JPH0624301Y2 - Steering force control device for power steering device - Google Patents
Steering force control device for power steering deviceInfo
- Publication number
- JPH0624301Y2 JPH0624301Y2 JP1985147331U JP14733185U JPH0624301Y2 JP H0624301 Y2 JPH0624301 Y2 JP H0624301Y2 JP 1985147331 U JP1985147331 U JP 1985147331U JP 14733185 U JP14733185 U JP 14733185U JP H0624301 Y2 JPH0624301 Y2 JP H0624301Y2
- Authority
- JP
- Japan
- Prior art keywords
- throttle
- reaction force
- valve
- steering
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、車速等に応じた制御圧を供給し、ハンドルト
ルクを車速等に応じて変化させる反力機構を備えた動力
舵取装置の操舵力制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a power steering system including a reaction force mechanism that supplies a control pressure according to a vehicle speed or the like and changes a steering wheel torque according to the vehicle speed or the like. The present invention relates to a steering force control device.
〈従来の技術〉 車速等に比例した制御圧を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するものは公知であ
る。この種の装置においては、反力機構に導入する油圧
力を、動力舵取装置と供給ポンプとを結ぶ高圧ラインの
圧油を利用して制御するものである。<Prior Art> It is known that a control pressure proportional to a vehicle speed or the like is introduced into a reaction force mechanism to control the steering force of a power steering device according to the vehicle speed or the like. In this type of device, the oil pressure introduced into the reaction force mechanism is controlled by using the pressure oil in the high pressure line connecting the power steering device and the supply pump.
〈考案が解決しようとする問題点〉 一般にこの種の制御装置は、操舵圧を必要とする低速走
行時には反力機構に加える油圧力を低くし、逆に操舵圧
をほとんど必要としない高速時には高くする必要があ
る。<Problems to be solved by the invention> Generally, this type of control device lowers the oil pressure applied to the reaction force mechanism at low speed traveling that requires steering pressure, and conversely raises it at high speed where almost no steering pressure is required. There is a need to.
従来ではこの反力機構に加える油圧力の制御は、操舵圧
とは関係なく車速等の信号に基づいて電磁圧力制御弁に
て制御している。これによりマニアルトルク−ギヤ発生
圧力特性は高速走行時の特性が低速走行時の特性に対し
て平行移動するのみであり、高速走行時の特性の傾きが
自由に変えられない。そのため、反力油圧が高い状態で
ハンドルを切り込んでいっても操舵力の変化に乏しい問
題がある。理想としては高速走行時の傾きを大きくした
特性とすることである。Conventionally, control of the hydraulic pressure applied to this reaction force mechanism is controlled by an electromagnetic pressure control valve based on a signal such as vehicle speed, regardless of the steering pressure. As a result, the characteristic of the manual torque-gear generated pressure is that the characteristic during high-speed traveling only moves in parallel to the characteristic during low-speed traveling, and the inclination of the characteristic during high-speed traveling cannot be changed freely. Therefore, there is a problem that the steering force does not change much even if the steering wheel is turned while the reaction force hydraulic pressure is high. Ideally, the characteristics should be such that the inclination during high-speed traveling is large.
本考案は、上記従来の問題点に鑑み、高速走行時におけ
るマニアルトルク−ギヤ発生圧力特性を、理想とする大
きな傾きとし、操舵力の変化を明確にしたものである。In view of the conventional problems described above, the present invention clarifies the change in the steering force by setting the ideal characteristic of the torque-gear generated pressure during high-speed traveling to a large ideal slope.
〈問題点を解決するための手段〉 本考案は、入力軸と出力軸との相対回転に基づいて作動
されるパワーシリンダへの圧油の給排を制御するサーボ
弁と、車速に応じてハンドルトルクを変化させる反力機
構を備えた動力舵取装置の操舵力制御装置において、車
速に応じて絞り面積が変化される電磁絞り弁を有し供給
ポンプより吐出された一定流量の圧油を車速の上昇に伴
って反力機構に分流される流量が増加するように前記サ
ーボ弁と反力機構とに分流する分流制御弁と、前記反力
機構に分流された圧油を絞って低圧側へ逃がすための第
1固定絞りと、前記分流制御弁から前記サーボ弁への油
路と前記分流制御弁から前記反力機構への油路とを連通
する通路中に設けられた第2固定絞りとを備え、この第
2固定絞りは、絞り穴を開設した絞り体を通路中に複数
個直列に挿入して形成したものである。<Means for Solving Problems> The present invention is directed to a servo valve that controls the supply and discharge of pressure oil to and from a power cylinder that is operated based on the relative rotation of an input shaft and an output shaft, and a handle according to the vehicle speed. In a steering force control device for a power steering device equipped with a reaction force mechanism that changes torque, a constant flow rate of pressure oil discharged from a supply pump is supplied to a vehicle speed by an electromagnetic throttle valve whose throttle area is changed according to the vehicle speed. Flow control valve that divides into the servo valve and the reaction force mechanism so that the flow rate divided into the reaction force mechanism increases as the temperature rises, and the pressure oil that is divided into the reaction force mechanism is squeezed to the low pressure side. A first fixed throttle for escaping, and a second fixed throttle provided in a passage that connects an oil passage from the diversion control valve to the servo valve and an oil passage from the diversion control valve to the reaction mechanism. This second fixed diaphragm is a diaphragm body having a diaphragm hole. Is formed by inserting a plurality of them in series in the passage.
〈作用〉 本考案は、供給ポンプから吐出された一定流量の圧油を
分流制御弁によってサーボ弁と反力機構とへ流量制御し
て分流し、反力機構に分流する圧油の流量を車速に応じ
て制御することにより、第1固定絞りによって反力室に
導入する反力油圧を車速に応じて制御する。また、ギヤ
発生圧力の上昇に応じてサーボ弁側の圧油を固定絞りを
介して反力機構側に導き、反力油圧をギヤ発生圧力に応
じて制御するものである。<Operation> The present invention divides the flow rate of the pressure oil discharged from the supply pump into the servo valve and the reaction force mechanism by the flow control valve, and divides the flow rate of the pressure oil into the reaction force mechanism. The reaction force hydraulic pressure introduced into the reaction force chamber by the first fixed throttle is controlled according to the vehicle speed. Further, the pressure oil on the servo valve side is guided to the reaction force mechanism side via the fixed throttle according to the increase in the gear generation pressure, and the reaction force hydraulic pressure is controlled according to the gear generation pressure.
〈実施例〉 以下本考案の実施例を図面に基づいて説明する。第1図
において、11は動力舵取装置の本体をなすハウジング本
体、12はハウジング本体11に固着されている弁ハウジン
グである。このハウジング本体11及び弁ハウジング12内
には一対の軸受13,14を介してピニオン軸(出力軸)21
が回転自在に軸承されており、このピニオン軸21にはこ
れと交差する方向に摺動可能なラック軸22のラック歯2
2aが噛合している。このラック軸22は、図示しない
パワーシリンダのピストンと連結され、その両端は所要
の操縦リンク機構を介して操向車輪に連結されている。<Embodiment> An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is a housing main body which is the main body of the power steering apparatus, and 12 is a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 21 is provided in the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14.
Is rotatably supported, and the rack teeth 2 of the rack shaft 22 slidable in a direction intersecting with the pinion shaft 21.
2a is meshed. The rack shaft 22 is connected to a piston of a power cylinder (not shown), and both ends of the rack shaft 22 are connected to steering wheels via a required steering link mechanism.
弁ハウジング12の穴内には、制御弁機構30が収納されて
いる。制御弁機構(サーボ弁)30は、操舵軸としての入
力軸23と一体的に形成したロータリ弁部材31と、このロ
ータリ弁部材31の外周に同心的かつ相対的回転可能に嵌
合したスリーブ弁部材32を主要構成部材としている。ロ
ータリ弁部材31は、これと一体の入力軸23に一端を連結
したトーションバー24を介してピニオン軸21に可撓的に
連結されている。また、ロータリ弁部材31の外周には、
図示しないが、その軸方向に伸びる複数のランド部と溝
部とが等間隔にて形成されており、これの溝底部より内
周部に連通する連通路37が穿設されている。入力軸23に
前記内周部と弁ハウジング12内の低圧室38とを連通する
通路39が設けられている。一方スリーブ弁部材32の内周
にも、その軸方向に延びる複数のランド部と溝部が等間
隔にて形成され、各溝部よりスリーブ弁部材32の外周に
開口する分配穴40,41が設けられている。供給ポート35
より供給される圧力流体は、制御弁が中立状態であれば
ランド部両側の溝部に均等に流れ、連通路37及び通路39
を経て低圧室38より排出ポート36に流出する。この場
合、両分配ポート33,34は低圧で等しい圧力となってい
るためパワーシリンダは作動されない。制御弁が中立状
態から偏位すれば、一方の分配穴40又は41には供給ポー
ト35より圧油が供給され、他方の分配穴41又は40にパワ
ーシリンダから排出された流体が流入し、連通路37,通
路39、低圧室38を経て排出ポート36に放出されるように
なっている。A control valve mechanism 30 is housed in the hole of the valve housing 12. The control valve mechanism (servo valve) 30 includes a rotary valve member 31 integrally formed with the input shaft 23 as a steering shaft, and a sleeve valve concentrically and relatively rotatably fitted to the outer periphery of the rotary valve member 31. The member 32 is the main constituent member. The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24, one end of which is connected to an input shaft 23 which is integral with the rotary valve member 31. Further, on the outer periphery of the rotary valve member 31,
Although not shown, a plurality of lands extending in the axial direction thereof and a groove are formed at equal intervals, and a communication passage 37 communicating from the groove bottom to the inner peripheral portion is formed. The input shaft 23 is provided with a passage 39 that connects the inner peripheral portion and the low pressure chamber 38 in the valve housing 12. On the other hand, on the inner circumference of the sleeve valve member 32, a plurality of lands extending in the axial direction and grooves are formed at equal intervals, and distribution holes 40, 41 are provided which open from the grooves to the outer circumference of the sleeve valve member 32. ing. Supply port 35
When the control valve is in the neutral state, the pressure fluid supplied from the flow passages evenly flows into the grooves on both sides of the land portion, and the communication passage 37 and the passage 39
Through the low pressure chamber 38 to the discharge port 36. In this case, the power cylinders are not operated because both distribution ports 33, 34 have low pressure and equal pressure. When the control valve is deviated from the neutral state, pressure oil is supplied to one of the distribution holes 40 or 41 through the supply port 35, and the fluid discharged from the power cylinder flows into the other distribution hole 41 or 40, and the communication is continued. The gas is discharged to the discharge port 36 through the passage 37, the passage 39, and the low pressure chamber 38.
反力機構は次の通りである。ロータリ弁部材31のピニオ
ン軸21側の端部に半径方向に両側に突起した突起部50が
形成されており、この突起部50と対応するピニオン軸21
には突起部50を入力軸23の軸線回りに数角度旋回可能に
遊嵌する嵌合溝51が形成されている。突起部50の外周面
にはテーパ状の係合溝52が形成されており、制御弁の中
立状態で、ピニオン軸21には係合溝52と対応する位置で
半径方向に挿通穴53が形成されている。挿通穴53にプラ
ンジャ54が半径方向に摺動可能に挿入され、プランジャ
54の後部へ作動油を導くべく環状溝55が形成されてい
る。この挿通穴53と環状溝55とで反力室56が構成されて
いる。58は車速に応じて制御されたポンプからの圧力流
体を導入するポート、57は前記ポート58と環状溝55を連
通する通路である。The reaction force mechanism is as follows. The rotary valve member 31 has a protrusion 50 protruding radially on both sides at the end on the pinion shaft 21 side, and the pinion shaft 21 corresponding to the protrusion 50 is formed.
A fitting groove 51 for loosely fitting the protrusion 50 around the axis of the input shaft 23 so as to be able to turn by several angles is formed therein. A tapered engagement groove 52 is formed on the outer peripheral surface of the protrusion 50, and in a neutral state of the control valve, an insertion hole 53 is formed in the pinion shaft 21 at a position corresponding to the engagement groove 52 in the radial direction. Has been done. The plunger 54 is slidably inserted in the insertion hole 53 in the radial direction,
An annular groove 55 is formed to guide the hydraulic oil to the rear portion of 54. The insertion hole 53 and the annular groove 55 form a reaction force chamber 56. Reference numeral 58 is a port for introducing pressure fluid from a pump controlled according to the vehicle speed, and 57 is a passage for connecting the port 58 and the annular groove 55.
上記構成の反力機構は、いわゆるラジアル方式であるが
軸線方向に反力を作用させる構成のスラスト方式でもよ
い。The reaction mechanism having the above structure is a so-called radial system, but may be a thrust system having a structure in which a reaction force is applied in the axial direction.
60は自動車エンジンによって駆動される供給ポンプを示
し、61は前記供給ポンプ60から吐出される圧油を一定流
量Qに制御する流量制御弁である。この流量制御弁61
は、メータリングオリフィス62と、このメータリングオ
リフィス62の前後圧に応じて作動され、この前後圧を常
に一定に保持するように低圧側に通じたバイパス通路63
を開口制御するバイパス弁64によって構成されている。
尚、供給ポンプ60が定速モータ駆動式の一定流量を吐出
するものである場合には前記流量制御弁61は不要であ
る。Reference numeral 60 denotes a supply pump driven by an automobile engine, and 61 is a flow rate control valve for controlling the pressure oil discharged from the supply pump 60 to a constant flow rate Q. This flow control valve 61
Is operated according to the front-rear pressure of the metering orifice 62 and the front-rear pressure of the metering orifice 62, and the bypass passage 63 communicating with the low-pressure side so as to always maintain the front-rear pressure constant.
The bypass valve 64 controls the opening of the valve.
The flow rate control valve 61 is not necessary when the supply pump 60 discharges a constant flow rate of a constant speed motor drive type.
80は前記流量制御弁61の高圧側と接続する分流制御弁で
ある。この分流制御弁80は、サーボ弁の供給ポート35に
流量QGの圧油を導入するポート80aと、反力機構の導入
ポート58に流量QRの圧油を導入するポート80bとを有
し、この流量QG,QRを車速に応じて分流制御するため
に、前記一定流量Qの圧油を車速に応じて制御される電
磁絞り弁90にて車速に応じた流量QRに制御し、この流量
QRを分流制御弁80に導き、前記電磁絞り弁90の前後差圧
によって軸動するスプール81を備えたものである。従っ
て、車速に応じて電磁絞り弁90の開度をかえることによ
って反力機構に加える流量QRと、サーボ弁に供給される
流量QGとの割合を自由にかえることができる。Reference numeral 80 is a diversion control valve connected to the high pressure side of the flow control valve 61. The diversion control valve 80 has a port 80a for introducing the pressure oil of the flow rate QG to the supply port 35 of the servo valve, and a port 80b for introducing the pressure oil of the flow rate QR to the introduction port 58 of the reaction mechanism. In order to control the flow rates QG and QR in accordance with the vehicle speed, the pressure oil having the constant flow rate Q is controlled to the flow rate QR according to the vehicle speed by the electromagnetic throttle valve 90 controlled according to the vehicle speed.
The spool 81 is provided with a spool 81 that guides QR to the flow dividing control valve 80 and is axially moved by the differential pressure across the electromagnetic throttle valve 90. Therefore, by changing the opening degree of the electromagnetic throttle valve 90 according to the vehicle speed, it is possible to freely change the ratio between the flow rate QR applied to the reaction mechanism and the flow rate QG supplied to the servo valve.
さらに、前記分流制御弁80のポート80bと反力機構の導
入ポート58とに通じている通路に、低圧側に通じている
制御絞りとしての第1固定絞り70を備えた通路を接続す
る。Further, a passage having a first fixed throttle 70 as a control throttle communicating with the low pressure side is connected to a passage communicating with the port 80b of the flow dividing control valve 80 and the introduction port 58 of the reaction force mechanism.
また、前記分流制御弁80のポート80aとサーボ弁の供給
ポート35とに通じている通路と前記反力機構側の通路と
の間にバイパス通路47を設け、このバイパス通路47に固
定絞りとしての第2固定絞り71を設ける。Further, a bypass passage 47 is provided between the passage communicating with the port 80a of the diversion control valve 80 and the supply port 35 of the servo valve and the passage on the reaction mechanism side, and the bypass passage 47 serves as a fixed throttle. A second fixed diaphragm 71 is provided.
上記第2固定絞り71は第2図で示すようにギヤ側Gと反
力側Rとを継ぐバイパス通路47中に絞り穴72を開設した
絞り体73を複数個直列に挿入した構造である。As shown in FIG. 2, the second fixed throttle 71 has a structure in which a plurality of throttle bodies 73 each having a throttle hole 72 are inserted in series in a bypass passage 47 connecting the gear side G and the reaction side R.
次に上記構成の動作について説明する。供給ポンプ60に
より吐出された圧油を流量制御弁61にて一定流量Qに制
御する。この一定流量Qに制御された圧油を分流制御弁
80によってサーボ弁側への流量QGと反力機構側への流量
QRとに分流制御する。Next, the operation of the above configuration will be described. The flow rate control valve 61 controls the pressure oil discharged from the supply pump 60 to a constant flow rate Q. The pressure oil controlled to this constant flow rate Q is a diversion control valve.
Flow rate QG to servo valve side and flow rate to reaction force mechanism side by 80
Shunt control to QR.
前記反力機構側への分流流量QRは電磁絞り弁90により車
速が増大するに従って比例的に増量する。この分流流量
QRの変化に伴い、サーボ弁側の流量QGは逆比例的に分流
制御される。また、反力機構側に分流された流量QRは第
1固定絞り70を介して低圧側へドレンする。The split flow rate QR to the reaction force mechanism side increases proportionally as the vehicle speed increases due to the electromagnetic throttle valve 90. This split flow rate
With the change of QR, the flow rate QG on the servo valve side is divided and controlled inversely proportionally. Further, the flow rate QR diverted to the reaction force mechanism side is drained to the low pressure side via the first fixed throttle 70.
これにより、車速が低い状態では電磁絞り弁90により制
御された流量QRが第1固定絞り70よりほとんど抵抗なく
ドレンされるので、反力油圧PRが低くなり、ハンドル操
作により操舵軸24が回転すると、プランジャ54は容易に
押し上げられ、スリーブ弁部材32とロータリ弁部材31と
が相対回転し、マニアルトルクTMに対するギヤ発生圧力
PGの変化は第3図の実線で示す特性となり、据切り並び
に低速時におけるハンドル操作は軽快となる。As a result, when the vehicle speed is low, the flow rate QR controlled by the electromagnetic throttle valve 90 is drained with almost no resistance from the first fixed throttle 70, so that the reaction force hydraulic pressure PR becomes low and the steering shaft 24 rotates when the steering wheel is operated. , The plunger 54 is easily pushed up, the sleeve valve member 32 and the rotary valve member 31 rotate relative to each other, and the gear generation pressure against the manual torque TM is increased.
The change in PG has the characteristics shown by the solid line in Fig. 3, and the steering wheel operation becomes light during stationary operation and low speed.
車速が高速になると、車速に応じて制御される電磁絞り
弁90により反力機構側への分流流量QRは増加する。この
流量QRの増加により第1固定絞り70の作用で反力油圧PR
が高められ、これによりプランジャ54は反力油圧PRに応
じた力で係合溝52に押付けられ、スリーブ弁部材32とロ
ータリ弁部材31とを相対回転させるマニアルトルクは車
速に応じて増大し、ハンドル操作は重くなる。When the vehicle speed increases, the shunt flow rate QR to the reaction force mechanism side increases due to the electromagnetic throttle valve 90 controlled according to the vehicle speed. Due to the increase in the flow rate QR, the reaction force hydraulic pressure PR is generated by the action of the first fixed throttle 70.
As a result, the plunger 54 is pressed against the engagement groove 52 with a force according to the reaction force hydraulic pressure PR, and the manual torque for relatively rotating the sleeve valve member 32 and the rotary valve member 31 increases according to the vehicle speed, Handle operation becomes heavy.
また、ある車速において、ハンドル操作に伴ってギヤ発
生圧力PGが上昇すると、サーボ弁側の通路よりバイパス
通路47中の第2固定絞り71を介して反力機構側の通路に
ギヤ発生圧力に応じた流量gの圧油が流れる。従って、
反力機構側の流量QR+バイパス流量g=制御流量QCは電
磁絞り弁90の制御による反力油圧PRに応じ、かつギヤ発
生圧力PGに応じて制御される。従って、高速時にハンド
ルを操作した場合には、反力油圧PRは上記制御流量QC=
QR+gで制御され、マニアルトルク−ギヤ発生圧力の特
性は第3図の点線で示すように大きく傾き、操舵時の手
ごたえ感を明確にする。Further, at a certain vehicle speed, when the gear generation pressure PG rises in accordance with the steering wheel operation, the gear generation pressure responsive to the reaction mechanism side passage from the servo valve side passage through the second fixed throttle 71 in the bypass passage 47. A large amount of pressure g of pressure oil flows. Therefore,
The flow rate QR on the reaction mechanism side + the bypass flow rate g = the control flow rate QC are controlled according to the reaction force hydraulic pressure PR controlled by the electromagnetic throttle valve 90 and according to the gear generation pressure PG. Therefore, when the handle is operated at high speed, the reaction force hydraulic pressure PR is the control flow rate QC =
Controlled by QR + g, the characteristic of manual torque-gear generated pressure is greatly inclined as shown by the dotted line in Fig. 3 to clarify the feel of the steering feel.
〈考案の効果〉 以上のように本考案によると、供給ポンプからの一定流
量の圧油を分流制御弁によってサーボ弁側と反力機構側
とに分流し、反力機構側に分流した流量を低圧側に通じ
た固定絞りあるいは電磁絞り弁等の制御絞りの作用で制
御し、かつギヤ発生圧力を固定絞りを介してバイパス通
路より反力機構側へ導入する構成であるから、車速とギ
ヤ発生圧力とに応じて反力圧油を制御することができ、
この反力圧油に比例した操舵力特性が得られ、高速走行
での操舵時の手ごたえ感を増し、高速での安定性を向上
する。殊に、車速が高くなると、反力機構に分流される
分流流量が増大して反力圧が上昇し、逆にサーボ弁通路
に分流される分流流量が減少されるため、反力圧の上昇
とサーボ弁通路への流量の減少との両作用によって、高
速時の操舵力を効果的に制御することができる。<Effect of the device> As described above, according to the present invention, the constant flow rate of the pressure oil from the supply pump is shunted to the servo valve side and the reaction force mechanism side by the shunt control valve, and the flow rate diverted to the reaction force mechanism side is Since the structure is controlled by the action of a fixed throttle communicating with the low pressure side or a control throttle such as an electromagnetic throttle valve, and the gear generated pressure is introduced from the bypass passage to the reaction force mechanism side through the fixed throttle, the vehicle speed and gear generation The reaction pressure oil can be controlled according to the pressure,
Steering force characteristics proportional to the reaction pressure oil are obtained, the feeling of steering at the time of high speed traveling is increased, and the stability at high speed is improved. In particular, when the vehicle speed becomes higher, the branch flow rate divided into the reaction force mechanism increases and the reaction force pressure rises, and conversely the branch flow rate divided into the servo valve passage decreases, so that the reaction force pressure rises. And the reduction of the flow rate to the servo valve passage, the steering force at high speed can be effectively controlled.
また、ギヤ側と反力側とを継ぐバイパス通路上の固定絞
りは、絞り穴を開設した絞り体をバイパス通路中に複数
個直列に挿入した構成としたものであるから、次のよう
な効果を有する。一般に固定絞りは非常に小さな穴径で
制御する必要がある。従って、小さな穴径では切粉,ゴ
ミにより詰まることが考えられる。その対策として固定
絞りの前後にフィルタを配置すればよいが、これはコス
ト高となる。Further, the fixed throttle on the bypass passage connecting the gear side and the reaction force side has a configuration in which a plurality of throttle bodies each having a throttle hole are inserted in series in the bypass passage. Have. Generally, a fixed throttle needs to be controlled with a very small hole diameter. Therefore, it is conceivable that the small hole diameter will be clogged with chips and dust. As a countermeasure, a filter may be arranged before and after the fixed diaphragm, but this is costly.
上記絞り体の挿入による場合、絞り穴径を大きくし、直
列複数個をもって、1つの小さな穴径の固定絞りと同等
の機能が得られ、加工が容易であり、ゴミ等による目詰
まりが解消される。また複数個の配列個数を増,減する
ことにより固定絞り量を任意に設定することもできる。In the case of inserting the above-mentioned throttle body, by increasing the diameter of the throttle and providing a plurality of serial holes, the same function as a fixed throttle with one small hole diameter can be obtained, processing is easy, and clogging due to dust etc. is eliminated. It In addition, the fixed aperture amount can be set arbitrarily by increasing or decreasing the number of plural arrays.
第1図は本考案の一実施例を示す動力舵取装置の断面図
に油圧系統図を併図した図、第2図は第2固定絞りの断
面図、第3図は操舵特性の曲線図である。 21……ピニオン軸、23……入力軸、47……バイパス通
路、56……反力室、70,70a……第1固定絞り、71……第
2固定絞り、72……絞り穴、73……絞り体、80……分流
制御弁、90……電磁絞り弁。FIG. 1 is a cross-sectional view of a power steering apparatus showing an embodiment of the present invention with a hydraulic system diagram combined, FIG. 2 is a cross-sectional view of a second fixed throttle, and FIG. 3 is a curve diagram of steering characteristics. Is. 21 …… pinion shaft, 23 …… input shaft, 47 …… bypass passage, 56 …… reaction chamber, 70,70a …… first fixed throttle, 71 …… second fixed throttle, 72 …… throttle hole, 73 ...... Throttle body, 80 ...... Diversion control valve, 90 ...... Electromagnetic throttle valve.
───────────────────────────────────────────────────── フロントページの続き (72)考案者 奥田 郁夫 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 (72)考案者 白鳥 治則 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (56)参考文献 特開 昭53−87433(JP,A) 実開 昭61−44365(JP,U) 実開 昭50−111720(JP,U) 実開 昭51−95825(JP,U) 実開 昭54−142835(JP,U) 実開 昭52−116837(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ikuo Okuda Ikuo Okuda 1-1, Asahi-cho, Kariya city, Aichi Toyota Koki Co., Ltd. (72) Harinori Shiratori 1-cho, Toyota city, Aichi prefecture Toyota Motor Corporation (56) References JP-A-53-87433 (JP, A) Actually opened 61-44365 (JP, U) Actually opened 50-111720 (JP, U) Actually opened 51-95825 (JP, U) Actually open 54-142835 (JP, U) Actually open 52-116837 (JP, U)
Claims (1)
動されるパワーシリンダへの圧油の給排を制御するサー
ボ弁と、車速に応じてハンドルトルクを変化させる反力
機構を備えた動力舵取装置の操舵力制御装置において、
車速に応じて絞り面積が変化される電磁絞り弁を有し供
給ポンプより吐出された一定流量の圧油を車速の上昇に
伴って反力機構に分流される流量が増加するように前記
サーボ弁と反力機構とに分流する分流制御弁と、前記反
力機構に分流された圧油を絞って低圧側へ逃がすための
第1固定絞りと、前記分流制御弁から前記サーボ弁への
油路と前記分流制御弁から前記反力機構への油路とを連
通する通路中に設けられた第2固定絞りとを備え、この
第2固定絞りは、絞り穴を開設した絞り体を通路中に複
数個直列に挿入して形成して成る動力舵取装置の操舵力
制御装置。1. A servo valve for controlling the supply and discharge of pressure oil to and from a power cylinder, which is operated based on relative rotation between an input shaft and an output shaft, and a reaction force mechanism for changing a steering wheel torque according to a vehicle speed. In the steering force control device of the power steering device,
The servo valve has an electromagnetic throttle valve whose throttle area is changed according to the vehicle speed so that a constant flow rate of the pressure oil discharged from the supply pump is branched to the reaction mechanism as the vehicle speed increases. And a reaction force mechanism, a shunt control valve, a first fixed throttle for squeezing the pressure oil shunted by the reaction force mechanism to escape to the low pressure side, and an oil passage from the shunt control valve to the servo valve And a second fixed throttle provided in a passage that communicates with the oil passage from the diversion control valve to the reaction force mechanism, the second fixed throttle having a throttle body having a throttle hole in the passage. A steering force control device for a power steering device formed by inserting a plurality of devices in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985147331U JPH0624301Y2 (en) | 1985-09-28 | 1985-09-28 | Steering force control device for power steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985147331U JPH0624301Y2 (en) | 1985-09-28 | 1985-09-28 | Steering force control device for power steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6256373U JPS6256373U (en) | 1987-04-08 |
JPH0624301Y2 true JPH0624301Y2 (en) | 1994-06-29 |
Family
ID=31060593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985147331U Expired - Lifetime JPH0624301Y2 (en) | 1985-09-28 | 1985-09-28 | Steering force control device for power steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0624301Y2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50111720U (en) * | 1974-02-21 | 1975-09-11 | ||
JPS5195825U (en) * | 1975-01-31 | 1976-07-31 | ||
JPS54142835U (en) * | 1978-03-29 | 1979-10-03 | ||
JPS6144365U (en) * | 1984-08-27 | 1986-03-24 | トヨタ自動車株式会社 | Vehicle power steering device |
-
1985
- 1985-09-28 JP JP1985147331U patent/JPH0624301Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6256373U (en) | 1987-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950015024B1 (en) | Power steering system with hydraulic reaction | |
US4771841A (en) | Variable power assist steering system for vehicle | |
US4434866A (en) | Speed-sensitive power steering system | |
JPH0645343B2 (en) | Steering force control device for power steering device | |
JPH0624301Y2 (en) | Steering force control device for power steering device | |
JPH0255261B2 (en) | ||
JPH07100452B2 (en) | Steering force control device for power steering device | |
JPH0624302Y2 (en) | Steering force control device for power steering device | |
JPH0619426Y2 (en) | Steering force control device for power steering device | |
JPS61275062A (en) | Steerability control device for power steering device | |
JPH0631004B2 (en) | Steering force control device for power steering device | |
JPS62279170A (en) | Steering force control device for power steering device | |
JPH0624955B2 (en) | Steering force control device for power steering device | |
JPH0615341B2 (en) | Steering force control device for power steering device | |
JPH0628378Y2 (en) | Steering force control device for power steering device | |
JPH036546Y2 (en) | ||
JPH0624956B2 (en) | Steering force control device for power steering device | |
JPS6299262A (en) | Steering force control device of power steering device | |
JPS61191470A (en) | Steering force control device of power steering gear | |
JPS61218481A (en) | Steering force controller for power steering | |
JPS60226368A (en) | Steering-force controller for power steering apparatus | |
JPH07121703B2 (en) | Steering force control device for power steering device | |
US4803913A (en) | Hydraulic power steering valve with three-orifice reactive chamber pressure control | |
JP2517006Y2 (en) | Steering force control device for power steering device | |
JPS61191472A (en) | Steering force controlling device of power steering gear |