[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0625793A - Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder - Google Patents

Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder

Info

Publication number
JPH0625793A
JPH0625793A JP4181249A JP18124992A JPH0625793A JP H0625793 A JPH0625793 A JP H0625793A JP 4181249 A JP4181249 A JP 4181249A JP 18124992 A JP18124992 A JP 18124992A JP H0625793 A JPH0625793 A JP H0625793A
Authority
JP
Japan
Prior art keywords
powder
sintered body
electroless plating
alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4181249A
Other languages
Japanese (ja)
Inventor
Hirotaka Hanaoka
宏卓 花岡
Nobuaki Akagi
宣明 赤城
Hitoshi Sakuma
均 佐久間
Hiroshi Itani
弘 井硲
Kazuo Fujiwara
和雄 藤原
Akio Ooyashiki
昭男 大屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP4181249A priority Critical patent/JPH0625793A/en
Publication of JPH0625793A publication Critical patent/JPH0625793A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain Fe-Cu-Ni compound powder for powder metallurgy capable of obtaining a homogeneous sintered body having high density and high strength by applying Ni electroless plating to the surface of iron powder and thereafter applying Cu-Ni electroless plating thereto to regulate its compsn. into a specified one. CONSTITUTION:The Fe-Cu-Ni compound powder for powder metallurgy is one which the surface of the iron powder is applied with the Cu-Ni plated layer, and its compsn. is constituted of, by weight, 0.1 to 10% Cu and 1 to 20% Ni, and the balance Fe with inevitable impurities. By subjecting it to compacting and sintering, a sintered body having high density and dimensional stability as well as high strength can be obtd. This compound powder can inexpensively and efficiently be manufactured by previously applying the Ni electroless plating to the surface of the iron powder and thereafter applying the Cu-Ni electroless plating thereto to uniformly stick the Cu-Ni alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度且つ高強度でし
かも焼結時の寸法精度のばらつきの少ない焼結体を与え
ることのできる粉末冶金用Fe−Cu−Ni複合粉末及
びその製造方法、更には上記のような焼結体に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Cu-Ni composite powder for powder metallurgy and a method for producing the same, which is capable of providing a sintered body having high density and high strength and less variation in dimensional accuracy during sintering. Furthermore, the present invention relates to a sintered body as described above.

【0002】[0002]

【従来の技術】粉末冶金法は圧延,鍛造,鋳造等からな
る従来の製造プロセスを大きく書き換え、原料となる金
属粉末を圧縮成形後焼結して製品とする方法である。従
って粉末冶金法によれば、WやMo等の高融点金属材
料,含油軸受やフィルター等の多孔質材料,超硬合金や
サーメット等の様に、従来の溶製法では製造が困難であ
った部材の製造が可能になる。そればかりか、非切削に
よる材料歩留まりの向上、高い寸法精度等の製造面での
利点、および溶製材で発生しやすい偏析や異方性が少な
いという材料面での利点等の様に溶製材では得られない
各種の長所があることから、従来溶製法によって製造さ
れていた各種部材を粉末冶金法におきかえて製造するこ
とも行なわれている。
2. Description of the Related Art The powder metallurgy method is a method in which a conventional manufacturing process including rolling, forging, casting, etc. is largely rewritten, and a metal powder as a raw material is compression molded and then sintered to obtain a product. Therefore, according to the powder metallurgy method, it is difficult to manufacture by the conventional melting method such as high melting point metal materials such as W and Mo, porous materials such as oil-impregnated bearings and filters, cemented carbide and cermet. Can be manufactured. Not only that, but in the case of ingots such as the advantage in manufacturing such as improvement of material yield due to non-cutting, high dimensional accuracy, and the fact that segregation and anisotropy, which are likely to occur in ingots, are small. Since there are various advantages that cannot be obtained, various members conventionally manufactured by the melting method are replaced with the powder metallurgy method and manufactured.

【0003】現在粉末冶金法によって製造されている焼
結体は自動車用部品として用いられるものが大半であ
り、とりわけ鉄焼結部材が汎用されている。この様な鉄
焼結部材については様々なものが知られており、例えば
強度,耐候性,耐摩耗性等の向上を図るという目的の下
に、主成分となる鉄粉に対し黒鉛や銅等の微粉末を混合
して焼結したものが知られている。また焼結部材の適用
範囲の拡大という観点から、焼結部材にはより高い靭性
や強度が要求される様になり、それを達成する手段とし
てNiやMo等の合金元素を添加して合金化する方法も
知られている。ところで粉末冶金法によって高強度の鉄
焼結体を得る代表的な方法としては、プレミックス法と
プレアロイ法が知られている。
Most of the sintered bodies currently manufactured by the powder metallurgy method are used as parts for automobiles, and in particular, iron sintered members are widely used. Various types of such iron sintered members are known. For example, with the purpose of improving strength, weather resistance, wear resistance, etc., graphite, copper, etc. are added to iron powder as the main component. It is known that the fine powders of 1. are mixed and sintered. Further, from the viewpoint of expanding the range of application of sintered members, higher toughness and strength are required for sintered members, and alloying elements such as Ni and Mo are added to form alloys as a means for achieving the toughness and strength. It is also known how to do it. By the way, as a typical method for obtaining a high-strength iron sintered body by the powder metallurgy method, a premix method and a prealloy method are known.

【0004】プレミックス法とは、鉄粉と金属粉または
合金粉(以下、添加金属粉ということがある)を均一に
混合し、これを圧粉成形した後加熱焼結して添加元素を
固溶させる方法である。この方法は成形加工が比較的簡
単であるという利点を有しているが、圧粉成形までの段
階で鉄粉中の添加金属粉が比重差によって分離・偏析し
たり、あるいは焼結時における添加金属粉の拡散が十分
に進まないという難点があり、焼結体の強度や寸法にば
らつきを生じるという品質上の問題がある。
In the premix method, iron powder and metal powder or alloy powder (hereinafter sometimes referred to as additive metal powder) are uniformly mixed, and this is compacted and then heated and sintered to solidify the additive element. It is a method of melting. This method has the advantage that the forming process is relatively simple, but the additive metal powder in the iron powder is separated / segregated due to the difference in specific gravity during the step up to powder compacting, or it is added during sintering. There is a problem in that the diffusion of the metal powder does not proceed sufficiently, and there is a problem in quality that the strength and dimensions of the sintered body vary.

【0005】これに対しプレアレイ法は、Ni,Cu,
Mo等の合金元素を予め鉄中に固溶させた合金鋼粉を使
用するものであり、プレミックス法で指摘した様な問題
は起こさない。ところがこの方法では、プレアロイ化し
て得られる合金鋼粉が鉄に比べて非常に硬質であるた
め、圧粉成形時の圧密化を十分に高めることができず、
高密度の焼結体が得られにくい。従って当該合金鋼の物
性を十分に生かすことができない。更にプレミックス法
に比べ工程が複雑で、組成の調整や成形加工が難しいと
いう問題がある。
On the other hand, the pre-array method uses Ni, Cu,
Since alloy steel powder in which an alloying element such as Mo is dissolved in iron in advance is used, the problem as pointed out in the premix method does not occur. However, in this method, the alloy steel powder obtained by pre-alloying is extremely hard as compared with iron, so it is not possible to sufficiently enhance the consolidation during powder compaction,
It is difficult to obtain a high-density sintered body. Therefore, the physical properties of the alloy steel cannot be fully utilized. Furthermore, the process is more complicated than the premix method, and there is a problem that composition adjustment and molding are difficult.

【0006】[0006]

【発明が解決しようとする課題】Cuは焼結時に溶融し
て焼結を促進し強度を向上させる元素であり、一方Ni
は焼結部材の強度を向上させる元素である。またこれら
元素の添加はいずれも焼入性を向上させる効果があると
されている。この為Fe−Cu−Ni焼結部材の需要は
大きいが、従来の技術では、上記したような問題点が各
々あるため、均質で優れた機械特性を有する焼結体は得
られていなかった。
Cu is an element that melts during sintering to accelerate sintering and improve strength, while Ni is used.
Is an element that improves the strength of the sintered member. Further, addition of any of these elements is said to have an effect of improving hardenability. For this reason, the demand for the Fe-Cu-Ni sintered member is great, but in the prior art, since each of the above-mentioned problems exists, a homogeneous sintered body having excellent mechanical properties has not been obtained.

【0007】本発明は上記のような従来技術の問題点に
着目してなされたものであって、その目的は、高密度且
つ高強度でしかも均質な焼結体を得ることのできる粉末
冶金用Fe−Cu−Ni複合粉末、その製造方法及びそ
の様な特性を有する焼結体を提供することにある。
The present invention has been made by paying attention to the problems of the prior art as described above, and its purpose is for powder metallurgy capable of obtaining a sintered body having high density, high strength and homogeneity. An object of the present invention is to provide an Fe-Cu-Ni composite powder, a method for producing the same, and a sintered body having such characteristics.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明は、粉末冶金用Fe−Cu−Ni複合粉
末であって、鉄粉表面にCu−Ni合金めっき層が形成
されたものであり、且つ該複合粉末の組成がCu:0.
1〜10重量%、Ni:1〜20重量%、残部Fe及び
不可避不純物から成ることに要旨を有する。かくして得
られるFe−Cu−Ni複合粉末を焼結して高密度且つ
高強度でしかも均質な焼結体が得られる。また本発明の
Fe−Cu−Ni複合粉末は、鉄粉表面に予めNi無電
解めっきを行った後にCu−Ni無電解めっきを行うこ
とにより容易に得ることができる。
The present invention, which has been able to solve the above-mentioned problems, is an Fe-Cu-Ni composite powder for powder metallurgy, in which a Cu-Ni alloy plating layer is formed on the surface of iron powder. And the composition of the composite powder is Cu: 0.
It has a gist that it is composed of 1 to 10% by weight, Ni: 1 to 20% by weight, and the balance Fe and unavoidable impurities. The Fe-Cu-Ni composite powder thus obtained is sintered to obtain a high-density, high-strength and homogeneous sintered body. The Fe-Cu-Ni composite powder of the present invention can be easily obtained by performing Ni electroless plating on the iron powder surface in advance and then performing Cu-Ni electroless plating.

【0009】[0009]

【作用】本発明者等は、優れた特性の焼結体を得られる
ような粉末冶金用粉末の構造に関して種々検討した結
果、予め鉄粉の表面にCu−Ni合金をめっきしたFe
−Cu−Ni複合粉末(以下「複合粉末」ということが
ある)を用いればよいということを見出した。この複合
粉末はCu−Ni合金が表面にめっきされているので、
従来のプリミックス法の持つ合金元素の偏析や拡散性の
問題を解決するものである。また、Cu−Ni合金層が
めっきという形で複合粉末の表面近傍に存在するので、
粉末全体を合金化する従来のプリアロイ法の粉末に比
べ、圧粉成形時の圧密化を十分に高めることができ、高
密度の焼結体を得ることができる。
The present inventors have made various studies on the structure of the powder for powder metallurgy so that a sintered body having excellent characteristics can be obtained, and as a result, the Fe powder obtained by previously plating the surface of the iron powder with the Cu--Ni alloy was used.
It has been found that a -Cu-Ni composite powder (hereinafter sometimes referred to as "composite powder") may be used. Since Cu-Ni alloy is plated on the surface of this composite powder,
It solves the problems of segregation of alloy elements and diffusivity of the conventional premix method. Further, since the Cu-Ni alloy layer exists in the vicinity of the surface of the composite powder in the form of plating,
Compared with the powder of the conventional pre-alloying method in which the entire powder is alloyed, the compaction during powder compaction can be sufficiently enhanced, and a high-density sintered body can be obtained.

【0010】従来より鉄粉表面にCu単味又は、Ni単
味の金属めっきを施すことは試みられてきた(呂戊辰:
防蝕メッキと化学メッキ,昭和36年2月,P416,
日刊工業新聞社等)。しかしながらこの場合、例えばC
uの添加量が増大するとCu−Growthと呼ばれる
異常膨張現象が発生し、それが大きな寸法変化として現
われるという問題があった。そこで本発明者等は種々検
討した結果Cu−Niを予め合金状態にして鉄粉にめっ
きすれば、Cu,Ni単味金属をめっきした粉末に比
べ、同じ重量割合でも膨張率が異なるということを見出
した。
Conventionally, it has been attempted to plate the surface of iron powder with Cu alone or Ni alone (Lu Tatsun:
Anticorrosion plating and chemical plating, February 1964, P416
Nikkan Kogyo Shimbun etc.). However, in this case, for example, C
When the amount of u added increases, an abnormal expansion phenomenon called Cu-Growth occurs, which causes a large dimensional change. Therefore, as a result of various studies, the present inventors have found that when Cu—Ni is alloyed in advance and plated on iron powder, the expansion coefficient is different even if the weight ratio is the same as that of powder plated with Cu and Ni plain metal. I found it.

【0011】この様な現象が生じる原因については次の
様に考えられる。即ち、Cuの単味金属の融点(又は液
相発生点)は1083℃であり、通常の焼結条件(11
20〜1130℃×30分)ではCuは溶融して鉄粉粒
子間に浸透して合金化することによってCu−Grow
thが発生するのであるが、Ni−Cu合金では融点
(又は液相発生点)が焼結温度より高く(1310
℃)、これらの合金が溶融せず固相拡散による合金化の
ために膨張は発生しないと考えられる。
The cause of such a phenomenon is considered as follows. That is, the melting point (or liquid phase generation point) of the pure Cu metal is 1083 ° C., and the normal sintering conditions (11
At 20 to 1130 ° C x 30 minutes), Cu melts and penetrates between iron powder particles to form an alloy, thereby Cu-Grow.
However, the melting point (or liquid phase generation point) is higher than the sintering temperature in the Ni-Cu alloy (1310).
It is believed that these alloys do not melt and expansion does not occur due to alloying by solid phase diffusion.

【0012】次に本発明のFe−Cu−Ni複合粉末の
組成についてその限定理由を述べる。まずCuは融点低
下及び強度向上の観点から含有させるものであるが、そ
の含有量は複合粉末全体に対して0.1〜10重量%の
範囲が好ましい。これは含有量が0.1重量%未満では
焼結体の強度改善効果が不十分であり、一方、10重量
%を超えると靭性が劣化するとともにCu−Growt
hによる焼結体寸法のバラツキを生じる恐れがあるから
である。
Next, the reasons for limiting the composition of the Fe-Cu-Ni composite powder of the present invention will be described. First, Cu is contained from the viewpoint of lowering the melting point and improving the strength, but the content thereof is preferably in the range of 0.1 to 10% by weight with respect to the entire composite powder. If the content is less than 0.1% by weight, the effect of improving the strength of the sintered body is insufficient. On the other hand, if the content exceeds 10% by weight, the toughness deteriorates and Cu-Growt.
This is because there is a possibility that variations in the size of the sintered body due to h may occur.

【0013】Niは靭性や焼入性を改善する為に含有さ
せるものであるが、その含有量は複合粉末全体に対して
1〜20重量%の範囲が好ましい。含有量が1重量%未
満では焼結体の靭性改善効果が不十分であり、一方20
重量%を超えるとそれ以上靭性改善効果が向上しないば
かりでなくコストアップとなる為である。
Ni is contained in order to improve toughness and hardenability, but the content is preferably in the range of 1 to 20% by weight based on the whole composite powder. If the content is less than 1% by weight, the effect of improving the toughness of the sintered body is insufficient.
This is because if the content exceeds 10% by weight, not only the effect of improving toughness is further improved but also the cost is increased.

【0014】次に本発明の複合粉末の製造方法について
述べる。鉄にCu−Ni合金をめっきする方法として
は、電解めっき,無電解めっき,気相めっき法等が挙げ
られるが、本発明ではめっき対象が通常平均粒子径約3
00μm以下の鉄粉であるので、特に無電解めっき法が
推奨される。これは、めっき浴,めっき条件を変えるこ
とによってCu−Ni合金めっきの組成の制御が容易で
あること、めっき工程が簡単でその設備も安価であり経
済的である等の理由による。
Next, a method for producing the composite powder of the present invention will be described. Examples of the method for plating the Cu-Ni alloy on iron include electrolytic plating, electroless plating, vapor-phase plating, and the like. In the present invention, the object of plating is usually an average particle size of about 3
Since the iron powder has a particle size of 00 μm or less, the electroless plating method is particularly recommended. This is because it is easy to control the composition of the Cu-Ni alloy plating by changing the plating bath and plating conditions, the plating process is simple, and the equipment is inexpensive and economical.

【0015】また本発明者等は種々検討した結果、無電
解めっき法を用いて本発明の複合粉末を製造する場合、
予め鉄粉表面にNiの無電解めっきを行った後にCu−
Ni合金の無電解めっきを行う必要があることを見出し
た。
Further, as a result of various studies by the present inventors, when the composite powder of the present invention is produced by using the electroless plating method,
After performing the electroless plating of Ni on the iron powder surface in advance, Cu-
It has been found that it is necessary to perform electroless plating of Ni alloy.

【0016】鉄粉の表面にCuやNiを単独でめっきす
る方法は、従来の無電解めっき技術を適用すればよい
が、これらの合金をめっきするにあたっては、CuとN
iのイオン化傾向に差があるため両者のめっき浴が基本
的に異なり、従来技術の組合せではその製造は困難であ
る。例えば、鉄粉の表面にCuを単独にめっきする場
合、硫酸銅の水溶液で撹拌しながら所定量の鉄粉を投入
することによって容易にめっきできる。また、鉄粉表面
にNiを単独にめっきするには塩化ニッケル+クエン酸
ナトリウムの水溶液中にヒドラジンを添加して還元する
いわゆる「化学めっき法」を採用すればそのNiめっき
量の管理等も容易に行うことができる。しかしながら、
本発明の複合粉末を製造する為には、単純に両者を組み
合せた方法は適切ではなく、鉄粉表面にまずNi無電解
めっきを施した後にCu−Ni合金無電解めっきを施す
必要があることを見出したものである。
The conventional electroless plating technique may be applied to the method of independently plating Cu or Ni on the surface of the iron powder. However, when plating these alloys, Cu and N are used.
Due to the difference in the ionization tendency of i, both plating baths are basically different, and it is difficult to manufacture them by the combination of the conventional techniques. For example, when the surface of iron powder is solely plated with Cu, plating can be easily performed by adding a predetermined amount of iron powder while stirring with an aqueous solution of copper sulfate. In addition, in order to plate Ni alone on the surface of iron powder, the so-called "chemical plating method" in which hydrazine is added to an aqueous solution of nickel chloride + sodium citrate to reduce the amount of Ni can be easily controlled. Can be done. However,
In order to produce the composite powder of the present invention, a method of simply combining the two is not appropriate, and it is necessary to first perform Ni electroless plating on the iron powder surface and then perform Cu-Ni alloy electroless plating. Is found.

【0017】尚、本発明のFe−Cu−Ni複合粉末の
粒度は特に限定されないが、緻密で均質な焼結体を得る
目的から、平均粒径で300μm以下であることが好ま
しい。これは平均粒径があまり大きくなると、焼結時の
合金化が悪化し、均一な組織が得られにくくなり、強
度,硬度等の特性のバラツキが生じるからである。
The particle size of the Fe-Cu-Ni composite powder of the present invention is not particularly limited, but for the purpose of obtaining a dense and homogeneous sintered body, the average particle size is preferably 300 μm or less. This is because if the average particle size becomes too large, alloying during sintering deteriorates, it becomes difficult to obtain a uniform structure, and variations in properties such as strength and hardness occur.

【0018】かくして得られたFe−Cu−Ni複合粉
末を常法に従って焼結することにより、高密度且つ高強
度でしかも焼結時の寸法精度のバラツキの少ない焼結体
を得ることができる。尚、焼結にあたり、例えば潤滑剤
等の各種添加剤を添加して焼結体の品質を更に高めるこ
とも勿論有効である。
By sintering the Fe-Cu-Ni composite powder thus obtained according to a conventional method, it is possible to obtain a sintered body having a high density and high strength and less variation in dimensional accuracy during sintering. Incidentally, it is of course effective to further improve the quality of the sintered body by adding various additives such as a lubricant during the sintering.

【0019】[0019]

【実施例】以下に実施例を挙げて本発明を更に詳細に説
明するが、下記実施例は本発明を制限するものではな
く、前・後記の趣旨を逸脱しない範囲で変更実施するこ
とは全て本発明の技術的範囲に包含される。 実施例1 NiCl2 +クエン酸アンモニウム+ヒドラジンの水溶
液を撹拌しながら所定量の鉄粉を投入して予めめっき反
応を起こさせNiめっき層を形成した後、所定量のCu
SO4 水溶液を添加して撹拌し、Cu:1.35重量
%,Ni:3.78重量%,残部FeのFe−Cu−N
i複合粉末を得た。得られた複合粉末の表面は金属光沢
を呈しており、また鉄粉表面にほぼ均一にCu−Ni合
金がめっきされていることが確認された。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and all modifications can be made without departing from the spirit of the preceding and the following. It is included in the technical scope of the present invention. Example 1 A predetermined amount of iron powder was added while stirring an aqueous solution of NiCl 2 + ammonium citrate + hydrazine to cause a plating reaction in advance to form a Ni plating layer, and then a predetermined amount of Cu was added.
SO 4 aqueous solution was added and stirred, and Cu: 1.35 wt%, Ni: 3.78 wt%, balance Fe: Fe—Cu—N
i composite powder was obtained. It was confirmed that the surface of the obtained composite powder had a metallic luster and that the surface of the iron powder was almost uniformly plated with the Cu—Ni alloy.

【0020】比較例1 Niの化学めっき用の無電解めっき浴であるNiCl2
+クエン酸アンモニウム+ヒドラジンの水溶液中に実施
例1と同量のCuSO4 添加した後、撹拌しながら鉄粉
を投入してめっきを行った。その結果、Niは鉄粉表面
にめっきされたが、Cuはこれらとは分離された状態で
金属Cuの塊となっておりCu−Ni合金めっき鉄粉は
得られなかった。尚、各試薬及び原料の添加量は実施例
1に準じた。
Comparative Example 1 NiCl 2 which is an electroless plating bath for chemical plating of Ni
After adding CuSO 4 in the same amount as in Example 1 to an aqueous solution of + ammonium citrate + hydrazine, iron powder was added while stirring to perform plating. As a result, Ni was plated on the surface of the iron powder, but Cu was a mass of metallic Cu in a state of being separated from these, and Cu—Ni alloy-plated iron powder could not be obtained. The amount of each reagent and raw material added was in accordance with Example 1.

【0021】比較例2 NiCl2 +クエン酸アンモニウムの水溶液にCuSO
4 水溶液を添加した後、撹拌しながら鉄粉とヒドラジン
を同時に投与した。その結果鉄粉と金属Ni及び金属C
uが各々分離した塊で存在し、Cu−Niめっき鉄粉は
得られなかった。
Comparative Example 2 CuSO was added to an aqueous solution of NiCl 2 + ammonium citrate.
After adding 4 aqueous solutions, iron powder and hydrazine were simultaneously administered with stirring. As a result, iron powder and metallic Ni and metallic C
u was present in each separated lump, and Cu-Ni plated iron powder was not obtained.

【0022】実施例2 高純度純鉄粉(C<0.01%(重量%、以下同じ),
Mn<0.10%,P<0.01%,S<0.01%,
O<0.15%)を母粉にして、実施例1に準じた方法
でCu−Ni合金無電解めっきを施し、表1に示す組成
のFe−Cu−Ni複合粉末を作成した。尚、従来のプ
リミックス法で作製した複合粉末を比較例として挙げる
(No.1)。作製したNo.5(本発明例)の複合粉末とN
o.1(比較例)の複合粉末から各々30ケずつサンプリ
ングして、Cu及びNiの分析を行い分析値の標準偏差
を求めた結果を図1に示す。本発明例の複合粉末No.5
は、比較例No.1に比べ成分のバラツキが非常に少な
い。これは本発明例が鉄粉に対する付着性及び均一性に
優れていることを示している。
Example 2 High-purity pure iron powder (C <0.01% (% by weight, hereinafter the same),
Mn <0.10%, P <0.01%, S <0.01%,
O <0.15%) was used as the base powder, and Cu—Ni alloy electroless plating was performed by the method according to Example 1 to prepare Fe—Cu—Ni composite powder having the composition shown in Table 1. Incidentally, a composite powder produced by the conventional premix method is given as a comparative example (No. 1). Produced No. 5 (inventive example) composite powder and N
FIG. 1 shows the results of standard deviation of the analytical values obtained by sampling 30 pieces each from the composite powder of o.1 (Comparative Example) and analyzing Cu and Ni. Composite powder No. 5 of the present invention
Has much less variation in components than Comparative Example No.1. This shows that the examples of the present invention are excellent in adhesion to iron powder and uniformity.

【0023】次に得られた複合粉末に潤滑剤としてステ
アリン酸亜鉛粉末を0.75%添加して混合した後、金
型を用いて6トン/cm2 の圧力で、幅10mm×高さ
10mm×長さ55mmの角棒及び内径24mm×外径
64mm×高さ17mmのドーナッツ状に圧粉成形した
後、窒素ガス雰囲気中で1300℃×50分間焼結して
焼結体を得た。
Next, 0.75% of zinc stearate powder as a lubricant was added to the obtained composite powder and mixed, and then the pressure was 6 ton / cm 2 using a mold, and the width was 10 mm and the height was 10 mm. A rectangular rod having a length of 55 mm and an inner diameter of 24 mm, an outer diameter of 64 mm, and a height of 17 mm were pressed and molded into a donut shape, and then sintered in a nitrogen gas atmosphere at 1300 ° C. for 50 minutes to obtain a sintered body.

【0024】得られた角棒状焼結体より平行部の直径6
mmの引張試験片を切り出して引張強さを調べ、また角
棒状焼結体を用いて、ノッチなしで常温にてシャルピー
衝撃値を調べ表1に示す結果を得た。またドーナッツ状
焼結体のNo.1及びNo.5については、焼結前後の寸法を
測定(n=30)し次式により寸法変化率の標準偏差を
求め、図2に示す結果を得た。 寸法変化率(%)=(焼結後試験片の外径−焼結前試験
片の外径)×100/焼結前試験片の外径
From the obtained rectangular rod-shaped sintered body, the diameter of the parallel portion was 6
The tensile strength was examined by cutting out a tensile test piece of mm, and the Charpy impact value was examined at room temperature without notch using a rectangular rod-shaped sintered body, and the results shown in Table 1 were obtained. Regarding No. 1 and No. 5 of the donut-shaped sintered body, the dimensions before and after sintering were measured (n = 30), and the standard deviation of the dimensional change rate was calculated by the following formula, and the results shown in FIG. 2 were obtained. . Dimensional change rate (%) = (outer diameter of test piece after sintering-outer diameter of test piece before sintering) x 100 / outer diameter of test piece before sintering

【0025】[0025]

【表1】 [Table 1]

【0026】表1及び図2から明らかなように、本発明
の規定要件を満たす例(No.4〜13)では比較例(No.
1〜3)よりも寸法変化率のバラツキが小さく、機械強
度も強い。これは本発明に係るFe−Cu−Ni複合粉
末においては鉄粉表面にCu−Ni合金が均一に付着し
ており、更に焼結時のCu及びNiの拡散性が優れてい
ることを示している。
As is clear from Table 1 and FIG. 2, the comparative examples (No. 4 to 13) satisfy the requirements of the present invention.
The variation in dimensional change is smaller and the mechanical strength is stronger than those in 1 to 3). This shows that in the Fe-Cu-Ni composite powder according to the present invention, the Cu-Ni alloy is uniformly attached to the iron powder surface, and further, the diffusivity of Cu and Ni during sintering is excellent. There is.

【0027】[0027]

【発明の効果】本発明は以上のように構成されており、
鉄粉表面にCu−Ni合金めっきを施すことによって鉄
粉にCu−Ni合金が均一に付着した粉末冶金用のFe
−Cu−Ni複合粉末を安価で効率良く製造することが
できる。またかくして得られる複合粉末は圧縮性におい
ても優れたものであり、且つ焼結によりCu−Ni合金
がFeと相互に拡散して均一な合金となるので、高密度
で寸法安定性が高く且つ高強度の焼結体を与える。
The present invention is configured as described above,
Fe for powder metallurgy in which the Cu-Ni alloy is uniformly attached to the iron powder by applying Cu-Ni alloy plating to the surface of the iron powder
The -Cu-Ni composite powder can be manufactured inexpensively and efficiently. The composite powder thus obtained is also excellent in compressibility, and since the Cu-Ni alloy diffuses mutually with Fe into a uniform alloy by sintering, it has a high density, high dimensional stability, and high dimensional stability. It gives a strong sintered body.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で得たFe−Cu−Ni複合粉末のCu
及びNiの分析値の標準偏差を対比して示すグラフであ
る。
FIG. 1 is Cu of an Fe—Cu—Ni composite powder obtained in an example.
5 is a graph showing the standard deviations of the analysis values of Ni and Ni in contrast.

【図2】実施例で得たFe−Cu−Ni複合粉末を用い
た焼結体の焼結時における寸法変化率の標準偏差を対比
して示すグラフである。
FIG. 2 is a graph showing, in comparison, standard deviations of dimensional change rates during sintering of a sintered body using the Fe—Cu—Ni composite powder obtained in the example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐久間 均 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内 (72)発明者 井硲 弘 兵庫県神戸市灘区灘浜東町2番地 株式会 社神戸製鋼所神戸製鉄所内 (72)発明者 藤原 和雄 兵庫県神戸市北区松が枝町3丁目4−6 (72)発明者 大屋敷 昭男 兵庫県加古郡稲美町中村451−13 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor, Hitoshi Sakuma, 2 Nadahamahigashi-cho, Nada-ku, Kobe-shi, Hyogo Stock Company Kobe Steel Works, Kobe Steel Works (72) Inventor, Hiroshi Iso 2 Nadahama-higashi, Nada-ku, Kobe-shi, Hyogo Address Stock Company Kobe Steel Works Kobe Steel Works (72) Inventor Kazuo Fujiwara 3-4-6 Matsugaeda-cho, Kita-ku, Kobe-shi, Hyogo Prefecture (72) Akio Oyashiki 453-1-13 Nakamura, Inami-cho, Kako-gun

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉末冶金用Fe−Cu−Ni複合粉末で
あって、鉄粉表面にCu−Ni合金めっき層が形成され
たものであり、且つ該複合粉末の組成がCu:0.1〜
10重量%、Ni:1〜20重量%、残部Fe及び不可
避不純物から成ることを特徴とする粉末冶金用Fe−C
u−Ni複合粉末。
1. An Fe-Cu-Ni composite powder for powder metallurgy, wherein a Cu-Ni alloy plating layer is formed on the surface of iron powder, and the composition of the composite powder is Cu: 0.1-0.1.
Fe-C for powder metallurgy characterized by comprising 10% by weight, Ni: 1 to 20% by weight, the balance Fe and unavoidable impurities.
u-Ni composite powder.
【請求項2】 予め前記鉄粉表面にNi無電解めっきを
行った後Cu−Ni合金無電解めっきを行うことを特徴
とする粉末冶金用Fe−Cu−Ni複合粉末の製造方
法。
2. A method for producing an Fe—Cu—Ni composite powder for powder metallurgy, which comprises performing electroless plating of Ni on the surface of the iron powder in advance and then electroless plating of a Cu—Ni alloy.
【請求項3】 請求項1に記載の複合粉末を用いて焼結
したものである焼結体。
3. A sintered body obtained by sintering using the composite powder according to claim 1.
JP4181249A 1992-07-08 1992-07-08 Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder Withdrawn JPH0625793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4181249A JPH0625793A (en) 1992-07-08 1992-07-08 Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4181249A JPH0625793A (en) 1992-07-08 1992-07-08 Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder

Publications (1)

Publication Number Publication Date
JPH0625793A true JPH0625793A (en) 1994-02-01

Family

ID=16097407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4181249A Withdrawn JPH0625793A (en) 1992-07-08 1992-07-08 Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder

Country Status (1)

Country Link
JP (1) JPH0625793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020224A1 (en) 1998-10-08 2000-04-13 Matsushita Electric Industrial Co., Ltd. Thermal transfer recording image receiving layer and thermal transfer recording image receiver
WO2000023631A1 (en) * 1998-10-16 2000-04-27 Eurotungstene Poudres Micronic pre-alloyed metal powder based on three-dimensional transition metal
CN103938081A (en) * 2013-12-09 2014-07-23 谢廷声 Nickel-copper-iron alloy used for steel making and a preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020224A1 (en) 1998-10-08 2000-04-13 Matsushita Electric Industrial Co., Ltd. Thermal transfer recording image receiving layer and thermal transfer recording image receiver
WO2000023631A1 (en) * 1998-10-16 2000-04-27 Eurotungstene Poudres Micronic pre-alloyed metal powder based on three-dimensional transition metal
CN1130468C (en) * 1998-10-16 2003-12-10 欧罗钨粉公司 Micronic pre-alloyed metal powder based on three dimensional transition metal
CN103938081A (en) * 2013-12-09 2014-07-23 谢廷声 Nickel-copper-iron alloy used for steel making and a preparation method

Similar Documents

Publication Publication Date Title
EP2659014B1 (en) Iron based powders for powder injection molding
US4092223A (en) Copper coated, iron-carbon eutectic alloy powders
US6815066B2 (en) Composite material containing tungsten, tin and organic additive
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
EP0813617A1 (en) Stainless steel powders and articles produced therefrom by powder metallurgy
US4090874A (en) Method for improving the sinterability of cryogenically-produced iron powder
US3551991A (en) Infiltrated cemented carbides
US2001134A (en) Metal powder
US4060414A (en) Copper coated iron-carbon eutectic alloy powders
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
EP0200691B1 (en) Iron-based powder mixture for a sintered alloy
US4430295A (en) Articles produced from iron powder compacts containing hypereutectic copper phosphide powder
JPH0625793A (en) Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
US4603028A (en) Method of manufacturing sintered components
US6551373B2 (en) Copper infiltrated ferro-phosphorous powder metal
US4321091A (en) Method for producing hot forged material from powder
JP2910326B2 (en) Mixed powder for powder metallurgy and its sintered body
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP2695289B2 (en) Method for producing Al alloy mixed powder and Al alloy sintered body
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
EP1692320B1 (en) Methods of preparing high density powder metallurgy parts by iron based infiltration

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005