[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06252131A - Method and device for forming oxide film - Google Patents

Method and device for forming oxide film

Info

Publication number
JPH06252131A
JPH06252131A JP3912093A JP3912093A JPH06252131A JP H06252131 A JPH06252131 A JP H06252131A JP 3912093 A JP3912093 A JP 3912093A JP 3912093 A JP3912093 A JP 3912093A JP H06252131 A JPH06252131 A JP H06252131A
Authority
JP
Japan
Prior art keywords
oxide film
processed
electrode
processing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3912093A
Other languages
Japanese (ja)
Other versions
JP3163190B2 (en
Inventor
Hiroyuki Sugimura
博之 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP03912093A priority Critical patent/JP3163190B2/en
Publication of JPH06252131A publication Critical patent/JPH06252131A/en
Priority to US08/574,986 priority patent/US5785838A/en
Application granted granted Critical
Publication of JP3163190B2 publication Critical patent/JP3163190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】 【構成】 含酸素気体分子の雰囲気中で、先端の鋭利な
加工用電極(2)を被加工材料(1)に近接させ、被加
工材料の表面を正、加工用電極が負になるように直流電
源(3)によって電圧を印加し、近接させた加工用電極
直下の被加工材料の表面を陽極酸化する。 【効果】 従来の酸化膜の製造方法の解像度の限界を越
えた極めて高分解能で酸化膜の微細パターンを形成する
ことが可能となる。このため、集積度の高い半導体素子
や短波長用や軟X線等のように波長が極めて短い光のた
めの回折光学素子の製造が可能となり、さらに、多段階
の工程を経ずに、任意の酸化膜パターンを直接被加工材
料の表面に形成できるので、加工効率、加工自由度は大
きく向上する。
(57) [Summary] [Structure] In the atmosphere of oxygen-containing gas molecules, the processing electrode (2) with a sharp tip is brought close to the material to be processed (1), and the surface of the material to be processed is positive and the processing electrode is positive. A voltage is applied by a DC power source (3) so that the value becomes negative, and the surface of the material to be processed immediately below the processing electrode which is brought into proximity is anodized. [Effect] It becomes possible to form a fine pattern of an oxide film with an extremely high resolution that exceeds the resolution limit of the conventional oxide film manufacturing method. Therefore, it becomes possible to manufacture a semiconductor element having a high degree of integration or a diffractive optical element for light having an extremely short wavelength such as soft X-rays for short wavelengths. Since the oxide film pattern can be directly formed on the surface of the material to be processed, the processing efficiency and the processing flexibility are greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化膜の製造方法と
製造装置に関するものである。さらに詳しくは、この発
明は、ICやLSI等の半導体素子、回折格子やゾーン
プレート等の光学素子等を製造するための微細加工技術
として有用な酸化膜の製造方法とそのための製造装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing an oxide film. More specifically, the present invention relates to a method for manufacturing an oxide film useful as a microfabrication technique for manufacturing semiconductor elements such as ICs and LSIs, optical elements such as diffraction gratings and zone plates, and a manufacturing apparatus therefor. is there.

【0002】[0002]

【従来の技術とその課題】従来よりICやLSI等の半
導体素子、回折格子やゾーンプレート等の光学素子等の
製造工程においては、被加工材料の表面に微細な酸化膜
パターンが形成されており、この酸化膜パターンの形成
方法の一つとしてフォトリソグラフィ技術が知られてい
る。このフォトリソグラフィの工程は、通常、1)所定
のパターンのフォトマスクの製造、2)被加工材料表面
へのフォトレジストの塗布、3)フォトマスク像をフォ
トレジスト面に投影してのフォトレジストの露光、4)
フォトレジストの現像、の各工程からなっており、この
フォトリソグラフィによって、被加工材料の表面にフォ
トレジストパターンを形成している。
2. Description of the Related Art Conventionally, in the manufacturing process of semiconductor elements such as IC and LSI, optical elements such as diffraction gratings and zone plates, a fine oxide film pattern is formed on the surface of a material to be processed. A photolithography technique is known as one of the methods for forming the oxide film pattern. This photolithography process is usually carried out by 1) manufacturing a photomask having a predetermined pattern, 2) applying a photoresist to the surface of a material to be processed, and 3) projecting a photomask image on the photoresist surface. Exposure, 4)
This process includes the steps of developing a photoresist and forming a photoresist pattern on the surface of the material to be processed by this photolithography.

【0003】しかしながら、このフォトレジストパター
ン形成後の被加工材料の表面にさらに酸化膜パターンを
形成する場合には、その被加工材料を酸化処理した後、
残ったレジストを剥離しなければならず、そのため多く
の時間と手間が必要であった。また、このフォトリソグ
ラフィ技術では、光の波長による分解能の限界が存在
し、たとえ波長の短い紫外線を露光に使用したとして
も、0.2μmより細かいパターン形成することが不可
能であるため、フォトリソグラフィによる微細加工には
限界があった。
However, when an oxide film pattern is to be further formed on the surface of the material to be processed after forming the photoresist pattern, after the material to be processed is oxidized,
The remaining resist had to be stripped off, which required a lot of time and effort. Further, in this photolithography technique, there is a limit in resolution depending on the wavelength of light, and even if ultraviolet rays having a short wavelength are used for exposure, it is impossible to form a pattern finer than 0.2 μm. There was a limit to the fine processing by.

【0004】そしてこのフォトリソグラフィ技術では、
工程が多段階にわたっているためにパターンの品質を維
持するのが困難であるばかりでなく、多種類のパターン
を形成するには、そのパターンの種類ごとにフォトマス
クを用意しなければならず、加工自由度を著しく欠いて
いた。従って、従来のフォトリソグラフィ技術に代表さ
れる酸化膜の製造方法は、微細な酸化膜パターン形成の
めたの、加工効率、加工性能、および、加工自由度の点
において、満足できるものではなかった。
In this photolithography technique,
Not only is it difficult to maintain the quality of the pattern due to the multi-step process, but to form many types of patterns, a photomask must be prepared for each type of pattern, He lacked a lot of freedom. Therefore, the conventional oxide film manufacturing method represented by the photolithography technique is not satisfactory in terms of processing efficiency, processing performance, and processing flexibility because of the formation of a fine oxide film pattern. .

【0005】この発明は、以上の通りの事情を踏まえて
なされたものであり、従来の酸化膜の製造方法の欠点を
解消し、加工効率、加工性能、そして加工自由度に優れ
た新しい酸化膜の製造方法と、そのための製造装置を提
供することを目的としている。
The present invention has been made in view of the above circumstances, and solves the drawbacks of the conventional method for producing an oxide film, and provides a new oxide film excellent in processing efficiency, processing performance and processing flexibility. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus therefor.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、含酸素分子気体の存在する雰囲
気中で、先鋭加工用電極を被加工材料に近接させ、被加
工材料と加工用電極との間に電圧を印加し、加工用電極
直下の表面を陽極酸化することを特徴とする酸化膜の製
造方法を提供する。そしてまた、この発明は、そのため
の装置として、被加工材料に近接可能な先鋭加工用電極
と、加工用電極と被加工材料の表面との間に流れる電流
を検出する電流検出手段と加工用電極と被加工材料の表
面との間に流れる電流を検出し、その電流が一定になる
ように、加工用電極と被加工材料の相対位置を制御する
相対位置制御手段、および含酸素分子気体の供給とその
制御手段からなる酸化膜の製造装置をも提供する。
In order to solve the above-mentioned problems, the present invention makes an electrode for sharpening work close to a material to be processed in an atmosphere in which an oxygen-containing molecular gas is present, so that the material to be processed is processed. There is provided a method for producing an oxide film, characterized in that a voltage is applied between the working electrode and the surface just below the working electrode to anodize. Further, the present invention provides, as an apparatus therefor, a sharpening processing electrode that can be brought close to a material to be processed, a current detection unit that detects a current flowing between the processing electrode and the surface of the material to be processed, and a processing electrode. Between the processing electrode and the surface of the material to be processed, and the relative position control means for controlling the relative position of the processing electrode and the material to be processed so that the current becomes constant, and the supply of oxygen-containing molecular gas Also provided is an apparatus for producing an oxide film, which includes the control means and the control means.

【0007】[0007]

【作用】この発明における酸化膜の製造方法は、これま
でにない全く新しい方法であって、この方法では、まず
はじめに、含酸素分子気体の存在する雰囲気中に被加工
材料を設置し、次に、先端を鋭く尖らせた先鋭加工用電
極を被加工材料に接近させ、被加工材料の表面が正極、
加工用電極が負極になるように、被加工材料と加工用電
極との間に電圧を印加する。加工用電極が被加工材料の
表面にある程度近接すると加工用電極と被加工材料との
間で電流が流れはじめる。その結果、被加工材料の表面
は表面に吸着している含酸素分子物質または含酸素分子
化合物と電気化学反応を起こし、被加工材料の表面が陽
極酸化される。
The method for producing an oxide film according to the present invention is a completely new method which has never existed before. In this method, first, a material to be processed is placed in an atmosphere in which an oxygen-containing molecular gas is present, and then, , A sharpened electrode with a sharp tip is brought close to the material to be processed, and the surface of the material to be processed is a positive electrode,
A voltage is applied between the material to be processed and the processing electrode so that the processing electrode becomes a negative electrode. When the processing electrode comes close to the surface of the material to be processed to some extent, a current starts to flow between the processing electrode and the material to be processed. As a result, the surface of the material to be processed causes an electrochemical reaction with the oxygen-containing molecular substance or the oxygen-containing molecular compound adsorbed on the surface, and the surface of the material to be processed is anodized.

【0008】このため、先端の鋭利な針を加工用電極と
することによって、被加工材料が酸化される範囲の面積
を極めて小さくし、被加工材料と加工用電極との間を流
れる電流の値が一定になるように加工用電極の位置を制
御して被加工材料の表面をなぞるように加工用電極を動
かすことによって、解像度0.1μm以上の高分解能
で、自由な形状の酸化膜パターンを被加工材料の表面に
形成することが可能となる。
Therefore, by using a sharp-edged needle as a processing electrode, the area of the range where the material to be processed is oxidized is made extremely small, and the value of the current flowing between the material to be processed and the processing electrode is reduced. By controlling the position of the processing electrode so that the surface of the material to be processed is traced so as to be constant and moving the processing electrode so as to trace the surface of the material to be processed, a free-form oxide film pattern with high resolution of 0.1 μm or more can be formed. It can be formed on the surface of the material to be processed.

【0009】以下、実施例を示し、さらに詳しくこの発
明の酸化膜の製造方法と製造装置について説明する。
Examples will be shown below to describe the method and apparatus for manufacturing an oxide film of the present invention in more detail.

【0010】[0010]

【実施例】実施例1 図1は、この発明の方法のための装置構成を例示した概
要図である。たとえばこの図1に例示したように、被加
工材料(1)が正極に、そして加工用電極(2)が負極
になるように、直流電源(3)に被加工材料(1)と加
工用電極(2)とを接続する。加工用電極(2)は、そ
の先端が先鋭な針状形を有している。そこで、この被加
工材料(1)と加工用電極(2)との間に電圧を印加
し、相対位置制御手段(5)を用いて、加工用電極
(2)を被加工材料(1)の表面に接近させていくと、
加工用電極(2)と被加工材料(1)との間に電流が流
れはじめる。この電流を電流検出回路(4)によって検
出し、検出電流値が一定になるように相対位置制御手段
(5)によって加工用電極(2)と被加工材料(1)と
の相対位置を制御する。
Embodiment 1 FIG. 1 is a schematic diagram illustrating the apparatus configuration for the method of the present invention. For example, as illustrated in FIG. 1, the work material (1) and the work electrode are connected to the DC power source (3) so that the work material (1) becomes the positive electrode and the work electrode (2) becomes the negative electrode. (2) is connected to. The processing electrode (2) has a needle-like shape with a sharp tip. Therefore, a voltage is applied between the work material (1) and the working electrode (2), and the relative position control means (5) is used to move the working electrode (2) to the work material (1). When approaching the surface,
An electric current starts to flow between the processing electrode (2) and the material to be processed (1). This current is detected by the current detection circuit (4), and the relative position between the processing electrode (2) and the material to be processed (1) is controlled by the relative position control means (5) so that the detected current value becomes constant. .

【0011】この相対位置制御手段(5)としては、た
とえば、3次元アクチエーターを用いることができる。
電流検出回路(4)と相対位置制御手段(5)は、たと
えば、制御回路(6)によって制御してもよい。この装
置には、図示していないが、含酸素分子気体を雰囲気と
するための気体供給手段と、その制御手段とを備えても
いる。被加工材料の表面上に吸着した含酸素分子気体
は、被加工材料(1)との間で高い空間分解能で電気化
学反応させる。
As the relative position control means (5), for example, a three-dimensional actuator can be used.
The current detection circuit (4) and the relative position control means (5) may be controlled by, for example, a control circuit (6). Although not shown, this apparatus also includes a gas supply means for making the oxygen-containing molecular gas an atmosphere and a control means thereof. The oxygen-containing molecular gas adsorbed on the surface of the material to be processed causes an electrochemical reaction with the material (1) to be processed with high spatial resolution.

【0012】この分子気体雰囲気制御については、たと
えば、被加工材料(1)、加工用電極(2)および相対
位置制御手段(5)をグローブボックス等の内部に置
き、窒素気流等でグローブボックス内を置換し、窒素気
流等の流量を変えてグローブボックス内の含酸素気体分
子の濃度を制御するようにしてもよい。含酸素分子とし
ては、酸素を含有している水蒸気や酸素分子を用いるこ
とができる。また、酸化窒素等の酸化性の気体分子を使
用することも可能である。
Regarding the control of the molecular gas atmosphere, for example, the material to be processed (1), the processing electrode (2) and the relative position control means (5) are placed inside a glove box or the like, and a nitrogen gas flow or the like is applied to the inside of the glove box or the like. May be replaced by changing the flow rate of the nitrogen gas flow to control the concentration of oxygen-containing gas molecules in the glove box. As the oxygen-containing molecule, water vapor or oxygen molecule containing oxygen can be used. It is also possible to use oxidizing gas molecules such as nitric oxide.

【0013】加工の解像度は、加工用電極(2)の先端
形状によって左右されるため、加工用電極先端の半径は
100nm以下であることが望ましい。また、加工用電
極の材質としては、たとえば、白金、金等の貴金属もし
くはその合金、または、導電性ダイアモンド等の電気化
学的に安定な素材を用いることができる。このような素
材の中でも特に導電性ダイアモンドは電気化学的に安定
であるばかりでなく、機械的強度にも優れているため、
安定な微細加工のために適した素材である。
Since the processing resolution depends on the tip shape of the processing electrode (2), the radius of the processing electrode tip is preferably 100 nm or less. Further, as the material of the working electrode, for example, a noble metal such as platinum or gold or an alloy thereof, or an electrochemically stable material such as conductive diamond can be used. Among these materials, conductive diamond is not only electrochemically stable, but also has excellent mechanical strength.
It is a material suitable for stable fine processing.

【0014】そして、この発明の方法は、チタニウム、
タンタル、タングステン、アルミニウム等の金属、シリ
コン、ゲルマニウム、ガリウムひ素、インジウム燐等の
半導体等の陽極酸化によって酸化膜を形成することので
きるすべての材料に対して適用が可能である。さらに、
n型半導体のように陽極酸化しにくい材料であっても、
半導体のバンドギャップより高いエネルギーの光で照明
しながら酸化を行なう等の手段によって、安定した加工
が可能となる。実施例2 実際に、図1に示した装置構成において、導電性ダイア
モンドを加工用電極(2)とし、窒素の存在下の気温2
3℃、相対湿度20%の窒素雰囲気中に置かれたチタニ
ウム基板を加工した。
Then, the method of the present invention comprises titanium,
It can be applied to all materials capable of forming an oxide film by anodic oxidation such as metals such as tantalum, tungsten and aluminum, semiconductors such as silicon, germanium, gallium arsenide and indium phosphide. further,
Even if it is a material that is difficult to anodize like an n-type semiconductor,
Stable processing is possible by means such as oxidation while illuminating with light having energy higher than the band gap of the semiconductor. Example 2 Actually, in the apparatus configuration shown in FIG. 1, the conductive diamond was used as the processing electrode (2), and the temperature 2 in the presence of nitrogen was used.
A titanium substrate placed in a nitrogen atmosphere at 3 ° C. and a relative humidity of 20% was processed.

【0015】ダイアモンド電極とチタニウム基板との間
に8Vの電圧を印加し、ダイアモンド電極とチタニウム
基板との間の電流を100pAで一定になるように制御
しつつ、チタニウム表面上を2μm/secの速度でダ
イアモンド電極を動かし、ビッチ30nmの回折格子
(1mmあたりの本数約33000本)を加工した。図
2は、加工後の表面を一般的な走査型トンネル顕微鏡装
置(STM)によって観察した結果を示したものであ
る。図2中の凸部分が、この発明の方法によって形成し
たチタニウム表面の酸化膜である。基板表面に吸着した
水分子とチタンが電気化学反応を起こし、30nmとい
う極めて高い分解能での加工が達成されている。
A voltage of 8 V is applied between the diamond electrode and the titanium substrate, and the current between the diamond electrode and the titanium substrate is controlled to be constant at 100 pA, while a speed of 2 μm / sec on the titanium surface. Then, the diamond electrode was moved to process a diffraction grating (the number of which is about 33,000 per 1 mm) of 30 nm. FIG. 2 shows the result of observing the surface after processing with a general scanning tunneling microscope (STM). The convex portion in FIG. 2 is an oxide film on the surface of titanium formed by the method of the present invention. Water molecules adsorbed on the surface of the substrate and titanium cause an electrochemical reaction, and processing with an extremely high resolution of 30 nm has been achieved.

【0016】[0016]

【発明の効果】以上詳しく説明したように、この発明に
より、従来の酸化膜の製造方法の解像度の限界を越え
た、極めて高分解能で酸化膜の微細パターンを形成する
ことが可能となる。集積度の高い半導体素子や短波長用
や軟X線等のように波長が極めて短い光のための回折光
学素子が製造可能となる。また、多段階の工程を経ず
に、任意の酸化膜パターンを直接被加工材料の表面に形
成することができるので、加工効率、加工自由度が大き
く向上する。
As described above in detail, according to the present invention, it becomes possible to form a fine pattern of an oxide film with an extremely high resolution, which exceeds the resolution limit of the conventional oxide film manufacturing method. It is possible to manufacture a semiconductor element having a high degree of integration and a diffractive optical element for light having an extremely short wavelength such as a short wavelength or soft X-ray. Further, since an arbitrary oxide film pattern can be directly formed on the surface of the material to be processed without going through a multi-step process, the processing efficiency and the processing flexibility are greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の装置例示した構成図である。FIG. 1 is a block diagram illustrating a device of the present invention.

【図2】この発明の実施例としての加工後の費用面を示
したSTM像図である。
FIG. 2 is an STM image diagram showing a cost aspect after processing as an example of the present invention.

【符号の説明】[Explanation of symbols]

1 被加工材料 2 加工用電極 3 直流電源 4 電流検出回路 5 相対位置制御手段 6 制御回路 1 Work Material 2 Processing Electrode 3 DC Power Supply 4 Current Detection Circuit 5 Relative Position Control Means 6 Control Circuit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 含酸素分子気体の雰囲気中で、先鋭加工
用電極を被加工材料に近接させ、被加工材料と加工用電
極との間に電圧を印加し、加工用電極直下の表面を陽極
酸化することを特徴とする酸化膜の製造方法。
1. An electrode for sharpening processing is brought close to a material to be processed in an atmosphere of oxygen-containing molecular gas, a voltage is applied between the material to be processed and the processing electrode, and the surface immediately below the processing electrode is an anode. A method for producing an oxide film, characterized by oxidizing.
【請求項2】 先鋭加工用電極を被加工材料の表面に沿
って移動させ、任意の形状を持った酸化膜パターンを形
成する請求項1の酸化膜の製造方法。
2. The method for producing an oxide film according to claim 1, wherein the sharpening electrode is moved along the surface of the material to be processed to form an oxide film pattern having an arbitrary shape.
【請求項3】 含酸素分子気体が水蒸気および/または
酸素分子である請求項1の酸化膜の製造方法。
3. The method for producing an oxide film according to claim 1, wherein the oxygen-containing molecular gas is water vapor and / or oxygen molecules.
【請求項4】 先鋭加工用電極と被加工材料の表面との
間に流れる電流を検出し、その電流が一定になるよう
に、加工用電極と被加工材料の相対位置を制御しながら
陽極酸化する請求項1の酸化膜の製造方法。
4. Anodizing while detecting a current flowing between the sharpening processing electrode and the surface of the material to be processed and controlling the relative position of the processing electrode and the material to be processed so that the current becomes constant. The method for producing an oxide film according to claim 1.
【請求項5】 含酸素分子気体の量を制御して陽極酸化
する請求項1の酸化膜の製造方法。
5. The method for producing an oxide film according to claim 1, wherein the amount of oxygen-containing molecular gas is controlled to carry out anodization.
【請求項6】 被加工材料に近接可能な先鋭加工用電極
と、加工用電極と被加工材料の表面との間に流れる電流
を検出する電流検出手段と、加工用電極と被加工材料の
表面との間に流れる電流を検出し、その電流が一定にな
るように、加工用電極と被加工材料の相対位置を制御す
る相対位置制御手段、および、含酸素分子気体の供給と
その制御手段からなることを特徴とする酸化膜の製造装
置。
6. A sharpened machining electrode that can be brought close to the material to be machined, a current detection means for detecting a current flowing between the machining electrode and the surface of the material to be machined, a surface of the material to be machined and the surface of the material to be machined. Between the electrode for processing and the relative position of the material to be processed so as to keep the current constant, and the supply of oxygen-containing molecular gas and its control means. And an oxide film manufacturing apparatus.
【請求項7】 導電性ダイアモンドを加工用電極とする
請求項6の酸化膜の製造装置。
7. The oxide film manufacturing apparatus according to claim 6, wherein the conductive diamond is used as the processing electrode.
【請求項8】 金属材料または半導体材料を加工する請
求項6の酸化膜の製造装置。
8. The oxide film manufacturing apparatus according to claim 6, which processes a metal material or a semiconductor material.
JP03912093A 1993-02-26 1993-02-26 Method and apparatus for manufacturing oxide film Expired - Fee Related JP3163190B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03912093A JP3163190B2 (en) 1993-02-26 1993-02-26 Method and apparatus for manufacturing oxide film
US08/574,986 US5785838A (en) 1993-02-26 1995-12-19 Method for producing an oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03912093A JP3163190B2 (en) 1993-02-26 1993-02-26 Method and apparatus for manufacturing oxide film

Publications (2)

Publication Number Publication Date
JPH06252131A true JPH06252131A (en) 1994-09-09
JP3163190B2 JP3163190B2 (en) 2001-05-08

Family

ID=12544237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03912093A Expired - Fee Related JP3163190B2 (en) 1993-02-26 1993-02-26 Method and apparatus for manufacturing oxide film

Country Status (1)

Country Link
JP (1) JP3163190B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715048A1 (en) * 1997-04-11 1998-10-22 Bosch Gmbh Robert Process for structuring transparent, conductive layers
KR100626408B1 (en) * 2005-09-27 2006-09-20 한양대학교 산학협력단 Fabrication method of nano fine pattern of organic material and metal thin film using low energy nuclear force microscope system
JP2007013101A (en) * 2005-06-30 2007-01-18 Hynix Semiconductor Inc Capacitor for semiconductor device and method for manufacturing the same
JP2007073712A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Nanoimprint method
JP2007069301A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Nanoimprint method and nanoimprint apparatus
KR100707202B1 (en) * 2004-08-02 2007-04-13 삼성전자주식회사 Oxide films fabrication method
JP2008130709A (en) * 2006-11-20 2008-06-05 Ricoh Co Ltd Manufacturing method of semiconductor laser, semiconductor laser manufacturing apparatus, the semiconductor laser, optical scanning apparatus, image forming device, optical transmission module, and optical transmission system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715048A1 (en) * 1997-04-11 1998-10-22 Bosch Gmbh Robert Process for structuring transparent, conductive layers
DE19715048C2 (en) * 1997-04-11 1999-08-19 Bosch Gmbh Robert Process for structuring a transparent, electrically conductive layer
KR100707202B1 (en) * 2004-08-02 2007-04-13 삼성전자주식회사 Oxide films fabrication method
JP2007013101A (en) * 2005-06-30 2007-01-18 Hynix Semiconductor Inc Capacitor for semiconductor device and method for manufacturing the same
JP2007073712A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Nanoimprint method
JP2007069301A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Nanoimprint method and nanoimprint apparatus
KR100626408B1 (en) * 2005-09-27 2006-09-20 한양대학교 산학협력단 Fabrication method of nano fine pattern of organic material and metal thin film using low energy nuclear force microscope system
JP2008130709A (en) * 2006-11-20 2008-06-05 Ricoh Co Ltd Manufacturing method of semiconductor laser, semiconductor laser manufacturing apparatus, the semiconductor laser, optical scanning apparatus, image forming device, optical transmission module, and optical transmission system

Also Published As

Publication number Publication date
JP3163190B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
Chen et al. Sub-10 nm fabrication: methods and applications
US7906775B2 (en) Superlattice nanopatterning of wires and complex patterns
JP4536866B2 (en) Nanostructure and manufacturing method thereof
US8173335B2 (en) Beam ablation lithography
JPH10504139A (en) Selective removal of substances by irradiation
CN111792622B (en) Water ice-based electron beam induced etching process
JP3163190B2 (en) Method and apparatus for manufacturing oxide film
Sun et al. Three-dimensional micromachining for microsystems by confined etchant layer technique
US5785838A (en) Method for producing an oxide film
KR20220014297A (en) Method for fabricating electrode based on liquid metal
Ammann et al. Local deposition of gold on silicon by the scanning electrochemical microscope
JP4766964B2 (en) Nanoimprint method
JPS62115166A (en) Photomask and manufacture thereof
JP3054900B2 (en) Micro processing equipment
JP2003168682A (en) Method for forming micropattern on work made of silicon
JP3422428B2 (en) Method for forming microfabricated resist pattern
EP1000425B1 (en) Method for nano-structuring amorphous carbon layers
JP3750268B2 (en) Manufacturing method of tool electrode for electric discharge machining
JP3041740B2 (en) Fine processing method
JP4884730B2 (en) Nanoimprint method and nanoimprint apparatus
US5171608A (en) Method of pattern transfer in photolithography using laser induced metallization
JP2806136B2 (en) Manufacturing method of microstructure light emitting device
KR100435516B1 (en) Positive and Negative Nano-patterning Methods on Resist Films by Changing the Polarity of a Tip Bias Voltage in AFM Lithography
KR100668643B1 (en) Wet etching method of silicon using X-ray
JP2000282266A (en) Method for manufacturing microstructure and method for microfabrication

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees