[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06232140A - Safety operating method of hydrogen annealing furnace - Google Patents

Safety operating method of hydrogen annealing furnace

Info

Publication number
JPH06232140A
JPH06232140A JP4071993A JP4071993A JPH06232140A JP H06232140 A JPH06232140 A JP H06232140A JP 4071993 A JP4071993 A JP 4071993A JP 4071993 A JP4071993 A JP 4071993A JP H06232140 A JPH06232140 A JP H06232140A
Authority
JP
Japan
Prior art keywords
hydrogen
valve
oxygen
quartz tube
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4071993A
Other languages
Japanese (ja)
Inventor
Masaru Nukazuka
勝 糠塚
Soichiro Nishina
壮一郎 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP4071993A priority Critical patent/JPH06232140A/en
Publication of JPH06232140A publication Critical patent/JPH06232140A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the mixture of hydrogen and oxygen in a dangerous ratio by a method wherein no-existence of oxygen exceeding specific amount in a sealing vessel is confirmed before starting annealing step likewise no existence of hydrogen exceeding specific amount in the sealing vessel is confirmed after finishing the annealing step. CONSTITUTION:Before starting annealing step, a valve 6 is opened to feed nitrogen to a quartz tube 2 wherein a processed element is carried. Next, when the air pressure reaches a specific value, gas is started to be exhausted by a vacuum valve 17 also starting the measurement of oxygen concentration by an oxygen detecting sensor 16. Next, when the measured oxygen concentration reaches the value not exceeding a specific non-dangerous value, the valve 6 is closed simultaneously opening another valve 8 to start feeding hydrogen. When the previously set up hydrogen annealing step finishing requirements are met, the hydrogen feeding step is stopped to start hydrogen exhaust by a vacuum pump 13. Finally, when the air pressure in the quartz tube 2 reaches another specific value, the valve 6 is opened to start feeding nitrogen and when the hydrogen concentration measured by a hydrogen detecting sensor 15 reaches the value not exceeding a specific non-dangerous value, the processed element is to be taken out of the hydrogen annealing furnace 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水素アニ−ル炉に係
り,特に,水素と空気中の酸素とが急激な化学反応をす
る恐れのない安全な水素アニ−ル炉の安全運転方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen anneal furnace, and more particularly to a safe operation method for a hydrogen anneal furnace in which hydrogen and oxygen in the air do not undergo a sudden chemical reaction.

【0002】[0002]

【従来の技術】半導体の製造過程においては半導体ウェ
−ハに対する水素アニ−ルが行われている。従来このよ
うな水素アニ−ルを行うには,リ−クした水素と空気中
の酸素とが化学反応して事故を発生しないように,水素
アニ−ル炉を配置した室内に水素検知センサを装備し,
水素検知センサによる水素検知量が所定値に達すると報
知するようにしていた。即ち,水素の酸素に対する混合
比が4%ないし98%になると,水素と酸素は急激に化
合するため,水素検知センサによる水素検知量が1%程
度になると警報を出すように装備されていた。
2. Description of the Related Art Hydrogen is annealed to a semiconductor wafer in the process of manufacturing a semiconductor. Conventionally, in order to perform such hydrogen annealing, a hydrogen detection sensor is installed in the room where the hydrogen annealing furnace is placed so that the leaked hydrogen and oxygen in the air do not chemically react with each other to cause an accident. Equip,
The notification is made when the hydrogen detection amount by the hydrogen detection sensor reaches a predetermined value. That is, when the mixing ratio of hydrogen to oxygen is 4% to 98%, hydrogen and oxygen are rapidly combined, so that an alarm is provided when the amount of hydrogen detected by the hydrogen detection sensor reaches about 1%.

【0003】[0003]

【発明が解決しようとする課題】ところで,上述したよ
うな警報手段であると,水素がリ−クを始めてから警報
されるまでに時間遅れがあり,リ−クの原因によって
は,警報報知後に対応行動を取っていては間に合わない
場合があり得るという危険性があって,安全対策として
は不完全であった。本発明は上記問題点(課題)を解決
するようにした水素アニ−ル炉の安全な運転方法を提供
することを目的としている。
By the way, with the above-mentioned alarm means, there is a time delay from the start of the leak of hydrogen until the alarm is issued, and depending on the cause of the leak, after the alarm is issued. There was a risk that taking corrective action might not be in time, and it was an incomplete safety measure. It is an object of the present invention to provide a safe operation method of a hydrogen anneal furnace which solves the above problems (problems).

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に本発明に基づく水素アニ−ル炉の安全運転方法におい
ては,アニ−ル前には被処理材を搬入する密閉容器に不
活性気体を供給するとともに密閉容器内の酸素を含む気
体を排出し,密閉容器内に酸素が所定量以上存在しない
のを確認してから水素を供給するようにした。また,ア
ニ−ル後には密閉容器内の水素を排出した後不活性気体
を供給し,密閉容器内に水素が所定量以上存在しないの
を確認してから被処理材を搬出するようにした。
In order to solve the above-mentioned problems, in a safe operation method of a hydrogen anneal furnace according to the present invention, an inert gas is introduced into a closed container into which a material to be treated is carried in before annealing. The gas containing oxygen was discharged from the sealed container, and hydrogen was supplied after confirming that oxygen was not present in the sealed container in a predetermined amount or more. Further, after the annealing, hydrogen in the closed container was discharged and then an inert gas was supplied, and after confirming that hydrogen was not present in the closed container in a predetermined amount or more, the material to be processed was carried out.

【0005】[0005]

【作用】本発明は,上述のように,半導体ウェ−ハ等の
被処理材を搬入する密閉容器に窒素等の不活性気体を供
給し,密閉容器内に酸素が所定量以上存在しないのを確
認してから水素を供給して水素アニ−ルを実施し,アニ
−ル後は密閉容器内の水素を排出した後,上記不活性気
体を供給し,密閉容器内に水素が所定量以上存在しない
のを確認してから被処理材を搬出するようにしたので,
水素と酸素が危険な比率で混合することはない。
According to the present invention, as described above, an inert gas such as nitrogen is supplied to a closed container for carrying a material to be processed such as a semiconductor wafer so that oxygen is not present in a predetermined amount or more in the closed container. After confirmation, hydrogen is supplied to carry out a hydrogen anneal, and after the anneal, the hydrogen in the closed container is discharged, then the above-mentioned inert gas is supplied, and a predetermined amount or more of hydrogen is present in the closed container. I decided to carry out the material to be processed after confirming that it was not done.
Hydrogen and oxygen do not mix in dangerous proportions.

【0006】[0006]

【実施例】本発明に基づく水素アニ−ル炉の安全運転方
法の実施例を図を参照して詳細に説明する。図1には本
発明を適用する水素アニ−ル炉とその制御装置の概要構
成例を示している。図1において,1は,水素アニ−ル
炉の一例であって本実施例では被処理材を密閉容器の下
側から搬入する縦型の構造例を示している。2は密閉容
器である石英チュ−ブ(以下石英チュ−ブと称す),3
は石英チュ−ブ2の外部に設けたアニ−ルのための加熱
用ヒ−タ,4は内部に被処理材,例えば半導体ウェ−ハ
を積載して下部から挿入されたボ−トである。図1にお
いては,ボ−ト4を昇降させる昇降機構,ボ−ト4の降
下状態でボ−ト4に被処理材を積載し,処理済みの被処
理材をボ−トから降ろす移載機構等の図示は省略してい
る。石英チュ−ブ2には,不活性気体供給手段と,水素
供給手段がそれぞれ結合されている。即ち,不活性気体
である窒素ガス(以下不活性気体を窒素と称す)の配管
5が第1のバルブ6を経由して,水素ガスの配管7が第
2のバルブ8を経由して,それぞれ配管9に結合し,配
管9は石英チュ−ブ2の内部空間上部位置に開口してい
る。第1のバルブ6は,流量制御装置6aとエアオペレ
−トのオンオフバルブ6bによって構成され,第2のバ
ルブ8は,流量制御装置8aとエアオペレ−トのオンオ
フバルブ8bによって構成されている。配管9には,ま
た,外気に結合された空気配管10が第3のバルブ11
を経由して結合している。第3のバルブ11は,流量制
御装置11aとエアオペレ−トのオンオフバルブ11b
によって構成されている。
EXAMPLE An example of a safe operation method for a hydrogen annealing furnace according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration example of a hydrogen annealing furnace to which the present invention is applied and its control device. In FIG. 1, reference numeral 1 is an example of a hydrogen annealing furnace, and in this embodiment, an example of a vertical structure in which a material to be treated is carried in from the lower side of a closed container is shown. 2 is a quartz tube which is a closed container (hereinafter referred to as quartz tube), 3
Is a heating heater for anneal provided outside the quartz tube 2, and 4 is a boat into which a material to be treated such as a semiconductor wafer is loaded and which is inserted from below. . In FIG. 1, an elevating mechanism for elevating and lowering the boat 4, a transfer mechanism for loading a processed material on the boat 4 in a lowered state of the boat 4 and lowering the processed material from the boat. Illustrations of the above are omitted. An inert gas supply means and a hydrogen supply means are connected to the quartz tube 2, respectively. That is, a pipe 5 of nitrogen gas which is an inert gas (hereinafter, an inert gas is referred to as nitrogen) passes through a first valve 6, and a pipe 7 of hydrogen gas passes through a second valve 8, respectively. The pipe 9 is connected to the pipe 9, and the pipe 9 is opened at a position above the inner space of the quartz tube 2. The first valve 6 is composed of a flow control device 6a and an air-operated on / off valve 6b, and the second valve 8 is composed of a flow control device 8a and an air-operated on / off valve 8b. An air pipe 10 connected to the outside air is provided in the pipe 9 and a third valve 11 is provided.
Are bound via. The third valve 11 includes a flow rate control device 11a and an air operated on / off valve 11b.
It is composed by.

【0007】石英チュ−ブ2には,排気用として第1の
排気配管12が結合されていて,第1の排気配管12は
第1の排気機能(真空ポンプと称す)13を経由して第
2の排気配管14に結合されている。第2の排気配管1
4は,排気の混合機能や排気ポンプ等によって構成され
た図示しない排気処理装置に結合されている。真空ポン
プ13は,エアオペレ−トのオンオフバルブ13a(第
1の真空バルブと称す),メカニカルブ−スタ13b,
ドライポンプ13cによって構成されている。また,第
1の排気配管12と第2の排気配管14との間には第2
の排気機能としての第2の真空バルブ17が設けられて
いる。上述した各バルブ,6,8,11,13a,17
はそれぞれ用途の条件と必要性に合わせて最大流量が設
定される。第1の排気配管12には,水素検知手段とし
ての水素検知機能15が,第2の排気配管14には酸素
検知手段としての酸素検知センサ16がそれぞれ結合さ
れている。水素検知機能15はエアオペレ−トのオンオ
フバルブ15aと水素検知センサ15bによって構成さ
れている。上述した石英チュ−ブ2の下部機構にはボ−
ト4の下部4aが密着するようにオ−リング18が設け
られている。
A first exhaust pipe 12 is connected to the quartz tube 2 for exhaust, and the first exhaust pipe 12 passes through a first exhaust function (referred to as a vacuum pump) 13 to a first exhaust pipe 13. It is connected to two exhaust pipes 14. Second exhaust pipe 1
Reference numeral 4 is coupled to an exhaust treatment device (not shown) which is composed of an exhaust mixing function, an exhaust pump, and the like. The vacuum pump 13 includes an air-operated on / off valve 13a (referred to as a first vacuum valve), a mechanical booster 13b,
It is composed of a dry pump 13c. In addition, a second pipe is provided between the first exhaust pipe 12 and the second exhaust pipe 14.
A second vacuum valve 17 is provided as an evacuation function of. Each of the valves described above, 6, 8, 11, 13a, 17
The maximum flow rate is set according to the application conditions and needs. A hydrogen detecting function 15 as a hydrogen detecting means is connected to the first exhaust pipe 12, and an oxygen detecting sensor 16 as an oxygen detecting means is connected to the second exhaust pipe 14, respectively. The hydrogen detection function 15 is composed of an air-operated on / off valve 15a and a hydrogen detection sensor 15b. The lower mechanism of the quartz tube 2 described above has a bow.
An O-ring 18 is provided so that the lower portion 4a of the grate 4 is in close contact.

【0008】この水素アニ−ル炉システムを制御する制
御装置19は本発明に基づく安全運転を実行制御する制
御装置(以下シ−ケンサと称す)20に指令信号を伝送
するように接続されている。制御装置19は,また,図
示しないボ−ト4を昇降させる昇降機構,ボ−ト4の降
下状態でボ−ト4に被処理材を積載し,処理済みの被処
理材をボ−トから降ろす移載機構等の制御も実行する。
シ−ケンサ20は,前述した第1のバルブ6を操作制御
する第1の操作機能21,第2のバルブ8を操作制御す
る第2の操作機能22,第3のバルブ11を操作制御す
る第3の操作機能23,ヒ−タ3を操作制御するヒ−タ
操作機能24,真空ポンプ13を操作制御する排気制御
機能25,第2の真空バルブ17を操作制御する排気操
作機能26に対してそれぞれ操作制御信号を伝送するた
めに接続している。シ−ケンサ20は,また,前述した
水素検知機能15による水素検知信号を,所定の電気信
号に変換する第1の計測回路27,酸素検知センサ16
による酸素検知信号を,所定の電気信号に変換する第2
の計測回路28にそれぞれ接続している。また,密閉さ
れた石英チュ−ブ2からのリ−ク状態等を計測する圧力
計測手段としての圧力計測器29が石英チュ−ブ2に結
合されている。圧力計測器29はエアオペレ−トのオン
オフバルブ29aとバラトロンセンサ29bによって構
成され,圧力計測器29を操作し,その検知信号を所定
の電気信号に変換する第3の計測回路30を経由してシ
−ケンサ20に入力するように接続されている。
A controller 19 for controlling the hydrogen annealing furnace system is connected to a controller (hereinafter referred to as a sequencer) 20 for executing and controlling safe operation according to the present invention so as to transmit a command signal. . The control unit 19 also lifts and lowers the boat 4 (not shown), loads the material to be treated on the boat 4 in the lowered state of the boat 4, and removes the treated material from the boat. It also executes the control of the transfer mechanism to unload.
The sequencer 20 has a first operating function 21 for operating and controlling the first valve 6, a second operating function 22 for operating and controlling the second valve 8, and a third operating function for controlling the third valve 11. 3, an operation function 23 for operating the heater 3, a heater operation function 24 for operating and controlling the heater 3, an exhaust control function 25 for operating and controlling the vacuum pump 13, and an exhaust operation function 26 for operating and controlling the second vacuum valve 17. Each is connected to transmit an operation control signal. The sequencer 20 also includes a first measurement circuit 27 that converts the hydrogen detection signal from the hydrogen detection function 15 described above into a predetermined electric signal, and an oxygen detection sensor 16
Second, which converts the oxygen detection signal by the device into a predetermined electric signal
Are connected to the measuring circuits 28, respectively. Further, a pressure measuring device 29 as a pressure measuring means for measuring a leak state from the closed quartz tube 2 is connected to the quartz tube 2. The pressure measuring device 29 is composed of an air-operated on / off valve 29a and a baratron sensor 29b, operates the pressure measuring device 29, and passes through a third measuring circuit 30 which converts the detection signal into a predetermined electric signal. It is connected to the sequencer 20 for input.

【0009】次に上述の回路機能により構成した実施例
における本発明に基づく安全運転の方法を,シ−ケンサ
20の働きを示す図2のフロ−図と図3のタイムチャ−
トを参照して詳細に説明する。水素アニ−ル炉の運転を
開始すると(図3に示す時刻t0)(図2に示すステッ
プ0),制御装置19からの指令信号によってボ−ト4
に図示しないロボット等の積載機構によって被処理材を
積載する(図3に示す時刻t0ないしt1)(図2に示す
ステップ1)。また,シ−ケンサ20からの操作制御信
号によって第2の真空バルブ17を機能させ,第2の排
気配管14に結合される図示しない排気処理装置によっ
て石英チュ−ブ2内の空気を排出するとともに,第1の
バルブ6を機能させて流量制御装置6aの設定流量で窒
素を石英チュ−ブ2内に供給する(図2に示すステップ
2)。被処理材を積載したボ−ト4を図示しない昇降機
構によって石英チュ−ブ2内に上昇させる(図3に示す
時刻t1ないしt2)。従って,石英チュ−ブ2はオ−リ
ング18とボ−ト4の下部4aによって完全に密閉され
る(図2に示すステップ3)。石英チュ−ブ2が密閉さ
れると,石英チュ−ブ2に対する窒素の供給を停止する
とともに,真空ポンプ13によって石英チュ−ブ2内の
気体排出を行う。従って,石英チュ−ブ2内の気圧は低
下する(図3に示す時刻t2ないしt3)(図2に示すス
テップ4)。
Next, the safe driving method according to the present invention in the embodiment constituted by the above-mentioned circuit functions will be described. The flow chart of FIG. 2 showing the function of the sequencer 20 and the time chart of FIG.
It will be described in detail with reference to FIG. When the operation of the hydrogen annealing furnace is started (time t 0 shown in FIG. 3) (step 0 shown in FIG. 2), the command signal from the controller 19 causes the boat 4 to operate.
The material to be processed is loaded by a loading mechanism such as a robot (not shown) (time t 0 to t 1 shown in FIG. 3) (step 1 shown in FIG. 2). Further, the second vacuum valve 17 is made to function by the operation control signal from the sequencer 20, and the air in the quartz tube 2 is discharged by the exhaust treatment device (not shown) connected to the second exhaust pipe 14. , The first valve 6 is made to function, and nitrogen is supplied into the quartz tube 2 at the set flow rate of the flow rate control device 6a (step 2 shown in FIG. 2). By the elevating mechanism not shown the door 4 quartz Ju - - board loaded with the material to be treated is increased in Bed 2 (to no time t 1 shown in FIG. 3 t 2). Therefore, the quartz tube 2 is completely sealed by the O-ring 18 and the lower portion 4a of the boat 4 (step 3 shown in FIG. 2). When the quartz tube 2 is closed, the supply of nitrogen to the quartz tube 2 is stopped and the gas in the quartz tube 2 is discharged by the vacuum pump 13. Therefore, quartz Ju - air pressure in Bed 2 drops (to no time t 2 shown in FIG. 3 t 3) (step 4 shown in FIG. 2).

【0010】石英チュ−ブ2のリ−ク状態を圧力計測器
29の計測信号によって検知し(図3に示す時刻t3
いしt4)(図2に示す判定1),異常があれば警報
し,異常がなければ石英チュ−ブ2への窒素供給を再開
する(図3に示す時刻t4)(図2に示すステップ
5)。石英チュ−ブ2内に窒素が供給されて気圧が所定
値になると(図3に示す時刻t5)(図2に示す判定
2),第2の真空バルブ17を機能させて石英チュ−ブ
2内の気体排出を開始する(図2に示すステップ6)と
ともに,酸素検知センサ16による石英チュ−ブ2内の
酸素濃度の計測を開始する。従って,石英チュ−ブ内は
所定の気圧で酸素が窒素に置換される。計測酸素濃度が
危険のない所定値以下になると(図3に示す時刻t6
(図2に示す判定3),第1のバルブ6を閉じて窒素の
供給を停止するとともに,第2のバルブ8を機能して石
英チュ−ブ2に流量制御装置8aの設定流量で水素の供
給を始め,石英チュ−ブ内の窒素を水素に置換する(図
2に示すステップ7)とともに,ヒ−タ3を機能させて
石英チュ−ブ2内の温度を上昇させる。即ち,水素アニ
−ルを開始する(図2に示すステップ8)。アニ−ル中
も水素の供給と第2の真空バルブ17による排気が平行
し継続して実行される(図3に示す時刻t6ないし
7)。第2の排気配管14で酸素検知センサ16によ
って酸素量を計測して水素の排気を開始しており,第2
の排気配管14が結合する図示しない排気処理装置の機
能によって排出水素が外気中の酸素との間で化学反応を
起こす恐れはない。予め設定した水素アニ−ル完了条件
になると(図3に示す時刻t7)(図2に示す判定
4),水素の供給とヒ−タ3の機能を停止するととも
に,真空ポンプ13を機能させて石英チュ−ブ2内の水
素排気を開始する(図2に示すステップ9)。圧力計測
器29によって計測される石英チュ−ブ2内の気圧が予
め設定した圧力値になると(図3に示す時刻t8)(図
2に示す判定5),第1のバルブ6を機能させて石英チ
ュ−ブ2に窒素の供給を開始するとともに,真空ポンプ
13に換えて第2の真空バルブ17を機能させ石英チュ
−ブ2内の気体を排出する(図2に示すステップ1
0)。従って,石英チュ−ブ内の水素と窒素との置換が
開始される。また,予め設定した所定タイミングから水
素検知機能15を機能させて石英チュ−ブ2内の水素濃
度計測を開始する(図3に示す時刻t9)。石英チュ−
ブ2内の水素濃度が危険のない所定値以下になると(図
3に示す時刻t10)(図2に示す判定6),水素アニ−
ルの完了した被処理材を積載したボ−ト4を図示しない
昇降機構によって降下させる(図3に示す時刻t10ない
しt11)(図2に示すステップ11)。石英チュ−ブ2
は外気との間が解放されるが,石英チュ−ブ2内の水素
濃度が危険のない所定値以下になっているので,外気の
酸素と急激な化学反応を起こす危険はない。ボ−ト4か
ら処理の完了した被処理材を降ろす(図3に示す時刻t
11ないしt12)(図2に示すステップ12)。以下全水
素アニ−ル作業が完了するまでステップ1に戻って上記
シ−ケンスが繰り返される(図2に示す判定7およびス
テップ13)。上述したように全水素アニ−ル作業が完
了すると,または,必要な場合は外気につながる第3の
バルブ11と第2の真空バルブ17を機能させて石英チ
ュ−ブ2内の窒素を排除する。
The leak state of the quartz tube 2 is detected by the measurement signal of the pressure measuring device 29 (time t 3 to t 4 shown in FIG. 3) (judgment 1 shown in FIG. 2), and if there is an abnormality, an alarm is issued. and, if there is no abnormality quartz Ju - resumes nitrogen supply to Bed 2 (time t 4 when FIG. 3) (step 5 shown in FIG. 2). When nitrogen is supplied into the quartz tube 2 and the atmospheric pressure reaches a predetermined value (time t 5 shown in FIG. 3) (judgment 2 shown in FIG. 2), the second vacuum valve 17 is made to function and the quartz tube is activated. The gas discharge from the inside of the quartz tube 2 is started (step 6 shown in FIG. 2), and the measurement of the oxygen concentration inside the quartz tube 2 by the oxygen detection sensor 16 is started. Therefore, oxygen is replaced with nitrogen in the quartz tube at a predetermined pressure. When the measured oxygen concentration falls below a non-hazardous predetermined value (time t 6 shown in FIG. 3)
(Judgment 3 shown in FIG. 2), the first valve 6 is closed to stop the supply of nitrogen, and the second valve 8 functions to cause the quartz tube 2 to supply hydrogen at the flow rate set by the flow control device 8a. Starting supply, the nitrogen in the quartz tube is replaced with hydrogen (step 7 shown in FIG. 2), and the heater 3 is made to function to raise the temperature in the quartz tube 2. That is, hydrogen annealing is started (step 8 shown in FIG. 2). During the anneal, the supply of hydrogen and the evacuation by the second vacuum valve 17 are continuously executed in parallel (time t 6 to t 7 shown in FIG. 3). The amount of oxygen is measured by the oxygen detection sensor 16 in the second exhaust pipe 14, and the exhaust of hydrogen is started.
Due to the function of an exhaust treatment device (not shown) to which the exhaust pipe 14 is connected, there is no possibility that the discharged hydrogen will chemically react with oxygen in the outside air. When the preset hydrogen annealing completion condition is reached (time t 7 shown in FIG. 3) (decision 4 shown in FIG. 2), the supply of hydrogen and the function of the heater 3 are stopped, and the vacuum pump 13 is made to function. Then, the exhaust of hydrogen from the quartz tube 2 is started (step 9 shown in FIG. 2). When the atmospheric pressure in the quartz tube 2 measured by the pressure measuring device 29 reaches a preset pressure value (time t 8 shown in FIG. 3) (determination 5 shown in FIG. 2), the first valve 6 is made to function. Then, the supply of nitrogen to the quartz tube 2 is started, and the second vacuum valve 17 is operated in place of the vacuum pump 13 to discharge the gas in the quartz tube 2 (step 1 shown in FIG. 2).
0). Therefore, replacement of hydrogen and nitrogen in the quartz tube is started. Further, the hydrogen detection function 15 is made to function from a predetermined timing set in advance to start the hydrogen concentration measurement in the quartz tube 2 (time t 9 shown in FIG. 3). Quartz tu
When the hydrogen concentration in the valve 2 becomes equal to or less than a predetermined value without danger (time t 10 shown in FIG. 3) (judgment 6 shown in FIG. 2), hydrogen annealing is performed.
Ball loaded with workpiece completing Le - lowering the lifting mechanism (not shown) the door 4 (to the time t 10 not shown in FIG. 3 t 11) (step 11 shown in FIG. 2). Quartz tube 2
Is released from the outside air, but since the hydrogen concentration in the quartz tube 2 is less than a predetermined value without danger, there is no danger of causing a rapid chemical reaction with oxygen in the outside air. The processed material to be processed is unloaded from the boat 4 (time t shown in FIG. 3).
11 to t 12 ) (step 12 shown in FIG. 2). Thereafter, the above sequence is repeated by returning to step 1 until the all hydrogen annealing work is completed (decision 7 and step 13 shown in FIG. 2). When the all hydrogen annealing work is completed as described above, or if necessary, the third valve 11 and the second vacuum valve 17 connected to the outside air are made to function to eliminate nitrogen in the quartz tube 2. ..

【0011】上述の説明は本発明の技術思想を実現する
ための構成と基本手法に従った安全運転方法を示したも
のであって,水素アニ−ル炉の条件に対応して,各計測
手段の構成,バルブやポンプ類の種類と構成等を適切に
応用改変することができるのは当然である。
The above description shows the structure for realizing the technical idea of the present invention and the safe operation method according to the basic method, and each measuring means corresponds to the conditions of the hydrogen annealing furnace. It is natural that the configuration, type and configuration of valves and pumps can be appropriately applied and modified.

【0012】[0012]

【発明の効果】本発明の水素アニ−ル炉における安全運
転方法は,上述のように,半導体ウェ−ハ等の被処理材
に対する表面処理を窒素等の不活性気体を介在して行う
ものであり,その運転は次のように安全性が確保されて
行うことができるという優れた効果を有する。 水素アニ−ル炉への水素の供給は酸素が危険値以上に
残留してないのを確認して実施できる。 水素アニ−ル炉からの水素の排出条件時には排出配管
に酸素が危険値以上に存在しない。 処理が完了した被処理材を搬出する時には密閉容器内
には水素は残留しない。 上記の条件に従って水素と酸素が危険な比率で混合す
ることはない。 水素と酸素が危険な比率で混合することはないので水
素と酸素との急激な化学反応による爆発事故等を起こす
恐れがない。
As described above, the safe operation method of the hydrogen anneal furnace of the present invention is such that the surface treatment of the material to be treated such as the semiconductor wafer is carried out by interposing an inert gas such as nitrogen. There is an excellent effect that the operation can be performed while ensuring safety as follows. Hydrogen can be supplied to the hydrogen annealing furnace after confirming that oxygen does not remain above the dangerous value. When the hydrogen is discharged from the hydrogen anneal furnace, oxygen does not exist in the discharge pipe above the dangerous value. When the processed material is discharged, hydrogen does not remain in the closed container. Hydrogen and oxygen are not mixed in dangerous proportions according to the above conditions. Since hydrogen and oxygen are not mixed in a dangerous ratio, there is no possibility of causing an explosion accident due to a rapid chemical reaction between hydrogen and oxygen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく水素アニ−ル炉の安全運転方法
を適用する水素アニ−ル炉とその制御装置の一例を示す
ブロック構成図である。
FIG. 1 is a block diagram showing an example of a hydrogen anneal furnace and a control device for the hydrogen anneal furnace to which a safe operation method for a hydrogen anneal furnace according to the present invention is applied.

【図2】図1に示す構成における水素アニ−ル炉とその
制御装置に本発明に基づく水素アニ−ル炉の安全運転方
法を適用した場合の概要フロ−図である。
FIG. 2 is a schematic flow chart in the case where the safe operation method of the hydrogen annealing furnace according to the present invention is applied to the hydrogen annealing furnace and the control device thereof in the configuration shown in FIG.

【図3】図1に示す構成における水素アニ−ル炉とその
制御装置に本発明に基づく水素アニ−ル炉の安全運転方
法を適用した場合の概要タイムチャ−ト図である。
FIG. 3 is a schematic time chart diagram when the safe operation method of the hydrogen annealing furnace according to the present invention is applied to the hydrogen annealing furnace and the control device thereof in the configuration shown in FIG.

【符号の説明】[Explanation of symbols]

1:水素アニ−ル炉 2:石英チュ−ブ(密閉容器) 3:ヒ−タ 4:ボ−ト 5:窒素ガス(不活性気体)配管 6,8,11:バルブ 7:水素ガス配管 12,14:排気配管 13:真空ポンプ 15:水素検知機能(水素検知手段) 16:酸素検知センサ(酸素検知手段) 17:真空バルブ 19:制御装置 20:シ−ケンサ 1: Hydrogen anneal furnace 2: Quartz tube (closed vessel) 3: Heater 4: Boat 5: Nitrogen gas (inert gas) piping 6, 8, 11: Valve 7: Hydrogen gas piping 12 , 14: Exhaust pipe 13: Vacuum pump 15: Hydrogen detection function (hydrogen detection means) 16: Oxygen detection sensor (oxygen detection means) 17: Vacuum valve 19: Control device 20: Sequencer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器と,該密閉容器に被処理材を搬
出・搬入するボ−トおよび該ボ−ト駆動手段と,水素供
給手段と,排気手段と,被処理材加熱手段とを備えた水
素アニ−ル炉において,不活性気体供給手段と,水素検
知手段と,酸素検知手段とを設け,下記シ−ケンスによ
って水素アニ−ルを行うようにしたことを特徴とする水
素アニ−ル炉の安全運転方法。 密閉容器内の気体を排出し,不活性気体を供給する。 被処理材を密閉容器内に搬入し,該密閉容器を密閉す
る。 密閉容器内の気体を排出する。 密閉容器内に酸素が所定量以上存在しないのを確認し
てから水素を供給する。 被処理材の水素アニ−ルを行う。 密閉容器内の水素を排出する。 密閉容器に不活性気体を供給する。 密閉容器内に水素が所定量以上存在しないのを確認し
てから被処理材を搬出する。
1. A hermetically sealed container, a boat for carrying out and carrying in a material to be treated into the hermetically sealed container, a means for driving the boat, a hydrogen supply means, an exhaust means, and a means for heating the material to be treated. In the hydrogen anneal furnace, an inert gas supply means, a hydrogen detection means, and an oxygen detection means are provided, and the hydrogen anneal is performed by the following sequence. How to safely operate the furnace. Exhaust the gas in the closed container and supply the inert gas. The material to be treated is carried into a closed container, and the closed container is closed. Evacuate the gas in the closed container. Hydrogen is supplied after confirming that oxygen does not exist in the sealed container in a predetermined amount or more. Hydrogen annealing of the material to be processed is performed. The hydrogen in the closed container is discharged. Inert gas is supplied to the closed container. The material to be processed is carried out after confirming that hydrogen does not exist in the closed container in a predetermined amount or more.
JP4071993A 1993-02-05 1993-02-05 Safety operating method of hydrogen annealing furnace Pending JPH06232140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4071993A JPH06232140A (en) 1993-02-05 1993-02-05 Safety operating method of hydrogen annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4071993A JPH06232140A (en) 1993-02-05 1993-02-05 Safety operating method of hydrogen annealing furnace

Publications (1)

Publication Number Publication Date
JPH06232140A true JPH06232140A (en) 1994-08-19

Family

ID=12588411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4071993A Pending JPH06232140A (en) 1993-02-05 1993-02-05 Safety operating method of hydrogen annealing furnace

Country Status (1)

Country Link
JP (1) JPH06232140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261296A (en) * 2005-03-16 2006-09-28 Hitachi Kokusai Electric Inc Substrate treatment equipment
JP2007142237A (en) * 2005-11-21 2007-06-07 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261296A (en) * 2005-03-16 2006-09-28 Hitachi Kokusai Electric Inc Substrate treatment equipment
JP2007142237A (en) * 2005-11-21 2007-06-07 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
KR100591723B1 (en) Oxidation treatment method and oxidation treatment device
WO2008001688A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
US5362031A (en) Method and apparatus for the automatic monitoring of operating safety and for controlling the progress of the process in a vacuum heat-treatment oven
JP3468577B2 (en) Heat treatment equipment
CN112281143A (en) Semiconductor device and chamber pressure control method
CN112349623A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and computer-readable recording medium
JPH06232140A (en) Safety operating method of hydrogen annealing furnace
JP3545672B2 (en) Substrate processing method and substrate processing apparatus
JP3163160B2 (en) Heat treatment equipment
JP2683579B2 (en) Processing equipment
JP4124838B2 (en) Pressure gas supply device
JP2766856B2 (en) Vertical pressure oxidation equipment
JP4451653B2 (en) Substrate processing apparatus and semiconductor manufacturing method
JP3242417B2 (en) Chamber interlock mechanism
JP2006086186A (en) Substrate processing apparatus
WO2024057590A1 (en) Exhaust structure, exhaust system, processing device, and method for manufacturing semiconductor device
JP2002329717A (en) Heat treatment method of object and batch heat processing apparatus
KR20030032743A (en) Heating process apparatus for semiconductor manufacturing equipment having exhaust structure
JP2006040990A (en) Reduced pressure heat treatment apparatus and method of restoration to normal pressure of the apparatus
JP4490636B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2008210852A (en) Substrate treating equipment and method of manufacturing semiconductor device
JP3437308B2 (en) Heat treatment furnace for semiconductor manufacturing equipment
JP2014060305A (en) Thermal treatment apparatus and leakage check method
JPH04280625A (en) Gas control device for load lock chamber of vertical type difusion cvd device
JP3369247B2 (en) Semiconductor manufacturing equipment