperature 30 ° C. The capacity at the time of the life test 500 cycles is 95% of the initial value.
And there was no problem in life performance.
【0042】[0042]
【発明の効果】以上、実施例1および実施例2で詳述し
た様に、本発明によれば、集電体に高融点金属を用いた
場合でも極板耳どうしの接続やセル間の接続を良好に行
うことができ、またモノブロック蓄電池の容積効率や出
力密度を増大させるという効果も得られるものであり、
工業的価値の甚だ大なるものである。As described above in detail in the first and second embodiments, according to the present invention, even if a refractory metal is used as the current collector, the electrode ears are connected to each other and the cells are connected to each other. Can be performed satisfactorily, and the effect of increasing the volume efficiency and output density of the monoblock storage battery can be obtained.
It is of great industrial value.
【図1】本発明のモノブロック鉛蓄電池を示した図FIG. 1 is a diagram showing a monoblock lead-acid battery of the present invention.
【図2】本発明で使用するセル間接続用金属板を示した
図FIG. 2 is a view showing a metal plate for cell connection used in the present invention.
【図3】端セル用金属板を示した図FIG. 3 shows a metal plate for an end cell.
【図4】チタン集電体をスポット溶接する場合の概略図FIG. 4 is a schematic diagram of spot welding of a titanium current collector.
【図5】従来のモノブロック鉛蓄電池を示した図FIG. 5 is a diagram showing a conventional monoblock lead acid battery.
【図6】アルカリ蓄電池で従来行われていたセル間接続
を示した図FIG. 6 is a diagram showing a cell-to-cell connection that has been conventionally performed in an alkaline storage battery.
【図7】モノブロック・リチウム蓄電池のセル間接続部
を拡大して示した図FIG. 7 is an enlarged view of a cell-to-cell connection portion of a monoblock lithium storage battery.
【図8】モノブロック・リチウム蓄電池を金箱に入れた
状態を示した図FIG. 8 is a diagram showing a state in which a monoblock lithium storage battery is put in a metal box.
1 正極板 2 セパレータ 3 負極板 4 電槽 5 ふた 6 弁 7 端子 8 セル間隔壁 9 セル間接続用金属板 10 溶接部 11 樹脂 12 極板耳 13 くし状部 14 端セル用金属板 15 端子部 1 Positive electrode plate 2 Separator 3 Negative electrode plate 4 Battery case 5 Lid 6 Valve 7 Terminal 8 Cell spacing wall 9 Metal plate for cell-to-cell connection 10 Welded part 11 Resin 12 Electrode plate ear 13 Comb-shaped part 14 Metal plate for end cell 15 Terminal part
Claims (1)
くし状部分に極板耳部を差し込み、該耳部と該金属板と
を溶接することにより、セル間の接続を行ない、該金属
板の周囲に樹脂を充填することによりセル間が封口され
ていることを特徴とするモノブロック蓄電池。1. A connection between cells is made by inserting an electrode plate ear into a comb-shaped portion of a cell-to-cell connecting metal plate having a comb-shaped portion and by welding the ear portion and the metal plate. A monoblock storage battery in which cells are sealed by filling a resin around a metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5108723A JPH06267529A (en) | 1993-03-10 | 1993-03-10 | Monoblock storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5108723A JPH06267529A (en) | 1993-03-10 | 1993-03-10 | Monoblock storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06267529A true JPH06267529A (en) | 1994-09-22 |
Family
ID=14491928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5108723A Pending JPH06267529A (en) | 1993-03-10 | 1993-03-10 | Monoblock storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06267529A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243375A (en) * | 1999-02-19 | 2000-09-08 | Japan Storage Battery Co Ltd | Storage battery and manufacture of electrode group for storage battery |
JP2017517131A (en) * | 2014-05-30 | 2017-06-22 | コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ | Lead acid battery and method for manufacturing such a battery |
CN111668396A (en) * | 2020-06-10 | 2020-09-15 | 宜兴市惠华复合材料有限公司 | Integral lithium battery |
CN112350032A (en) * | 2020-09-21 | 2021-02-09 | 湖州海悦智能科技有限公司 | Bus bar manufacturing equipment and manufacturing method thereof |
-
1993
- 1993-03-10 JP JP5108723A patent/JPH06267529A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243375A (en) * | 1999-02-19 | 2000-09-08 | Japan Storage Battery Co Ltd | Storage battery and manufacture of electrode group for storage battery |
JP2017517131A (en) * | 2014-05-30 | 2017-06-22 | コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ | Lead acid battery and method for manufacturing such a battery |
CN111668396A (en) * | 2020-06-10 | 2020-09-15 | 宜兴市惠华复合材料有限公司 | Integral lithium battery |
CN112350032A (en) * | 2020-09-21 | 2021-02-09 | 湖州海悦智能科技有限公司 | Bus bar manufacturing equipment and manufacturing method thereof |
CN112350032B (en) * | 2020-09-21 | 2022-10-18 | 湖州海悦智能科技有限公司 | Bus bar manufacturing equipment and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115764001A (en) | Lead-acid battery | |
JP4062388B2 (en) | Alkaline storage battery | |
JP5061451B2 (en) | Anode current collector for lead acid battery | |
CN102903966B (en) | Sealed lead accumulator | |
JPH06267529A (en) | Monoblock storage battery | |
JP7193420B2 (en) | Nickel-metal hydride secondary battery manufacturing method | |
JP4195963B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2001176455A (en) | Cylindrical secondary battery | |
JP2002289168A (en) | Control valve type lead storage battery | |
JP2011159551A (en) | Lead-acid storage battery | |
JP2006086060A (en) | Manufacturing method of secondary battery | |
JP2001160384A (en) | Cylindrical secondary battery | |
JP4654477B2 (en) | Cylindrical sealed lead-acid battery | |
JP4443135B2 (en) | Alkaline storage battery | |
JP2002203592A (en) | Cylindrical secondary battery | |
JPH07307148A (en) | Lead-acid battery | |
JP3185300B2 (en) | Sealed lead-acid battery | |
JP2002175785A (en) | Cylindrical secondary battery | |
JP3163509B2 (en) | Manufacturing method of hybrid bipolar plate | |
JP2002203589A (en) | Cylindrical secondary battery | |
JPS58198860A (en) | Lead storage battery | |
JP4783980B2 (en) | Cylindrical secondary battery | |
JP2004055251A (en) | Storage battery | |
JPH07226225A (en) | Positive grid of lead-acid battery | |
JP2004022272A (en) | Method of manufacturing nonaqueous electrolyte secondary battery |