JPH0626674A - Air cooling facility - Google Patents
Air cooling facilityInfo
- Publication number
- JPH0626674A JPH0626674A JP18230192A JP18230192A JPH0626674A JP H0626674 A JPH0626674 A JP H0626674A JP 18230192 A JP18230192 A JP 18230192A JP 18230192 A JP18230192 A JP 18230192A JP H0626674 A JPH0626674 A JP H0626674A
- Authority
- JP
- Japan
- Prior art keywords
- condenser
- drum
- gas
- water
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2200/00—Mathematical features
- F05B2200/20—Special functions
- F05B2200/23—Logarithm
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、LNGやターボ冷凍機
冷媒等の冷熱あるいは過冷却された氷によりガスタービ
ン,FDF等の吸気や空調用ファンコイルユニットの送
気等を冷却する、大流量の空気冷却設備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large flow rate for cooling intake air of a gas turbine, FDF or the like or air supply of an air-conditioning fan coil unit by cold heat or supercooled ice of LNG or turbo refrigerator refrigerant. Air cooling equipment.
【0002】[0002]
【従来の技術】ガスタービンの吸気すなわち空気圧縮機
入口空気を冷却すると、その絶対温度に逆比例して流量
が増え、比例して圧縮仕事量が減少する。したがってガ
スタービンの出力が増大して効率が向上する。2. Description of the Related Art When the intake air of a gas turbine, that is, the inlet air of an air compressor is cooled, the flow rate increases in inverse proportion to its absolute temperature, and the compression work decreases in proportion. Therefore, the output of the gas turbine is increased and the efficiency is improved.
【0003】ガスタービンの吸気冷却は、従来熱交換器
へ冷水を供給することにより行なっている。例えば、図
10に示されるように、ガスタービン吸気ダクト(1)
に設置された対向流熱交換器(2)に冷水が供給され、
直接式熱交換によってガスタービンへ流入する空気が冷
却される。この場合、ガスタービン吸気温度は図9
(a)に示すように、TA1からTA2に低下し、冷水温度
はTC1からTC2へ上昇する。The intake air of a gas turbine is conventionally cooled by supplying cold water to a heat exchanger. For example, as shown in FIG. 10, a gas turbine intake duct (1)
Cold water is supplied to the counterflow heat exchanger (2) installed in
The direct heat exchange cools the air flowing into the gas turbine. In this case, the gas turbine intake air temperature is shown in FIG.
As shown in (a), T A1 drops to T A2 , and the cold water temperature rises from T C1 to T C2 .
【0004】[0004]
【発明が解決しようとする課題】前記従来の空気冷却
は、水の顕熱によって行なわれるので、所要冷却水量が
多く、また熱交換に係る対数平均温度差が小さいため、
伝熱面積の大きな熱交換器を必要としていた。すなわち
伝熱量をQ(kcal/h)、熱通過率をK(kcal/m2h
℃)、対数平均温度差をθm (℃)、伝熱面積をF(m
2)とすると、次式でθmが小さいためにFを大きくしな
ければならなかった。Since the conventional air cooling is performed by sensible heat of water, a large amount of cooling water is required and a logarithmic mean temperature difference related to heat exchange is small.
A heat exchanger with a large heat transfer area was needed. That is, the heat transfer rate is Q (kcal / h) and the heat transfer rate is K (kcal / m 2 h
℃), logarithmic mean temperature difference θ m (℃), heat transfer area F (m
2 ), it was necessary to increase F because θ m was small in the following equation.
【0005】[0005]
【数1】 [Equation 1]
【0006】従来の空気冷却ではまた、熱交換器が大形
でコストが高く、加えてガスタービン吸気の圧損が大き
かった。In conventional air cooling, the heat exchanger is large and costly, and the pressure loss of the gas turbine intake air is large.
【0007】[0007]
【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、次の手段を講ずるものである。 1) 空気ダクト内に配置され、上端が気液分離ドラム
または上部ドラム、下端が下部ドラムにそれぞれ連通す
る複数の蒸発伝熱管と、上記下部ドラムに循環水を供給
する循環ポンプと、上記気液分離ドラムの蒸気層または
上記上部ドラムに連通し、0℃以下の流体が流れる伝熱
管を内部に有する凝縮器と、加圧された冷水を上記凝縮
器内上部に散布する散水装置と、上記凝縮器内を減圧す
る抽気真空ポンプとを具備したことを特徴とする空気冷
却設備。The present invention takes the following means in order to solve the above-mentioned conventional problems. 1) A plurality of evaporative heat transfer tubes arranged in an air duct, the upper end of which communicates with a gas-liquid separation drum or an upper drum, and the lower end of which communicates with a lower drum, a circulation pump which supplies circulating water to the lower drum, and the gas-liquid. A condenser that communicates with the vapor layer of the separation drum or the upper drum and that has a heat transfer tube in which a fluid of 0 ° C. or less flows, a sprinkler that sprays pressurized cold water to the upper part of the condenser, and the condensate. An air cooling facility comprising an extraction vacuum pump for reducing the pressure inside the device.
【0008】2) 空気ダクト内に配置され、上端が気
液分離ドラム、下端が下部ドラムにそれぞれ連通する複
数の蒸発伝熱管と、上記下部ドラムに循環水を供給する
循環ポンプと、上記気液分離ドラムの蒸気層に連通し、
内部の水面に過冷却した氷が浮かべられた凝縮器と、加
圧された冷水を上記凝縮器内上部に散布する散水装置
と、上記凝縮器内を減圧する抽気真空ポンプとを具備し
たことを特徴とする空気冷却設備。 3) 上記1)または2)の要件に加えて、冷水ポンプ
で加圧された冷水により上記気液分離ドラム内の蒸気を
吸引する吸引ノズルが上記凝縮器に取付けられたことを
特徴とする空気冷却設備。2) A plurality of evaporative heat transfer tubes which are arranged in an air duct and communicate with the gas-liquid separating drum at the upper end and the lower drum at the lower end, a circulation pump for supplying circulating water to the lower drum, and the gas-liquid. Communicating with the vapor layer of the separation drum,
It comprises a condenser in which supercooled ice is floated on the water surface inside, a sprinkler device for spraying pressurized cold water to the upper part of the inside of the condenser, and an extraction vacuum pump for depressurizing the inside of the condenser. Characteristic air cooling equipment. 3) In addition to the requirements of 1) or 2) above, air characterized in that a suction nozzle for sucking vapor in the gas-liquid separation drum by cold water pressurized by a cold water pump is attached to the condenser. Cooling equipment.
【0009】[0009]
【作用】循環ポンプによって下部ドラムに送られた循環
水は、蒸発伝熱管で空気ダクトを流れる空気の熱を奪っ
て蒸発し、気液分離ドラムまたは上部ドラムへ流入す
る。気液分離ドラムで分離された蒸気または上部ドラム
へ流入した蒸気は凝縮器へ送られる。この蒸気は凝縮器
内上部に散布された散水と接触して一部が凝縮し、更に
0℃以下の流体が流れる伝熱管または水面に浮かべられ
た過冷却氷により冷却され凝縮する。伝熱管を用いた場
合は、その表面にはスタチックアイスが氷着する。The circulating water sent to the lower drum by the circulation pump takes the heat of the air flowing through the air duct by the evaporation heat transfer tube to be evaporated and flows into the gas-liquid separation drum or the upper drum. The steam separated by the gas-liquid separation drum or the steam flowing into the upper drum is sent to the condenser. This vapor comes into contact with the water sprayed on the upper part of the condenser to partially condense, and is further cooled and condensed by a heat transfer tube through which a fluid of 0 ° C. or less flows or supercooled ice floated on the water surface. When a heat transfer tube is used, static ice adheres to its surface.
【0010】蒸気の凝縮潜熱は氷の溶解潜熱と散水の顕
熱によって奪われる。凝縮器内の真空は抽気真空ポンプ
によって保持される。真空保持によって対数平均温度差
が大きくなり、また潜熱の利用によって冷却熱が増大
し、従来に比べて所要冷却水量が著しく減少する。The latent heat of condensation of steam is taken away by the latent heat of melting of ice and the sensible heat of water spray. The vacuum in the condenser is maintained by the extraction vacuum pump. Holding the vacuum increases the logarithmic mean temperature difference, and the latent heat is used to increase the cooling heat, so that the required amount of cooling water is significantly reduced as compared with the conventional case.
【0011】冷水ポンプで加圧された冷水により、凝縮
器に設けられた吸引ノズルで気液分離ドラム内の蒸気を
吸引する場合は、冷水がノズル内で蒸気と直触してこれ
を凝縮させるので、蒸気の吸引と凝縮が更に促進され
る。When the steam in the gas-liquid separation drum is sucked by the suction nozzle provided in the condenser by the cold water pressurized by the cold water pump, the cold water directly contacts the steam in the nozzle to condense it. Therefore, suction and condensation of vapor are further promoted.
【0012】[0012]
【実施例】図1は本発明の第1の実施例を示す系統図、
図2は図1中の凝縮器(7)の拡大図である。図中
(1)は図示しないガスタービンの吸気ダクト、(3)
はその吸気ダクト(1)内に配置され、上端が気液分離
ドラム(4)、下端が下部ドラム(5)にそれぞれ連通
する複数の蒸発伝熱管である。(6)は気液分離ドラム
(4)内の水を下部ドラム(5)に循環供給する循環ポ
ンプである。1 is a system diagram showing a first embodiment of the present invention,
FIG. 2 is an enlarged view of the condenser (7) in FIG. In the figure, (1) is a gas turbine intake duct (not shown), (3)
Is a plurality of evaporative heat transfer tubes arranged in the intake duct (1), the upper end of which communicates with the gas-liquid separation drum (4) and the lower end of which communicates with the lower drum (5). (6) is a circulation pump for circulating the water in the gas-liquid separation drum (4) to the lower drum (5).
【0013】(7)は気液分離ドラム(4)内の蒸気層
に上部が連通する凝縮器であって、この凝縮器(7)内
には、LNG気化器(13)から来た0℃以下の冷媒が
流れる直膨管(8)が配置されている。凝縮器(7)内
にはまた、上部に散水装置(9)と蒸気の吸引ノズル
(10)とが設けられている。この散水装置(9)と吸
引ノズル(10)には、凝縮器(7)下部の液溜り(1
2)内の凝縮水が、冷水ポンプ(15)により加圧され
て供給される。冷水ポンプ(15)で加圧された水はま
た、前記気液分離ドラム(4)にも供給される。(1
6)は凝縮器(7)内を減圧する抽気真空ポンプであ
る。Reference numeral (7) is a condenser whose upper portion communicates with the vapor layer in the gas-liquid separation drum (4), and inside the condenser (7), 0 ° C. coming from the LNG vaporizer (13). A direct expansion tube (8) through which the following refrigerant flows is arranged. Also inside the condenser (7) is a watering device (9) and a vapor suction nozzle (10) on top. The sprinkler (9) and the suction nozzle (10) have a liquid pool (1) below the condenser (7).
The condensed water in 2) is pressurized and supplied by the cold water pump (15). The water pressurized by the cold water pump (15) is also supplied to the gas-liquid separation drum (4). (1
6) is an extraction vacuum pump for reducing the pressure in the condenser (7).
【0014】循環ポンプによって(6)下部ドラム
(5)に供給された循環水は、真空下の蒸発伝熱管
(3)内でガスタービン吸気の熱を奪って蒸発し、気液
分離ドラム(4)へ流入する。気液分離ドラム(4)で
分離された水は循環ポンプ(6)で再び下部ドラム
(5)経由蒸発伝熱管(3)へ送られ、蒸気は氷蓄熱設
備として作用する凝縮器(7)へ送られる。The circulating water (6) supplied to the lower drum (5) by the circulation pump deprives the heat of the gas turbine intake in the evaporation heat transfer tube (3) under vacuum to evaporate, and the gas-liquid separation drum (4). ) To. The water separated by the gas-liquid separation drum (4) is sent again to the evaporation heat transfer tube (3) via the lower drum (5) by the circulation pump (6), and the steam is sent to the condenser (7) which functions as ice heat storage equipment. Sent.
【0015】凝縮器(7)に導かれた蒸気は、LNG気
化器(13)から来た冷媒が流れる直膨管(8)で冷却
されて凝縮し、流下して凝縮器底部の液溜り(12)に
凝縮水として溜る。また冷水ポンプ(15)で加圧され
た冷水の一部が、凝縮促進水として凝縮器(7)上部の
散水装置(9)から散布されるので、蒸気はこれらとの
直触冷却によっても凝縮する。The vapor introduced into the condenser (7) is cooled and condensed in the direct expansion pipe (8) through which the refrigerant coming from the LNG vaporizer (13) flows, and then flows down to the liquid pool (at the bottom of the condenser). It collects in 12) as condensed water. Moreover, since a part of the cold water pressurized by the cold water pump (15) is sprayed as condensation promoting water from the sprinkler (9) above the condenser (7), the steam is condensed even by direct contact with them. To do.
【0016】液溜り(12)の水面よりも上方に配置さ
れた直膨管(8)の表面には、図2に示されるようにス
タチックアイスが氷着している。すなわち蒸気の凝縮潜
熱は氷の溶解潜熱と散水の顕熱とによって奪われ、氷は
蒸気と散水で表面溶融するので、直膨管の冷却量とバラ
ンスする厚みだけ氷が安定付着する。As shown in FIG. 2, static ice is frozen on the surface of the direct expansion tube (8) arranged above the water surface of the liquid pool (12). That is, the latent heat of condensation of steam is taken away by the latent heat of melting of ice and the sensible heat of water spray, and the surface of the ice is melted by steam and water sprinkle, so that the ice is stably attached by a thickness that balances the cooling amount of the direct expansion tube.
【0017】凝縮器(7)と蒸発伝熱管(2)内の真空
は、抽気真空ポンプ(16)によって保持される。図9
(b)に示されるように、真空を0.0101ata にするとそ
の飽和温度は7℃、0.00623ataにするとその飽和温度は
0℃となり、従来に比べて対数平均温度差が著しく大き
くなる。そして従来の約20℃顕熱利用による約20kc
al/kgに比べると、潜熱を含めて約600kcal/kgの冷
却熱が得られから、冷却水量は約1/30ですむ。また
真空度を設定調整することによって、仕上り温度として
のガスタービン出口空気温度を任意に制御できる。抽気
真空ポンプ(16)は、上記のように凝縮器(7)内の
圧力を所定の真空に保つほか、不凝縮ガスを外部に抽出
する機能も有する。The vacuum in the condenser (7) and the evaporation heat transfer tube (2) is maintained by the extraction vacuum pump (16). Figure 9
As shown in (b), when the vacuum is 0.0101ata, the saturation temperature is 7 ° C, and when 0.00623ata, the saturation temperature is 0 ° C, and the logarithmic mean temperature difference is remarkably large as compared with the conventional case. And about 20kc by using conventional sensible heat of about 20 ℃
Compared to al / kg, about 600 kcal / kg of cooling heat including latent heat can be obtained, so the amount of cooling water is about 1/30. Further, by adjusting the degree of vacuum, the gas turbine outlet air temperature as the finishing temperature can be arbitrarily controlled. The extraction vacuum pump (16) not only maintains the pressure inside the condenser (7) to a predetermined vacuum as described above, but also has the function of extracting the non-condensed gas to the outside.
【0018】液溜り(12)の凝縮水は冷水ポンプ(1
5)によって前記散水装置(9)と気液分離ドラム
(4)へ送られるが、その一部は凝縮器(7)に設けら
れた吸引ノズル(10)へ送られ、気液分離ドラム
(4)内の蒸気を吸引する。そしてノズル内で蒸気と直
触してこれを冷却し、ジェットコンデンシングノズル
(JetCondensing Nozzle)として蒸気の吸引と凝縮を
促進する。The condensed water in the liquid pool (12) is cooled by the cold water pump (1
The water is sent to the sprinkler (9) and the gas-liquid separation drum (4) by 5), but a part of the water is sent to the suction nozzle (10) provided in the condenser (7) and the gas-liquid separation drum (4). A) inhale the vapor inside. Then, by directly contacting the steam in the nozzle to cool it, the jet condensing nozzle (JetCondensing Nozzle) promotes suction and condensation of the steam.
【0019】なお、図1中のLNG気化器(13)の代
りに、ターボ冷凍機等の冷熱機器を用い、その冷熱源
(冷媒)を凝縮器(7)の直膨管(8)に供給しても、
上記と同様の作用効果が得られる。要は0℃以下への冷
却能力があればよいのである。In place of the LNG vaporizer (13) in FIG. 1, a cold heat device such as a turbo refrigerator is used, and the cold heat source (refrigerant) is supplied to the direct expansion pipe (8) of the condenser (7). Even if
The same effect as the above can be obtained. The point is that the cooling ability to 0 ° C or lower is sufficient.
【0020】次に図3は、本発明の第2実施例における
蒸発伝熱管とその周辺を示す図である。本実施例の蒸発
伝熱管(3)は、ガスタービンの吸気ダクトではなく、
空調用ファンコイルユニットの送気ダクト(11)内に
配置されている。その場合、蒸発伝熱管(3)内で必要
な蒸発を完了するようにするか、あるいは凝縮器(7)
に気液二相の流体が流入しても差し支えないときには、
気液分離ドラムが省略され、その代りに単なる上部ドラ
ム(14)が設置される。Next, FIG. 3 is a diagram showing an evaporation heat transfer tube and its periphery in a second embodiment of the present invention. The evaporative heat transfer tube (3) of the present embodiment is not the intake duct of the gas turbine,
It is arranged in the air supply duct (11) of the air-conditioning fan coil unit. In that case, either the required evaporation should be completed in the evaporation heat transfer tube (3) or the condenser (7)
When there is no problem even if gas-liquid two-phase fluid flows into the
The gas-liquid separation drum is omitted and instead only the upper drum (14) is installed.
【0021】次に図4は本発明の第3実施例を示す系統
図である。本実施例の凝縮器(17)では、前記図1お
よび図2により説明した第1実施例におけるLNG気化
器(13)等に連通する直膨管(8)を設けず、その代
りに過冷却氷(18)を凝縮水の水面に浮かべたもので
ある。その他の点については前記図1および図2と同様
なので、前記と同じ符号を付け、詳しい説明を省く。Next, FIG. 4 is a system diagram showing a third embodiment of the present invention. In the condenser (17) of this embodiment, the direct expansion pipe (8) communicating with the LNG vaporizer (13) and the like in the first embodiment described with reference to FIGS. 1 and 2 is not provided, but instead is supercooled. Ice (18) is floated on the surface of condensed water. Since the other points are the same as those in FIG. 1 and FIG.
【0022】図5ないし図8は本実施例の凝縮器(1
7)の構造を例示する図である。蒸気の凝縮方法には図
5または図6に示される気中凝縮と、図7または図8に
示される液中凝縮とがある。図5に示される凝縮器(1
7)においては、蒸気は散水により一部が凝縮し、残り
はシャーベット状の過冷却氷(18)の層間を通過する
間に凝縮して下部液溜りに達する。図6においては、吸
引ノズル(10)で吸引された気液分離ドラム(4)の
蒸気が、過冷却氷(18)上方の空間に噴射される。吸
引ノズル(10)から出る未凝縮蒸気は、散水と過冷却
水(18)とによって冷却されて凝縮する。図7の場
合、蒸気は凝縮水中に噴射され、上昇して過冷却氷(1
8)および散水で冷却されて液化し、重力によって流下
する。図8では、吸引ノズル(20)で吸引された蒸気
は、過冷却氷(18)の下方の液中に噴射される。5 to 8 show the condenser (1
It is a figure which illustrates the structure of 7). There are two methods of vapor condensation: in-air condensation shown in FIG. 5 or 6 and in-liquid condensation shown in FIG. 7 or 8. The condenser (1
In 7), part of the steam is condensed by water sprinkling, and the rest is condensed while passing between the layers of the sorbet-shaped supercooled ice (18) and reaches the lower liquid pool. In FIG. 6, the vapor of the gas-liquid separation drum (4) sucked by the suction nozzle (10) is injected into the space above the supercooled ice (18). The uncondensed vapor exiting from the suction nozzle (10) is cooled and condensed by the sprinkling water and the supercooled water (18). In the case of FIG. 7, the steam is injected into the condensed water and rises to the supercooled ice (1
8) and sprinkle water to liquefy and flow down by gravity. In FIG. 8, the vapor sucked by the suction nozzle (20) is injected into the liquid below the supercooled ice (18).
【0023】本第3実施例において、蒸気の凝縮潜熱は
氷の溶解潜熱と散水の顕熱によって奪われ、氷スラリー
やダイナミック氷と呼ばれる過冷却氷(18)は、冷熱
装置やLNG気化器(13)によって逐次製造、補給さ
れる。凝縮器(17)内の真空は抽気真空ポンプ(1
6)によって保持される。真空保持によって対数平均温
度差が大きくなり、また潜熱の利用によって冷却熱が増
大し、従来に比べて冷却水量が約1/30ですむこと
は、前記第1実施例と同様である。また、液溜り(1
2)の凝縮水は冷水ポンプ(15)によって散水装置
(9)と気液分離ドラム(4)へ送られるが、その一部
は凝縮器(17)に設けられた吸引ノズル(10),
(20)へ送られ、気液分離ドラム(4)内の蒸気を吸
引し、ノズル内で蒸気と直触してこれを凝縮させること
も、第1実施例と同様である。In the third embodiment, the latent heat of condensation of steam is taken away by the latent heat of melting of ice and the sensible heat of sprinkling water, and the supercooled ice (18) called ice slurry or dynamic ice is used as a cooling device or LNG vaporizer ( It is successively manufactured and replenished by 13). The vacuum in the condenser (17) is the extraction vacuum pump (1
Held by 6). Similar to the first embodiment, the logarithmic mean temperature difference is increased by holding the vacuum, and the cooling heat is increased by using the latent heat, so that the amount of cooling water is about 1/30 as compared with the conventional case. Also, the liquid pool (1
The condensed water of 2) is sent to the sprinkler (9) and the gas-liquid separation drum (4) by the cold water pump (15), a part of which is the suction nozzle (10) provided in the condenser (17),
It is also the same as in the first embodiment that the vapor is sent to (20), the vapor in the gas-liquid separation drum (4) is sucked, and the vapor is condensed by directly contacting with the vapor in the nozzle.
【0024】[0024]
【発明の効果】本発明によれば、ガスタービン吸気や空
調用ファンコイルユニット送気の冷却が低コストの熱交
換器で行なわれ、しかも吸気抵抗が少ないので、性能を
格段に向上させることができる。According to the present invention, the gas turbine intake air and the air-conditioning fan coil unit air supply are cooled by a low-cost heat exchanger, and the intake resistance is small, so that the performance can be remarkably improved. it can.
【図1】図1は本発明の第1実施例を示す系統図であ
る。FIG. 1 is a system diagram showing a first embodiment of the present invention.
【図2】図2は図1中の凝縮器(7)の拡大図である。FIG. 2 is an enlarged view of the condenser (7) in FIG.
【図3】図3は本発明の第2実施例における蒸発伝熱管
とその周辺を示す図である。FIG. 3 is a diagram showing an evaporation heat transfer tube and its periphery in a second embodiment of the present invention.
【図4】図4は本発明の第3実施例を示す系統図であ
る。FIG. 4 is a system diagram showing a third embodiment of the present invention.
【図5】図5は図4中の凝縮器(17)の構造の一例を
示す図である。5 is a diagram showing an example of a structure of a condenser (17) in FIG.
【図6】図6は図4中の凝縮器(17)の構造の他の例
を示す図である。6 is a diagram showing another example of the structure of the condenser (17) in FIG.
【図7】図7は図4中の凝縮器(17)の構造の更に他
の例を示す図である。7 is a diagram showing still another example of the structure of the condenser (17) in FIG.
【図8】図8は図4中の凝縮器(17)の構造の更にま
た異なる例を示す図である。FIG. 8 is a view showing still another example of the structure of the condenser (17) in FIG.
【図9】図9は熱交換器内の各流体温度を従来のものと
本発明のものとを比較して示す図である。FIG. 9 is a diagram showing the temperature of each fluid in the heat exchanger in comparison with the conventional one and the present invention.
【図10】図10は従来の空気冷却設備の概念図であ
る。FIG. 10 is a conceptual diagram of a conventional air cooling facility.
(1) ガスタービン吸気ダクト (2) 対向流熱交換器 (3) 蒸発伝熱管 (4) 気液分離ドラム (5) 下部ドラム (6) 循環ポンプ (7) 凝縮器 (8) 直膨管 (9) 散水装置 (10) 吸引ノズル (11) ファンコイルユニット送気ダクト (12) 液溜り (13) LNG気化器 (14) 上部ドラム (15) 冷水ポンプ (16) 抽気真空ポンプ (17) 凝縮器 (18) 過冷却氷 (20) 吸引ノズル (1) Gas turbine intake duct (2) Counterflow heat exchanger (3) Evaporative heat transfer tube (4) Gas-liquid separation drum (5) Lower drum (6) Circulation pump (7) Condenser (8) Direct expansion pipe ( 9) Water sprinkler (10) Suction nozzle (11) Fan coil unit air supply duct (12) Liquid reservoir (13) LNG vaporizer (14) Upper drum (15) Cold water pump (16) Bleed vacuum pump (17) Condenser (18) Supercooled ice (20) Suction nozzle
Claims (3)
離ドラムまたは上部ドラム、下端が下部ドラムにそれぞ
れ連通する複数の蒸発伝熱管と、上記下部ドラムに循環
水を供給する循環ポンプと、上記気液分離ドラムの蒸気
層または上記上部ドラムに連通し、0℃以下の流体が流
れる伝熱管を内部に有する凝縮器と、加圧された冷水を
上記凝縮器内上部に散布する散水装置と、上記凝縮器内
を減圧する抽気真空ポンプとを具備したことを特徴とす
る空気冷却設備。1. A plurality of evaporative heat transfer tubes, which are arranged in an air duct, and whose upper end communicates with a gas-liquid separation drum or an upper drum and whose lower end communicates with a lower drum, respectively, and a circulation pump for supplying circulating water to the lower drum. A condenser that communicates with the vapor layer of the gas-liquid separation drum or the upper drum and that has a heat transfer tube in which a fluid of 0 ° C. or less flows, and a sprinkler that sprays pressurized cold water to the upper portion inside the condenser. And an air extraction vacuum pump for reducing the pressure in the condenser.
離ドラム、下端が下部ドラムにそれぞれ連通する複数の
蒸発伝熱管と、上記下部ドラムに循環水を供給する循環
ポンプと、上記気液分離ドラムの蒸気層に連通し、内部
の水面に過冷却した氷が浮かべられた凝縮器と、加圧さ
れた冷水を上記凝縮器内上部に散布する散水装置と、上
記凝縮器内を減圧する抽気真空ポンプとを具備したこと
を特徴とする空気冷却設備。2. A plurality of evaporative heat transfer tubes which are arranged in an air duct and communicate with a gas-liquid separating drum at an upper end and a lower drum at a lower end, a circulation pump for supplying circulating water to the lower drum, and the gas-liquid. A condenser in which the supercooled ice is floated on the water surface inside, which communicates with the vapor layer of the separation drum, a sprinkler that sprays pressurized cold water to the upper part of the inside of the condenser, and depressurizes the inside of the condenser. An air cooling facility comprising a bleed vacuum pump.
気液分離ドラム内の蒸気を吸引する吸引ノズルが上記凝
縮器に取付けられたことを特徴とする請求項1または請
求項2記載の空気冷却設備。3. The air according to claim 1 or 2, wherein a suction nozzle for sucking vapor in the gas-liquid separation drum by cold water pressurized by a cold water pump is attached to the condenser. Cooling equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4182301A JP2989381B2 (en) | 1992-07-09 | 1992-07-09 | Air cooling equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4182301A JP2989381B2 (en) | 1992-07-09 | 1992-07-09 | Air cooling equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0626674A true JPH0626674A (en) | 1994-02-04 |
JP2989381B2 JP2989381B2 (en) | 1999-12-13 |
Family
ID=16115899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4182301A Expired - Fee Related JP2989381B2 (en) | 1992-07-09 | 1992-07-09 | Air cooling equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2989381B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4551548B2 (en) * | 2000-10-04 | 2010-09-29 | 大阪瓦斯株式会社 | Power generation facility and power generation method using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110425907B (en) * | 2019-07-12 | 2020-11-06 | 扬州安宇化工设备有限公司 | Evaporative heat exchanger with high heat exchange efficiency |
-
1992
- 1992-07-09 JP JP4182301A patent/JP2989381B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4551548B2 (en) * | 2000-10-04 | 2010-09-29 | 大阪瓦斯株式会社 | Power generation facility and power generation method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2989381B2 (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6571569B1 (en) | Method and apparatus for high heat flux heat transfer | |
US7654100B2 (en) | Method and apparatus for high heat flux heat transfer | |
GB2193302A (en) | Refrigeration apparatus | |
JP2009138996A (en) | Refrigerating cycle system, natural gas liquefying equipment, heat pump system and remodeling method for refrigerating cycle system | |
US2166158A (en) | Refrigerating apparatus | |
US20030167790A1 (en) | Ammonia absorption type water chilling/heating device | |
KR20020091086A (en) | Evaporator for refrigerating machine and refrigeration apparatus | |
JPH08247577A (en) | Evaporator for refrigerating machine | |
US6715312B1 (en) | De-superheater for evaporative air conditioning | |
US6336343B1 (en) | Two-stage absorption refrigerating apparatus | |
JPH0626674A (en) | Air cooling facility | |
US4490993A (en) | Condensing apparatus and method | |
US20220026114A1 (en) | System and method of mechanical compression refrigeration based on two-phase ejector | |
US2016056A (en) | Liquid circulating system | |
CN206504453U (en) | Air conditioner condensation Water Sproading component | |
US2068478A (en) | Method of and apparatus for condensing refrigerant in refrigerative circuits | |
JP2009221966A (en) | Multistage compressor, compressor, and refrigerator | |
JP2002349999A (en) | Evaporator and refrigeration unit provided with the same | |
JP2002340444A (en) | Evaporator and refrigerating machine having the same | |
US3220210A (en) | Jet refrigeration apparatus | |
JPH03291430A (en) | Air conditioning unit | |
JP4430612B2 (en) | Air conditioner | |
JP3114280B2 (en) | Evaporator | |
JP2008064426A (en) | Condenser and refrigerating machine | |
JP2812131B2 (en) | Vacuum ice maker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990914 |
|
LAPS | Cancellation because of no payment of annual fees |