JPH06256869A - Cylindrical product made of fiber-reinforced metal - Google Patents
Cylindrical product made of fiber-reinforced metalInfo
- Publication number
- JPH06256869A JPH06256869A JP4130493A JP4130493A JPH06256869A JP H06256869 A JPH06256869 A JP H06256869A JP 4130493 A JP4130493 A JP 4130493A JP 4130493 A JP4130493 A JP 4130493A JP H06256869 A JPH06256869 A JP H06256869A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- reinforced metal
- reinforced
- cylindrical product
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、異方性が小さく機械的
特性の向上と品質の安定を図る繊維強化金属製円筒製品
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced metal cylindrical product which has a small anisotropy, improves mechanical properties and stabilizes quality.
【0002】[0002]
【従来の技術】従来、繊維強化金属製円筒製品の製造方
法として、たとえば、特公平3−13943号公報に記
載されているような熱間静水圧成形方法や、特開昭61
−249660号公報および特開昭62−174340
号公報に記載されているような溶湯加圧含浸方法が用い
られている。2. Description of the Related Art Heretofore, as a method for producing a fiber-reinforced metal cylindrical product, for example, a hot isostatic pressing method as described in Japanese Patent Publication No. 3-13943 or JP-A-61-61.
-249660 and JP-A-62-174340.
A molten metal pressure impregnation method as described in Japanese Patent Application Laid-Open No. 2003-242242 is used.
【0003】上記熱間静水圧成形方法は、金属筒状の外
側カプセルと内側カプセルからなるカプセル装置を用い
て、外側カプセルと内側カプセルの間に、強化繊維にマ
トリックス金属を含浸したプリフォーム材料を配置し、
カプセル装置の両端面を閉じ、真空排気した後、外部か
ら加熱加圧処理して繊維強化金属製円筒製品を成形する
ものである。The above-mentioned hot isostatic pressing method uses a capsule device composed of a metal cylindrical outer capsule and an inner capsule, and a preform material in which reinforcing fibers are impregnated with a matrix metal is provided between the outer capsule and the inner capsule. Place and
After closing both end faces of the capsule device and evacuating it, the fiber reinforced metal cylindrical product is molded by heat and pressure treatment from the outside.
【0004】上記溶湯加圧含浸方法は、連続した長さの
補強繊維を樹脂浴に通し、樹脂を付着して切断すること
で形成される長繊維を、加熱することにより樹脂を炭素
化して多孔性集合体を成形し、この多孔性集合体の上に
補強繊維または織物を巻き付けてプリフォーム材を形成
し、このプリフォーム材に溶湯金属の高圧鋳造を行うこ
とで繊維強化金属製円筒製品を成形するものである。In the above-mentioned molten metal pressure impregnation method, continuous fibers are passed through a resin bath, and the long fibers formed by adhering and cutting the resin are heated to carbonize the resin to form a porous structure. To form a preform material by winding a reinforcing fiber or a woven fabric on the porous aggregate, and performing high-pressure casting of molten metal on this preform material to form a fiber-reinforced metal cylindrical product. It is what is molded.
【0005】さらに、母材と同材質の芯材に強化繊維を
巻き付け、溶融金属を噴霧した後急冷して円筒体を成形
する方法は、たとえば、特開平2−70369号公報に
記載されている。Further, a method of winding a reinforcing fiber around a core material of the same material as the base material, spraying molten metal, and then rapidly cooling it to form a cylindrical body is described in, for example, Japanese Patent Application Laid-Open No. 2-70369. .
【0006】[0006]
【発明が解決しようとする課題】熱間静水圧成形方法に
より成形された繊維強化金属製円筒製品は、繊維強化金
属素材の体積収縮率が大きいために、直径50〜60m
mで軸方向(0度)強化のものに限られており、それよ
り直径が大きくかつ肉厚が厚く周方向(±45度、90
度等)強化の繊維強化金属製円筒製品を成形する場合に
は、強化繊維に破断が発生して製品の所望の強度を確保
することができないことがある。The fiber reinforced metal cylindrical product molded by the hot isostatic pressing method has a diameter of 50 to 60 m because the volumetric shrinkage of the fiber reinforced metal material is large.
m is limited to those reinforced in the axial direction (0 degree), and the diameter is larger and the wall thickness is thicker than that in the circumferential direction (± 45 degrees, 90 degrees).
When molding a reinforced fiber-reinforced metal cylindrical product, breakage may occur in the reinforced fiber and the desired strength of the product may not be secured.
【0007】また、溶湯加圧含浸方法により成形された
繊維強化金属製円筒製品は、軸方向(0度)、周方向
(±45度,90度等)の強化が可能で、形状、大き
さ、繊維強化方法の自由度は高くなるが、母材がアルミ
ニウムの場合、アルミニウムの融点以上の温度と760
気圧という高圧で加圧して複合化するため、溶融金属に
よる繊維の強度劣化や溶湯の流れによる強化繊維のずれ
が発生して製品の所望の強度を確保することができない
ことがある。The fiber-reinforced metal cylindrical product molded by the molten metal pressure impregnation method can be reinforced in the axial direction (0 degree) and the circumferential direction (± 45 degrees, 90 degrees, etc.), and has a shape and a size. However, the degree of freedom of the fiber reinforcement method is high, but when the base material is aluminum, a temperature higher than the melting point of aluminum and 760
Since pressure is applied at a high pressure of atmospheric pressure to form a composite, the strength of the fiber may be deteriorated by the molten metal and the reinforcing fiber may be displaced due to the flow of the molten metal, so that the desired strength of the product may not be secured.
【0008】さらに、強化繊維を巻き付けた後、溶融金
属を噴霧し急冷する技術手段は、周方向(90度)強化
の繊維強化金属製円筒製品を成形することはできても、
繊維の固定方法の関係から軸方向(0度)強化の繊維強
化金属製円筒製品を成形することは困難である。Further, although the technical means of spraying the molten metal and then quenching after winding the reinforcing fiber can form a cylindrical product made of the fiber-reinforced metal which is reinforced in the circumferential direction (90 degrees),
Due to the method of fixing fibers, it is difficult to form a fiber-reinforced metal cylindrical product reinforced in the axial direction (0 degree).
【0009】本発明は上記した点に鑑みてなされたもの
で、繊維強化金属素材の成形時の体積収縮率による径お
よび肉厚の制限、大きい異方性および強化繊維の劣化や
ずれ発生をなくした繊維強化金属製円筒製品を提供する
ことを目的とする。The present invention has been made in view of the above points, and eliminates restrictions on diameter and wall thickness due to volumetric shrinkage during molding of fiber-reinforced metal materials, large anisotropy, and deterioration or misalignment of reinforcing fibers. An object of the present invention is to provide a fiber-reinforced metal cylindrical product.
【0010】[0010]
【課題を解決するための手段】本発明の繊維強化金属製
円筒製品は、化学蒸着した炭化けい素強化繊維と溶射ア
ルミ合金からなる繊維強化金属プリフォームを所定の形
状に切断して繊維配向が軸方向0度に整列配置してマン
ドレルに装着し610〜630度、圧力域30〜50k
g/cm2 の処理条件で熱間静水圧成形方法により成形
した心材と、この心材の表面に化学蒸着した炭化けい素
系の強化繊維を繊維配向が軸方向(90度)になる様に
フィラメントワインディング法で巻き付けアルミニウム
合金をプラズマ溶射して強化繊維を固定した表面層とか
ら構成される。The fiber-reinforced metal cylindrical product of the present invention has a fiber orientation obtained by cutting a fiber-reinforced metal preform made of chemically vapor-deposited silicon carbide-reinforced fiber and a sprayed aluminum alloy into a predetermined shape. Aligned with 0 degree in the axial direction and attached to the mandrel, 610 to 630 degrees, pressure range 30 to 50k
A core material formed by a hot isostatic pressing method under a processing condition of g / cm 2 and a silicon carbide-based reinforcing fiber chemically vapor-deposited on the surface of the core material, so that the fiber orientation is in the axial direction (90 degrees). It is composed of a surface layer having a reinforcing fiber fixed by plasma spraying an aluminum alloy wound by a winding method.
【0011】[0011]
【作用】本発明の繊維強化金属製円筒製品は、化学蒸着
した炭化けい素系の強化繊維で軸方向および周方向を強
化するので、成形時の体積収縮率が大きい繊維強化金属
素材を用いても、異方性が小さく、かつ、強化繊維の劣
化や破断がない大径薄肉の製品となる。Since the fiber-reinforced metal cylindrical product of the present invention is reinforced in the axial direction and the circumferential direction with the chemically vapor-deposited silicon carbide-based reinforcing fiber, a fiber-reinforced metal material having a large volume shrinkage ratio during molding is used. Also has a small anisotropy and is a large-diameter thin-walled product with no deterioration or breakage of the reinforcing fiber.
【0012】[0012]
【実施例】以下本発明の実施例を図面につき説明する。
図1は本発明による繊維強化金属製円筒製品の横断面
図、図2は本発明による繊維強化金属製円筒製品の縦断
面図を示す。この繊維強化金属製円筒製品1は、内側に
位置する心材2と外側に位置する表面層3から構成され
ている。上記心材2に設けた化学蒸着した炭化けい素系
の強化繊維2aは、繊維配向が軸方向0度に整列配置さ
れている。また、上記表面層3に設けた化学蒸着した炭
化けい素系の強化繊維3aは、繊維配向が軸方向90度
に整列配置されている。Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of a fiber-reinforced metal cylindrical product according to the present invention, and FIG. 2 is a vertical cross-sectional view of a fiber-reinforced metal cylindrical product according to the present invention. This fiber-reinforced metal cylindrical product 1 is composed of a core material 2 located inside and a surface layer 3 located outside. The chemical vapor-deposited silicon carbide-based reinforcing fibers 2a provided on the core material 2 are arranged with their fiber orientations aligned at 0 degree in the axial direction. Further, the chemical vapor deposited silicon carbide-based reinforcing fibers 3a provided on the surface layer 3 are arranged so that their fiber orientations are aligned at 90 degrees in the axial direction.
【0013】図3および図4は、化学蒸着した炭化けい
素系の強化繊維2aを繊維配向が軸方向0度に整列配置
した心材2を成形するための成形治具を示す。成形治具
4は、成形治具本体5とこの成形治具本体5の内部に同
軸に配置されるインナーマンドレル6およびアウターマ
ンドレル7と、アウターマンドレル7の外側に配置され
るスペーサ8とを有し、インナーマントレル6は、薄肉
加工した金属または金属箔により形成され、アウターマ
ンドレル7およびスペーサ8は、離型の際の作業性を考
慮して2分割されている。成形治具本体5の両端に設け
られるサイドクロージャ10は、通常の溶接手段により
成形治具本体5に溶着される。このサイドクロージャ1
0には、成形治具本体5の内部空間を真空にするための
真空吸引パイプ11が設けられている。FIGS. 3 and 4 show a molding jig for molding a core material 2 in which chemically vapor-deposited silicon carbide-based reinforcing fibers 2a are aligned and arranged in a fiber orientation of 0 degree in the axial direction. The molding jig 4 has a molding jig main body 5, an inner mandrel 6 and an outer mandrel 7 coaxially arranged inside the molding jig main body 5, and a spacer 8 arranged outside the outer mandrel 7. The inner mantrel 6 is formed of a thin-walled metal or metal foil, and the outer mandrel 7 and the spacer 8 are divided into two in consideration of workability at the time of mold release. The side closures 10 provided at both ends of the forming jig body 5 are welded to the forming jig body 5 by a normal welding means. This side closure 1
At 0, a vacuum suction pipe 11 for evacuating the internal space of the molding jig body 5 is provided.
【0014】しかして、心材2を成形するには、化学蒸
着した炭化けい素系の強化繊維2aを図示しないドラム
に繊維配向が軸方向(90度)に整列した状態で巻き付
けアルミニウム合金を溶射して形成される円筒状繊維強
化金属プリフォームより所定の形状に切断した繊維強化
金属素材9を、強化繊維2aの繊維配向が軸方向0度に
整列配置するようにインナーマンドレル6の外面に巻き
付け、この繊維強化金属素材9の外側に2分割されてい
るアウターマンドレル7およびスペーサ8を装着して組
み立て体を形成し、この組み立て体を、成形治具本体5
の内部に装入した後、成形治具本体5の両端にサイドク
ロージャ10を装着し、成形治具本体5とサイドクロー
ジャ10を溶接手段により互いに溶着することで、成形
治具本体5の内部空間を密閉状態にする。To form the core material 2, however, the chemically vapor-deposited silicon carbide-based reinforcing fibers 2a are wound around a drum (not shown) with the fiber orientation aligned in the axial direction (90 degrees), and an aluminum alloy is sprayed. A fiber reinforced metal material 9 cut into a predetermined shape from a cylindrical fiber reinforced metal preform formed by is wound around the outer surface of the inner mandrel 6 so that the fiber orientation of the reinforced fibers 2a is aligned in the axial direction of 0 degree. An outer mandrel 7 and a spacer 8 which are divided into two parts are attached to the outside of the fiber reinforced metal material 9 to form an assembly, and the assembly is formed into a molding jig body 5
After being placed inside the molding jig body 5, side closures 10 are attached to both ends of the molding jig body 5, and the molding jig body 5 and the side closures 10 are welded to each other by welding means, thereby forming an internal space of the molding jig body 5. To be sealed.
【0015】ついで、サイドクロージャ10に設けた真
空吸引パイプ11を、図示しない真空形成装置に接続
し、成形治具本体5の内部空間の空気を、真空度が1×
10-2torr程度になるまで真空引きする。そして、
この真空引きされた成形治具4を、図示しない熱間静水
圧成形装置の内部に配置し、所定の加圧加熱処理するこ
とで行う。この加圧加熱処理条件は、図5に示すよう
に、温度域610〜630度、圧力域30〜50kg/
cm2 である。この加圧加熱処理条件であれば、母材で
あるアルミニウム合金が溶融して流動することがなく、
低圧での複合化も可能となる。Next, the vacuum suction pipe 11 provided on the side closure 10 is connected to a vacuum forming device (not shown), and the air in the internal space of the molding jig body 5 has a vacuum degree of 1 ×.
Evacuate to about 10 -2 torr. And
This vacuumed forming jig 4 is placed inside a hot isostatic pressing device (not shown) and subjected to a predetermined pressurizing and heating treatment. As shown in FIG. 5, the pressure heat treatment conditions are temperature range 610 to 630 degrees and pressure range 30 to 50 kg /
cm 2 . Under this pressure heat treatment condition, the aluminum alloy as the base material does not melt and flow,
It is also possible to combine at low pressure.
【0016】成形された心材2を成形治具4から取り出
すには、成形治具本体5に溶接されたサイドクロージャ
10を取り外し、成形治具本体5から組み立て体を油圧
ハンドプレス等を用いて抜き出す。そして、抜き出した
組み立て体から2分割されているアウターマンドレル7
およびスペーサ8を取り外し、ついで、成形された心材
2からインナーマンドレル6を取り外すことで行うが、
成形された心材2とインナーマンドレル6は、素材の熱
膨張の差で互いに密着していないので、インナーマンド
レル6にハンドソー等で切れ目を入れることで、インナ
ーマンドレル6は成形された心材2から簡単に取り外さ
れる。To take out the molded core material 2 from the molding jig 4, the side closure 10 welded to the molding jig body 5 is removed, and the assembly is extracted from the molding jig body 5 by using a hydraulic hand press or the like. . Then, the outer mandrel 7 which is divided into two parts from the extracted assembly.
And the spacer 8 is removed, and then the inner mandrel 6 is removed from the molded core material 2.
Since the molded core material 2 and the inner mandrel 6 are not in close contact with each other due to the difference in thermal expansion of the materials, the inner mandrel 6 can be easily cut from the molded core material 2 by making a cut in the inner mandrel 6 with a hand saw or the like. Removed.
【0017】図6および図7は、心材2の外側への表面
層3の成形方法を示す。成形された円筒形心材2は、ア
ルミニウム溶射兼用治具12の外面に装着されるが、円
筒形心材2の強化繊維2aは、繊維配向が円筒形心材2
の軸方向0度であるから、アルミニウム溶射兼用治具1
2に対しても同様に繊維配向は軸方向0度である。つぎ
に、ボビン13に巻かれた化学蒸着した炭化けい素系の
強化繊維3aの自由端をテンショナー14を介して円筒
形心材2の端部に固定し、フィラメントワインディング
法を用いて、アルミニウム溶射兼用治具12を回転させ
るとともに、これに同調した速度でテンショナー14を
アルミニウム溶射兼用治具12の軸線方向に移動させる
ことで、強化繊維3aを心材2に巻き付ける。この場
合、強化繊維3aは円筒形心材2の軸方向に対してほぼ
90度の方向に位置している。6 and 7 show a method of forming the surface layer 3 on the outer side of the core material 2. The molded cylindrical core material 2 is mounted on the outer surface of the aluminum spraying / combining jig 12, and the reinforcing fibers 2a of the cylindrical core material 2 have the fiber orientation of the cylindrical core material 2
Since it is 0 degrees in the axial direction, the aluminum spraying jig 1
Similarly for 2, the fiber orientation is 0 degrees in the axial direction. Next, the free end of the chemically vapor-deposited silicon carbide-based reinforcing fiber 3a wound around the bobbin 13 is fixed to the end of the cylindrical core material 2 through the tensioner 14, and the aluminum winding is also used by the filament winding method. The reinforcing fiber 3a is wound around the core material 2 by rotating the jig 12 and moving the tensioner 14 in the axial direction of the aluminum spraying jig 12 at a speed synchronized with the rotation of the jig 12. In this case, the reinforcing fibers 3a are located in a direction of approximately 90 degrees with respect to the axial direction of the cylindrical core material 2.
【0018】ついで、強化繊維3aを心材2に巻き付け
た組み立て体は、図8に示すように、図示しない溶射チ
ャンバー内のプラズマ溶射装置15に対向するように配
置され、アルミニウム溶射兼用治具12を回転させると
ともに、アルミニウム溶射兼用治具12回転速度に同調
した速度でプラズマ溶射装置15を横移動させ、プラズ
マ溶射装置15からアルミニウム合金16を心材2の外
面に溶射することで、心材2の外面に強化繊維3aを含
む等しい厚さのアルミニウム合金層3が形成され、強化
繊維の劣化や破断のない周方向の強化が可能となる。こ
のような強化繊維3aの心材2への巻き付けとアルミニ
ウム合金16の強化繊維3aへの溶射は、交互に必要回
数行なわれることで、所望の厚さの周方向強化層が形成
され、周方向及び軸方向に繊維強化されることにより、
異方性が小さく、加圧や加熱による繊維の劣化や破断の
ない、繊維強化金属製円筒製品が製作できる。Next, as shown in FIG. 8, the assembly in which the reinforcing fibers 3a are wound around the core material 2 is arranged so as to face the plasma spraying device 15 in the spraying chamber (not shown), and the jig 12 for aluminum spraying is also used. While rotating, the plasma spraying device 15 is laterally moved at a speed that is synchronized with the rotation speed of the aluminum spraying jig 12, and the aluminum alloy 16 is sprayed from the plasma spraying device 15 onto the outer surface of the core material 2. The aluminum alloy layer 3 having the same thickness including the reinforcing fibers 3a is formed, and the reinforcing in the circumferential direction without deterioration or breakage of the reinforcing fibers becomes possible. Such winding of the reinforcing fibers 3a around the core material 2 and thermal spraying of the aluminum alloy 16 onto the reinforcing fibers 3a are alternately performed a required number of times to form a circumferential reinforcing layer having a desired thickness. By being fiber reinforced in the axial direction,
It is possible to manufacture a fiber-reinforced metal cylindrical product which has a small anisotropy and is free from deterioration or breakage of fibers due to pressurization or heating.
【0019】このように、繊維配列を0度配向にするこ
とで、HIP(熱間静水圧成形)による、心材の減容化
による繊維の破断等がなく、周方向は、Al溶射による
ので、繊維にかかる負荷が減り、全体として、異方性の
少ない製品が得られる。As described above, by orienting the fiber array at 0 degree, there is no breakage of the fiber due to volume reduction of the core material due to HIP (hot isostatic pressing), and Al circumferential thermal spraying is performed. The load on the fibers is reduced and a product with less anisotropy is obtained as a whole.
【0020】図9は周方向強化層3の緻密化を行うため
の熱間静水圧成形方法に用いる外側加圧治具を示す。こ
の外側加圧治具20は、外側加圧用マンドレル21と、
この外側加圧用マンドレル21を覆うステンレスバック
22と、外側加圧用マンドレル21の両端部に設けられ
たシール部材23とを備え、外側加圧用マンドレル21
の中心部には真空吸引パイプ24が連結されている。FIG. 9 shows an outer pressing jig used in the hot isostatic pressing method for densifying the circumferential reinforcing layer 3. The outer pressing jig 20 includes an outer pressing mandrel 21 and
An outer pressure mandrel 21 is provided with a stainless steel bag 22 covering the outer pressure mandrel 21 and seal members 23 provided at both ends of the outer pressure mandrel 21.
A vacuum suction pipe 24 is connected to the central portion of the.
【0021】しかして、アルミニウム合金層3を緻密化
するには、外側加圧用マンドレル21に繊維強化金属製
円筒製品1を装着し、この繊維強化金属製円筒製品1を
覆うようにステンレスバック22を被せ、ステンレスバ
ック22の両端部をシール部材23を介して外側加圧用
マンドレル21に密着し、ステンレスバック22と外側
加圧用マンドレル21との間に形成される空間を、図示
しない真空形成装置に接続された真空吸引パイプ24に
より真空度が1×10-2torr程度になるように真空
引きする。そして、この真空引きした外側加圧装置20
を熱間静水圧成形装置に装着し加圧加熱処理することで
行う。この加圧加熱処理条件は、温度域500〜550
度、圧力域50kg/cm2 であり、前述した加圧加熱
処理条件より低い温度域であり、強化繊維3aの劣化を
防止するようにしている。To densify the aluminum alloy layer 3, however, the fiber-reinforced metal cylindrical product 1 is mounted on the outer pressure mandrel 21, and the stainless steel back 22 is covered so as to cover the fiber-reinforced metal cylindrical product 1. The both ends of the stainless back 22 are covered with the sealing member 23 so as to be in close contact with the outer pressure mandrel 21, and the space formed between the stainless back 22 and the outer pressure mandrel 21 is connected to a vacuum forming device (not shown). The vacuum suction pipe 24 is evacuated to a degree of vacuum of about 1 × 10 -2 torr. Then, the vacuumed outer pressurizing device 20
Is mounted in a hot isostatic press and subjected to pressure heat treatment. This pressure heat treatment condition is in the temperature range of 500 to 550.
And a pressure range of 50 kg / cm 2, which is a temperature range lower than the pressure heat treatment conditions described above, and prevents deterioration of the reinforcing fiber 3a.
【0022】このように、緻密化処理を施した繊維強化
金属製円筒製品は、緻密化処理を施さない繊維強化金属
製円筒製品と比較すると、周方向(90度)強化層3の
ボイドが減少し、また、各層間および軸方向(0度)強
化層2との接合が強固になり、機械的特性の向上および
品質の安定化が可能である。In this manner, the fiber-reinforced metal cylindrical product that has been subjected to the densification treatment has a reduced number of voids in the circumferential direction (90 degrees) reinforcing layer 3 as compared with the fiber-reinforced metal cylindrical product that has not been subjected to the densification treatment. In addition, the bonding between each layer and the axial direction (0 degree) reinforcing layer 2 is strengthened, and the mechanical characteristics can be improved and the quality can be stabilized.
【0023】[0023]
【発明の効果】以上述べたように本発明によれば、軸方
向および周方向を繊維により強化することで異方性が小
さくなり、良質の大径薄肉円筒の成形が可能になる。As described above, according to the present invention, by reinforcing the axial direction and the circumferential direction with fibers, the anisotropy becomes small, and it becomes possible to mold a large-diameter thin-walled cylinder of good quality.
【図1】本発明による繊維強化金属製円筒製品の横断面
図。FIG. 1 is a cross-sectional view of a fiber reinforced metal cylindrical product according to the present invention.
【図2】本発明による繊維強化金属製円筒製品の縦断面
図。FIG. 2 is a longitudinal sectional view of a fiber-reinforced metal cylindrical product according to the present invention.
【図3】繊維強化金属製円筒製品の成形治具の一部を破
いて示す図。FIG. 3 is a diagram in which a part of a molding jig for a fiber-reinforced metal cylindrical product is broken and shown.
【図4】繊維強化金属製円筒製品の成形治具の断面図。FIG. 4 is a cross-sectional view of a molding jig for a fiber-reinforced metal cylindrical product.
【図5】熱間静水圧成形法の一例を示すグラフ。FIG. 5 is a graph showing an example of a hot isostatic pressing method.
【図6】フィラメントワインディング法を示す平面図。FIG. 6 is a plan view showing a filament winding method.
【図7】フィラメントワインディング法を示す側面図。FIG. 7 is a side view showing a filament winding method.
【図8】プラズマ溶射装置によりアルミニウムを溶射す
る状態を示す図。FIG. 8 is a view showing a state in which aluminum is sprayed by a plasma spraying device.
【図9】周方向強化層の緻密化のための熱間静水圧成形
方法による外側加圧治具を示す図。FIG. 9 is a view showing an outer pressing jig by a hot isostatic pressing method for densifying the circumferential reinforcing layer.
1 繊維強化金属製円筒製品 2 心材 2a 強化繊維 3 表面層 3a 強化繊維 4 成形治具 5 成形治具本体 6 インナーマンドレル 7 アウターマンドレル 13 ボビン 14 テンショナー 1 Fiber-reinforced metal cylindrical product 2 Core material 2a Reinforcing fiber 3 Surface layer 3a Reinforcing fiber 4 Forming jig 5 Forming jig body 6 Inner mandrel 7 Outer mandrel 13 Bobbin 14 Tensioner
Claims (1)
ルミ合金からなる繊維強化金属プリフォームを所定の形
状に切断して繊維配向が軸方向0度に整列配置してマン
ドレルに装着し610〜630度、圧力域30〜50k
g/cm2 の処理条件で熱間静水圧成形方法により成形
した心材と、この心材の表面に化学蒸着した炭化けい素
系の強化繊維を繊維配向が軸方向90度にフィラメント
ワインディング法で巻き付けアルミニウム合金をプラズ
マ溶射して強化繊維を固定した表面層とからなる繊維強
化金属製円筒製品。1. A chemical vapor deposition silicon carbide reinforced fiber and a fiber reinforced metal preform made of a sprayed aluminum alloy are cut into a predetermined shape, and the fiber orientation is aligned in the axial direction of 0 ° and mounted on a mandrel 610. 630 degrees, pressure range 30-50k
A core material formed by a hot isostatic pressing method under a treatment condition of g / cm 2 and a silicon carbide-based reinforcing fiber chemically vapor-deposited on the surface of the core material are wound in a fiber orientation of 90 ° in the axial direction by a filament winding method. A fiber-reinforced metal cylindrical product comprising a surface layer on which a reinforcing fiber is fixed by plasma spraying an alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4130493A JPH06256869A (en) | 1993-03-02 | 1993-03-02 | Cylindrical product made of fiber-reinforced metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4130493A JPH06256869A (en) | 1993-03-02 | 1993-03-02 | Cylindrical product made of fiber-reinforced metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06256869A true JPH06256869A (en) | 1994-09-13 |
Family
ID=12604753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4130493A Pending JPH06256869A (en) | 1993-03-02 | 1993-03-02 | Cylindrical product made of fiber-reinforced metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06256869A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012123686A1 (en) * | 2011-03-15 | 2012-09-20 | Snecma | Process for manufacturing a one-piece axisymmetric metallic part from composite fibrous structures |
US9241398B2 (en) | 2010-03-25 | 2016-01-19 | Kabushiki Kaisha Toshiba | Method of manufacturing high-frequency acceleration cavity component |
CN115747680A (en) * | 2022-09-15 | 2023-03-07 | 中南大学 | Aluminum-based silicon carbide continuous fiber material winding forming device |
-
1993
- 1993-03-02 JP JP4130493A patent/JPH06256869A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9241398B2 (en) | 2010-03-25 | 2016-01-19 | Kabushiki Kaisha Toshiba | Method of manufacturing high-frequency acceleration cavity component |
WO2012123686A1 (en) * | 2011-03-15 | 2012-09-20 | Snecma | Process for manufacturing a one-piece axisymmetric metallic part from composite fibrous structures |
FR2972661A1 (en) * | 2011-03-15 | 2012-09-21 | Snecma | PROCESS FOR MANUFACTURING A MONOBLOC REVOLUTION METAL PART FROM COMPOSITE FIBROUS STRUCTURES |
CN103459067A (en) * | 2011-03-15 | 2013-12-18 | 斯奈克玛 | Process for manufacturing a one-piece axisymmetric metallic part from composite fibrous structures |
US9321106B2 (en) | 2011-03-15 | 2016-04-26 | Snecma | Process for manufacturing a one-piece axisymmetric metallic part from composite fibrous structures |
CN115747680A (en) * | 2022-09-15 | 2023-03-07 | 中南大学 | Aluminum-based silicon carbide continuous fiber material winding forming device |
CN115747680B (en) * | 2022-09-15 | 2024-03-22 | 中南大学 | Aluminum-based silicon carbide continuous fiber material winding forming device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9205492B2 (en) | Method for manufacturing a powder based article | |
US6134881A (en) | Fiber reinforced ceramic matrix composite internal combustion engine intake/exhaust port liners | |
US3849080A (en) | Rotationally symmetrical hollow compound body | |
JPH04270610A (en) | Crossover formation device for consolidating composite material | |
US5074923A (en) | Method for id sizing of filament reinforced annular objects | |
CN111560572A (en) | Continuous carbon fiber reinforced magnesium-aluminum bimetal-based composite material and preparation method thereof | |
US3917782A (en) | Method for preparing thin-walled ceramic articles of configuration | |
JPH06256869A (en) | Cylindrical product made of fiber-reinforced metal | |
JPH0791774B2 (en) | Method for manufacturing tubular laminated structure and composite article including the same | |
US4762268A (en) | Fabrication method for long-length or large-sized dense filamentary monotapes | |
EP1306459B1 (en) | Pretreatment of a metal matrix composite for hot isostatic pressing | |
CN108048762A (en) | A kind of preparation method of SiC fiber reinforcements titanium-based composite board | |
CA2452249C (en) | Method for envelopment casting | |
US5271776A (en) | Asymmetrical method for hiping filament reinforced annular objects | |
CA2034346A1 (en) | Method for shaping filament reinforced annular objects | |
JPH08170127A (en) | Production of fiber reinforced metallic cylindrical body | |
JPH11255567A (en) | Ceramic fiber-combined material part and its production | |
RU2001135023A (en) | A method of obtaining a composite material based on titanium intermetallic and a product obtained by this method | |
JPH05329856A (en) | Manufacture and device of hollow fiber-reinforced resin molded product | |
RU2171311C1 (en) | Composite material, method of making components, such as shells, and device for carrying it through | |
CN115959917B (en) | Rapid preparation method of high-strength carbon/carbon composite material | |
JPS60181208A (en) | Manufacture of multi-shaft cylinder for plastic molding machine | |
JPH0541546A (en) | Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application | |
JP2782889B2 (en) | Method for producing fiber-reinforced inorganic material | |
JPS609838A (en) | Fiber-reinforced metallic body and its production |