JPH06252496A - Formation of quantum wire structure - Google Patents
Formation of quantum wire structureInfo
- Publication number
- JPH06252496A JPH06252496A JP3216393A JP3216393A JPH06252496A JP H06252496 A JPH06252496 A JP H06252496A JP 3216393 A JP3216393 A JP 3216393A JP 3216393 A JP3216393 A JP 3216393A JP H06252496 A JPH06252496 A JP H06252496A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- mask
- wire structure
- quantum wire
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、半導体レーザなどの
半導体発光装置における発光部分となる量子細線構造の
形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a quantum wire structure which becomes a light emitting portion in a semiconductor light emitting device such as a semiconductor laser.
【0002】[0002]
【従来の技術】半導体レーザなどの半導体発光装置のう
ち量子細線構造をとるものがあり、この場合、発光スペ
クトルが鋭いという特徴をもつようになる。量子細線
(Quantum Wire) 構造は、半導体基板の表面の凹状溝
(U溝ないしV溝)の内に堆積形成され凹状溝の長手方
向に沿って続く化合物半導体層の上下面に禁制帯の広い
(エネルギーギャップの大きい)半導体層が設置されて
なる半導体層構成をとっており、発光装置としたとき
に、化合物半導体層の長手方向に沿って細線状発光部分
が生成されるようになるという構造である。2. Description of the Related Art Some semiconductor light emitting devices such as semiconductor lasers have a quantum wire structure, and in this case, they are characterized by a sharp emission spectrum. The quantum wire structure has a wide forbidden band on the upper and lower surfaces of a compound semiconductor layer deposited and formed in a concave groove (U groove or V groove) on the surface of a semiconductor substrate and continuing along the longitudinal direction of the concave groove ( It has a semiconductor layer structure in which a semiconductor layer (having a large energy gap) is installed, and when a light emitting device is formed, a thin linear light emitting portion is generated along the longitudinal direction of the compound semiconductor layer. is there.
【0003】この量子細線構造は、例えば、分子線エピ
タキシー(MBE)法や有機金属堆積(MOCVD)法
を利用し、GaAsとAlGaAsの化合物半導体を材
料に使って以下のようにして形成することができる(ジ
ャーナル・オブ・アプライド・フィジクス J.A.P. 第71
巻pp533-535,1992) 。図4の(a)にみるように、表面
が(100)面のGaAs基材5lの(100)面の上
にCVD法によって堆積形成した厚み200ÅのSiO
2 膜を電子線リソグラフィー技術とウエットエッチング
法でパターン化しSiO2 膜のマスク52を形成する。
GaAs基材51の表面では<01−1>方向に長手方
向を向けた幅数100Åの長尺状のSiO2 膜が100
0Åの間隔で平行に並び、被覆域の両側に未被覆域が隣
りあって両域が長手方向に平行に続くパターンのマスク
52が設けられることになるのである。This quantum wire structure can be formed, for example, by using a molecular beam epitaxy (MBE) method or a metal organic deposition (MOCVD) method and using a compound semiconductor of GaAs and AlGaAs as a material as follows. Yes (Journal of Applied Physics JAP No. 71
Pp 533-535, 1992). As shown in FIG. 4A, a 200 Å-thick SiO film is formed by CVD on the (100) surface of the GaAs substrate 5l whose surface is the (100) surface.
The two films are patterned by electron beam lithography and wet etching to form a mask 52 of SiO 2 film.
On the surface of the GaAs substrate 51, a long SiO 2 film having a width of 100 Å whose longitudinal direction is the <01-1> direction is 100.
A mask 52 having a pattern in which the masks 52 are arranged in parallel at an interval of 0Å, the uncovered regions are adjacent to each other on both sides of the covered region, and both regions are parallel to the longitudinal direction is provided.
【0004】マスク52形成の後、図4の(b)にみる
ように、MOCVD法によってGaAs53を堆積し、
図4の(c)にみるように、V溝61を表面に有する半
導体基板60を作製する。半導体基板60でのV溝61
の側面はGaAs53のスムースな(111)A面であ
る。この後、図4の(d)にみるように、AlGaAs
層62を堆積した後GaAs層63を堆積することを繰
り返し行い、図4の(e)にみるように、量子細線構造
を多層形成する。図4の(e)の場合、V溝61の内に
堆積形成され溝の長手方向に沿って続くGaAs層63
と上下面の禁制帯の広いAlGaAs62で1層分の量
子細線構造を構成している。GaAs層63の方がAl
GaAs62よりも光屈折率が大きい。After forming the mask 52, as shown in FIG. 4B, GaAs 53 is deposited by MOCVD,
As shown in FIG. 4C, a semiconductor substrate 60 having a V groove 61 on its surface is manufactured. V groove 61 in semiconductor substrate 60
Is a smooth (111) A plane of GaAs53. After this, as shown in FIG. 4D, AlGaAs
After the layer 62 is deposited, the GaAs layer 63 is repeatedly deposited to form a multi-layered quantum wire structure as shown in FIG. In the case of FIG. 4E, a GaAs layer 63 deposited and formed in the V-shaped groove 61 and continuing along the longitudinal direction of the groove.
The AlGaAs 62 having a wide forbidden band on the upper and lower surfaces constitutes a quantum wire structure for one layer. GaAs layer 63 is more Al
The optical refractive index is larger than that of GaAs62.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記の従来の
量子細線構造の形成方法の場合、実施が非常に困難であ
る。電子線リソグラフィー技術とウエットエッチング法
で数100Åの特別微細なパターン加工を行う必要があ
り、この微細パターン加工が実際にはなかなか上手くゆ
かないのである。However, the above-mentioned conventional method for forming a quantum wire structure is very difficult to carry out. It is necessary to perform a special fine pattern processing of several hundred Å by the electron beam lithography technology and the wet etching method, and this fine pattern processing is not really successful.
【0006】この発明は、上記事情に鑑み、特別な微細
パターン加工が要らず量子細線構造を容易に形成するこ
とのできる方法を提供することを課題とする。In view of the above circumstances, it is an object of the present invention to provide a method capable of easily forming a quantum wire structure without special fine pattern processing.
【0007】[0007]
【課題を解決するための手段】前記課題を解決するた
め、この発明では、表面に凹状溝が形成されている半導
体基板の溝形成面に、化合物半導体層およびこの化合物
半導体層より禁制帯の広い半導体層を堆積形成し、前記
凹状溝の内に凹状溝の長手方向に沿って化合物半導体層
の上下面に禁制帯の広い半導体層が配置されてなる半導
体層構成を形成することにより、前記化合物半導体層に
長手方向に沿って細線状発光部分が生成されるようにな
る量子細線構造を形成する方法において、前記表面に凹
状溝が形成されている半導体基板を得るにあたり、被覆
域の両側に未被覆域が隣りあって両域が長手方向に平行
に続くパターンを有するマスクが表面に設けられた半導
体基材を用い、この基材のマスク形成面に対してメサエ
ッチングを施した後、マスクを残したまま半導体層を前
記凹状溝が表面に出来るように堆積することを特徴とし
ている。To solve the above problems, according to the present invention, a compound semiconductor layer and a wider forbidden band than the compound semiconductor layer are formed on the groove formation surface of a semiconductor substrate having a concave groove formed on the surface thereof. By depositing a semiconductor layer and forming a semiconductor layer structure in which a semiconductor layer having a wide forbidden band is arranged on the upper and lower surfaces of the compound semiconductor layer in the concave groove along the longitudinal direction of the concave groove, the compound is formed. In a method of forming a quantum wire structure in which a thin light emitting portion is generated along a longitudinal direction in a semiconductor layer, a semiconductor substrate having concave grooves formed on the surface thereof is obtained by forming a quantum wire structure on both sides of a covered area. After performing a mesa etching on the mask forming surface of the base material using a semiconductor base material having a mask having a pattern in which the coating areas are adjacent to each other and the both areas are parallel to each other in the longitudinal direction. The concave grooves of the semiconductor layer while leaving the mask is characterized by depositing as possible to the surface.
【0008】この発明で用いる半導体基材としては、G
aAsウエハやシリコン単結晶ウエハが挙げられるが、
これらに限らない。半導体基材の表面に設けるマスクと
しては、窒化シリコン膜や酸化シリコン膜のマスクが挙
げられ、マスク形成面に凹状溝が表面に出来るように堆
積する半導体層としては、GaAs層などが挙げられる
が、これらに限らない。The semiconductor substrate used in the present invention is G
Examples include aAs wafers and silicon single crystal wafers.
Not limited to these. The mask provided on the surface of the semiconductor substrate may be a mask of a silicon nitride film or a silicon oxide film, and the semiconductor layer deposited so that a concave groove can be formed on the mask formation surface may be a GaAs layer. , But not limited to these.
【0009】この発明における化合物半導体層とその上
下面側に配置される禁制帯の広い半導体層としては、前
者にGaAs層、後者にAlGaAs層がそれぞれ例示
されるが、これらに限らない。Examples of the compound semiconductor layer and the semiconductor layer having a wide forbidden band disposed on the upper and lower surfaces thereof in the present invention include, but are not limited to, the GaAs layer for the former and the AlGaAs layer for the latter.
【0010】[0010]
【作用】この発明の量子細線構造の形成方法では、図3
にみるように、被覆域と未被覆域が隣りあって平行に続
くパターンを有するマスク2が表面に設けられた半導体
基材のメサエッチング後のマスク2残置表面に、半導体
層5を堆積するようにしており、この場合、マスク2の
上に図面表面に垂直な方向に長く続く空洞6,6・・・
が平行に走り、半導体層5の表面に空洞3,3のある位
置に沿ってマスク2幅よりも遙かに狭い微細なV溝(凹
状溝)7が出来る。この微細なV溝7を利用して量子細
線構造を形成する。従来は凹状溝の形成に特別の微細な
パターン加工が必要があったのであるが、この発明の場
合、半導体層5の表面に出来るV溝7の幅よりもマスク
2の幅が広く、特別に微細なパターン加工が要らない。
V溝7の形成後も、特別に微細なパターン加工は不要で
あるため、結果的に、量子細線構造を、特別に微細なパ
ターン加工を必要とせずに作製することが出来る。According to the method of forming the quantum wire structure of the present invention, as shown in FIG.
As shown in FIG. 5, the semiconductor layer 5 is deposited on the remaining surface of the mask 2 after the mesa etching of the semiconductor substrate on the surface of which the mask 2 having a pattern in which the covered area and the uncovered area are adjacent and parallel to each other is provided. In this case, the cavities 6, 6 ... Continued on the mask 2 in the direction perpendicular to the drawing surface for a long time.
Run parallel to each other, and minute V-grooves (concave grooves) 7 much narrower than the width of the mask 2 are formed along the positions of the cavities 3 and 3 on the surface of the semiconductor layer 5. A quantum wire structure is formed by using the fine V groove 7. Conventionally, it was necessary to form a special fine pattern for forming the concave groove, but in the case of the present invention, the width of the mask 2 is wider than the width of the V groove 7 formed on the surface of the semiconductor layer 5, No need for fine pattern processing.
Even after the V-groove 7 is formed, no special fine patterning is required, and as a result, the quantum wire structure can be produced without requiring any special fine patterning.
【0011】[0011]
【実施例】続いて、この発明の実施例を、図面を参照し
ながら詳しく説明する。この発明は下記の実施例に限ら
ない。まず、図2にみるように、表面が(100)面で
あるGaAs基材1の(100)面にマスク2を形成し
ておいて、ウエットエッチングなどによるメサエッチン
グを施し、未被覆域に図面表面に垂直な方向に続く凹部
3を形成する。マスク2は、被覆域と未被覆が交互にあ
らわれ両域が長手方向(図面表面に垂直な方向)に平行
に続くパターンを有しており、プラズマCVDなどでS
iO2 膜を形成しフォトリソグラフィー法を用いて、幅
と間隔が7μmのストライプ状にパターン化することに
より設けることが出来る。メサエッチングで出来た凹部
3は深さ約5μmであった。Embodiments of the present invention will now be described in detail with reference to the drawings. This invention is not limited to the following embodiments. First, as shown in FIG. 2, a mask 2 is formed on the (100) plane of a GaAs substrate 1 whose surface is the (100) plane, and mesa etching such as wet etching is applied to the uncovered area. A recess 3 is formed which continues in a direction perpendicular to the surface. The mask 2 has a pattern in which coated areas and uncoated areas appear alternately, and both areas are parallel to the longitudinal direction (direction perpendicular to the drawing surface).
It can be provided by forming an iO 2 film and patterning it into a stripe shape having a width and an interval of 7 μm by using a photolithography method. The recess 3 formed by mesa etching had a depth of about 5 μm.
【0012】続いて、図3にみるように、GaAs基材
1のメサエッチング面にマスク2を残したまま、有機金
属堆積法を用いてGaAs層5をV溝7が表面に出来る
ように堆積形成する。これで、表面にV溝7が形成され
ている半導体基板10が出来たことになる。GaAs層
5のマスク2からの高さが、5μm以上になると空洞6
およびV溝7が出来るようになる。Subsequently, as shown in FIG. 3, with the mask 2 left on the mesa-etched surface of the GaAs substrate 1, a GaAs layer 5 is deposited by a metal organic deposition method so that a V groove 7 can be formed on the surface. Form. Thus, the semiconductor substrate 10 having the V groove 7 formed on its surface is completed. When the height of the GaAs layer 5 from the mask 2 is 5 μm or more, a cavity 6 is formed.
And the V groove 7 can be formed.
【0013】このようにして得た半導体基板10のV溝
7形成面に、図1にみるように、AlGaAs層(半導
体層)11、GaAs層(化合物半導体層)12、Al
GaAs層(半導体層)13を順に堆積成長させれば、
量子細線構造が完成する。なお、半導体レーザの場合、
電極を上下面に設けることは言うまでもない。図1にお
ける量子細線(Quantum Wire) 構造では、GaAs層1
2のV溝7に沿ったV状形状部分は上下に禁制帯の広い
AlGaAs層(半導体層)11,13があり、GaA
s層12のV状形状部分の底に長手方向に沿って細線状
発光部分が生成される構造である。As shown in FIG. 1, an AlGaAs layer (semiconductor layer) 11, a GaAs layer (compound semiconductor layer) 12, and an Al layer are formed on the surface of the semiconductor substrate 10 on which the V-groove 7 is formed, as shown in FIG.
If the GaAs layer (semiconductor layer) 13 is deposited and grown in order,
The quantum wire structure is completed. In the case of a semiconductor laser,
It goes without saying that the electrodes are provided on the upper and lower surfaces. In the quantum wire structure in FIG. 1, the GaAs layer 1
In the V-shaped portion along the V groove 7 of 2, there are AlGaAs layers (semiconductor layers) 11 and 13 having a wide forbidden band at the top and bottom, and
This is a structure in which a thin linear light emitting portion is generated along the longitudinal direction on the bottom of the V-shaped portion of the s layer 12.
【0014】この発明は、上記実施例に限らない。例え
ば、図1にみるように、AlGaAs層(半導体層)1
1、GaAs層(化合物半導体層)12のあと、再び、
AlGaAs層(半導体層)11、GaAs層(化合物
半導体層)12を繰り返し堆積成長させて、量子細線構
造を多層化するようにしてもよい。GaAs基材1がS
i基材である場合は、メサエッチングで形成する凹部の
内面に薄い格子不整合緩和層を堆積形成してから、Ga
As層5を凹状溝が表面に出来るように堆積するように
してもよい。格子不整合緩和層としては、InGaAs
/GaAsやGaAsP/GaAsなどで構成された歪
み超格子構造を用いることができる。The present invention is not limited to the above embodiment. For example, as shown in FIG. 1, an AlGaAs layer (semiconductor layer) 1
1. After the GaAs layer (compound semiconductor layer) 12, again
The AlGaAs layer (semiconductor layer) 11 and the GaAs layer (compound semiconductor layer) 12 may be repeatedly deposited and grown to make the quantum wire structure multi-layered. GaAs substrate 1 is S
In the case of an i base material, a thin lattice mismatch relaxation layer is deposited and formed on the inner surface of the recess formed by mesa etching, and then Ga
The As layer 5 may be deposited such that a concave groove is formed on the surface. InGaAs is used as the lattice mismatch relaxation layer.
A strained superlattice structure composed of / GaAs or GaAsP / GaAs can be used.
【0015】[0015]
【発明の効果】この発明の量子細線構造の形成方法で
は、半導体層の表面に出来る凹状溝の幅よりもマスクの
幅が広くてよいため、特別な微細パターン加工が必要で
なく、量子細線構造が容易に形成でき、非常に有用であ
る。According to the method of forming a quantum wire structure of the present invention, since the width of the mask may be wider than the width of the concave groove formed on the surface of the semiconductor layer, no special fine pattern processing is required and the quantum wire structure is not required. Can be easily formed and is very useful.
【図1】実施例で形成した量子細線構造をあらわす断面
図。FIG. 1 is a cross-sectional view showing a quantum wire structure formed in an example.
【図2】実施例でのメサエッチング工程をあらわす断面
図。FIG. 2 is a cross-sectional view showing a mesa etching process in an example.
【図3】実施例でのV溝形成工程をあらわす断面図。FIG. 3 is a cross-sectional view showing a V-groove forming step in the example.
【図4】従来の量子細線構造の形成を行うときの様子を
あらわす説明図。FIG. 4 is an explanatory diagram showing a state when a conventional quantum wire structure is formed.
1 GaAs基材(半導体基材) 2 マスク 3 凹部 5 GaAs層 6 空洞 7 V溝 11 AlGaAs層(半導体層) 12 GaAs層(化合物半導体層) 13 AlGaAs層(半導体層) 1 GaAs Base Material (Semiconductor Base Material) 2 Mask 3 Recess 5 GaAs Layer 6 Cavity 7 V Groove 11 AlGaAs Layer (Semiconductor Layer) 12 GaAs Layer (Compound Semiconductor Layer) 13 AlGaAs Layer (Semiconductor Layer)
Claims (1)
板の溝形成面に、化合物半導体層およびこの化合物半導
体層より禁制帯の広い半導体層を堆積形成し、前記凹状
溝の内に凹状溝の長手方向に沿って化合物半導体層の上
下面に禁制帯の広い半導体層が配置されてなる半導体層
構成を形成することにより、前記化合物半導体層に長手
方向に沿って細線状発光部分が生成されるようになる量
子細線構造を形成する方法において、前記表面に凹状溝
が形成されている半導体基板を得るにあたり、被覆域の
両側に未被覆域が隣りあって両域が長手方向に平行に続
くパターンを有するマスクが表面に設けられた半導体基
材を用い、この基材のマスク形成面に対してメサエッチ
ングを施した後、マスクを残したまま半導体層を前記凹
状溝が表面に出来るように堆積することを特徴とする量
子細線構造の形成方法。1. A compound semiconductor layer and a semiconductor layer having a wider forbidden band than the compound semiconductor layer are deposited and formed on a groove forming surface of a semiconductor substrate having a concave groove formed on the surface thereof, and the concave groove is formed in the concave groove. By forming a semiconductor layer structure in which semiconductor layers having a wide forbidden band are arranged on the upper and lower surfaces of the compound semiconductor layer along the longitudinal direction of the compound semiconductor layer, thin linear light emitting portions are generated in the compound semiconductor layer along the longitudinal direction. In the method of forming a quantum wire structure as described above, in obtaining a semiconductor substrate in which a concave groove is formed on the surface, uncovered regions are adjacent to each other on both sides of the covered region, and both regions continue in parallel to the longitudinal direction. Using a semiconductor base material having a mask having a pattern on the surface, after performing mesa etching on the mask formation surface of the base material, the semiconductor layer can be formed with the concave groove on the surface while leaving the mask. A method for forming a quantum wire structure, characterized in that the quantum wire structure is deposited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3216393A JPH06252496A (en) | 1993-02-22 | 1993-02-22 | Formation of quantum wire structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3216393A JPH06252496A (en) | 1993-02-22 | 1993-02-22 | Formation of quantum wire structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06252496A true JPH06252496A (en) | 1994-09-09 |
Family
ID=12351278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3216393A Pending JPH06252496A (en) | 1993-02-22 | 1993-02-22 | Formation of quantum wire structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06252496A (en) |
-
1993
- 1993-02-22 JP JP3216393A patent/JPH06252496A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7941024B2 (en) | Buried heterostructure device having integrated waveguide grating fabricated by single step MOCVD | |
US5436195A (en) | Method of fabricating an integrated semiconductor light modulator and laser | |
US5654557A (en) | Quantum wire structure and a method for producing the same | |
JPH0653619A (en) | Compound semiconductor device and its manufacture | |
US8189635B2 (en) | Laser diode having nano patterns and method of fabricating the same | |
CA2006266C (en) | Method for the epitaxial growth of a semiconductor structure | |
US5486490A (en) | Method of making semiconductor laser | |
JP4194844B2 (en) | Semiconductor laser with multiple optically active regions | |
US6465810B1 (en) | Semiconductor light emitting device and its manufacturing method | |
US7184640B2 (en) | Buried heterostructure device fabricated by single step MOCVD | |
KR0185498B1 (en) | High-powered quantum wire array laser diode structure | |
JP3007928B2 (en) | Method for manufacturing optical semiconductor device | |
US7432161B2 (en) | Fabrication of optical-quality facets vertical to a (001) orientation substrate by selective epitaxial growth | |
JPH06252496A (en) | Formation of quantum wire structure | |
JPH077232A (en) | Optical semiconductor device | |
JPH06132610A (en) | Semiconductor laser array element and manufacture thereof | |
JPH01321677A (en) | Waveguide type semiconductor optical element and manufacture thereof | |
US5833870A (en) | Method for forming a high density quantum wire | |
KR20000053604A (en) | Method for fabricating a semiconductor optical device | |
KR100771599B1 (en) | method for growing nitride semiconductor film | |
KR0141254B1 (en) | A method of manufacturing semiconductor laser device | |
JPH0283992A (en) | Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser | |
KR100289145B1 (en) | Method for making laser diode of buried heterostructure by using polyimide coating | |
JPH07312462A (en) | Surface laser beam emitting diode and manufacturing method thereof | |
JPH05167187A (en) | Semiconductor laser |