[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06238795A - Thermal insulating structure - Google Patents

Thermal insulating structure

Info

Publication number
JPH06238795A
JPH06238795A JP5032087A JP3208793A JPH06238795A JP H06238795 A JPH06238795 A JP H06238795A JP 5032087 A JP5032087 A JP 5032087A JP 3208793 A JP3208793 A JP 3208793A JP H06238795 A JPH06238795 A JP H06238795A
Authority
JP
Japan
Prior art keywords
container
heat insulating
insulating structure
pressure
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5032087A
Other languages
Japanese (ja)
Inventor
Nobuo Miura
信雄 三浦
Akira Fujie
昭 富士栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5032087A priority Critical patent/JPH06238795A/en
Publication of JPH06238795A publication Critical patent/JPH06238795A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To shape a thermal insulating structure which can follow the shape of a heat-insulated body and can be filled into a gap part by filling synthetic resin foamed particles in a flexible plastic container with a specified oxygen permeability and reducing the gas pressure in the gap part formed in the container to a specified pressure. CONSTITUTION:Synthetic resin foamed particles are filled in a flexible plastic container with an oxygen permeability of at most 100cm<3>/sec cm<2>.cmHg and the gas pressure in the gap part formed in the container is reduced to 1-759Torr. Mutual positional displacement of foamed particles is suppresssed thereby and the whole shape of the filling material is held against the outer pressure. It is possible therefore to obtain shapability following the shape of a heat insulating body in the application, and to obtain self-standing properties as a heat insulating structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、断熱材、特にプラント
配管におけるバルブ、フランジ、継手等、また住宅建築
における根太、間柱等の種々の形状の隙間に充填でき、
被保温保冷体の形状に追随できる現場付形性を有し、な
おかつ、断熱材自体で自立性を有するフレキシブルな断
熱材から所定形状の型内で付形された硬質の型内成形断
熱材を供することのできる特殊な断熱構造体に関する。
INDUSTRIAL APPLICABILITY The present invention can fill gaps of various shapes such as heat insulating materials, particularly valves, flanges, joints, etc. in plant piping, joists, studs, etc. in residential construction,
A hard in-mold molded heat insulating material that is shaped in a mold of a predetermined shape from a flexible heat insulating material that has on-site formability that can follow the shape of the object to be kept cold The present invention relates to a special heat insulating structure that can be provided.

【0002】[0002]

【従来の技術】保温保冷等に用いられる断熱材には、通
常、グラスウール等の無機繊維質の断熱材、硬質ウレタ
ンフォームや発泡ポリスチレン等の硬質の合成樹脂発泡
体が用いられている。グラスウールは断熱性能は劣るも
のの軽量で安価である点から、最も汎用的に用いられ、
フレキシブルでもあるため種々の形状の隙間部にも容易
に切断し充填することができる優れた断熱材である。
2. Description of the Related Art As a heat insulating material used for keeping heat and cold, an inorganic fiber heat insulating material such as glass wool or a hard synthetic resin foam such as hard urethane foam or polystyrene foam is usually used. Although glass wool is inferior in heat insulation performance, it is lightweight and inexpensive, so it is most commonly used.
Since it is also flexible, it is an excellent heat insulating material that can easily cut and fill gaps of various shapes.

【0003】しかしながら、断熱施工作業に際し、ガラ
ス繊維が飛散し作業者の肌を刺激したりして不快感が著
しい。また、施工後、透湿により経時的に吸水し、被保
温保冷体の材料腐食を引き起こしたり、吸水による重量
増加により落下や垂れ下がり等の現象も発生し、断熱性
能の著しい劣化を引き起こしたりする。合成樹脂発泡体
では上記欠点は大幅に改良されるものの、板状のものや
金型で成形された一定形状の製品として供給されるた
め、施工現場での切断作業を伴ったり、隙間部への充填
が難しい等の欠点を有する。また、硬質ポリウレタンフ
ォームの現場発泡では吹き付けや注入発泡が可能である
が、前者では隙間部への充填が難しく、後者では発泡圧
を抑制するための型枠を必要とし、さらに隅部まで充填
しない場合も発生する。
However, during the heat insulating work, the glass fibers are scattered to irritate the operator's skin, which causes considerable discomfort. Further, after construction, it absorbs water over time due to moisture permeation to cause material corrosion of the heat-insulated body, or to cause a phenomenon such as dropping or sagging due to an increase in weight due to water absorption, which causes remarkable deterioration of heat insulation performance. Although the above drawbacks are greatly improved with synthetic resin foams, they are supplied as plate-shaped or mold-shaped products of a certain shape, so they involve cutting work at construction sites and It has drawbacks such as difficulty in filling. In addition, in-situ foaming of rigid polyurethane foam allows spraying and injecting foaming, but in the former it is difficult to fill the gap, and in the latter a formwork is required to suppress the foaming pressure, and the corners are not filled. It also happens.

【0004】前述のような汎用断熱材は熱伝導率の値は
0.02〜0.05Kcal/m・h・℃程度のもので
あるのに対し、更に小さな0.005〜0.010Kc
al/m・h・℃の熱伝導率を示す粉末真空断熱材があ
る。これは、例えば、特開平2−271194号公報に
開示されるように粒子径が1〜10000nmの微細粉
体であるケイ酸カルシュウムやパーライト粉末を0.0
1〜10torr程度の高真空状態の容器中に充填され
たものであるが、このような高真空を達成するために莫
大なエネルギーを必要とし、また、高真空を維持させる
ための容器の気密性も必要とされるため特殊な用途に限
定されるものである。
The general-purpose heat insulating material as described above has a thermal conductivity of about 0.02 to 0.05 Kcal / m · h · ° C, while a smaller value of 0.005 to 0.010 Kc.
There is a powder vacuum heat insulating material showing a thermal conductivity of al / m · h · ° C. For example, as disclosed in Japanese Patent Application Laid-Open No. 2-271194, calcium silicate or pearlite powder, which is a fine powder having a particle diameter of 1 to 10000 nm, is 0.0
It is filled in a container in a high vacuum state of about 1 to 10 torr, but enormous energy is required to achieve such a high vacuum, and the airtightness of the container for maintaining a high vacuum. Since it is also required, it is limited to special applications.

【0005】このものと類似の構造を有するが、技術的
にまったく異質のもので断熱性能を厳しく要求しないも
のとして実開平4−124635号、特開平1−220
798号公報に開示される断熱材、即ち、発泡樹脂細片
を単に大気圧下で包装したものもある。これらは熱伝導
率では0.04〜0.1Kcal/m・h・℃と高く断
熱性能に劣るが、安価で施工時の取扱いが容易である点
に特徴がある。しかし、こうした材料は包装容器内で施
工時に発泡樹脂片が移動したりして欠充填部分が発生し
著しい熱橋を発生したり、また材料自体での自立性がな
いため施工後にダレや落下を生じ本来の断熱性を機能し
ないことがある。
Although it has a structure similar to this, but is technically completely different and does not strictly require heat insulating performance, it is disclosed in Japanese Utility Model Publication No. 4-124635 and Japanese Unexamined Patent Publication No. 1-220.
There is also a heat insulating material disclosed in Japanese Patent Publication No. 798, that is, a foamed resin strip simply packaged under atmospheric pressure. These have high thermal conductivity of 0.04 to 0.1 Kcal / m · h · ° C and are inferior in heat insulation performance, but are characterized by being inexpensive and easy to handle during construction. However, in such materials, foamed resin pieces may move in the packaging container during construction, resulting in a lack of filling parts and a significant thermal bridge, and since the material itself is not self-supporting, it does not sag or fall after construction. Occasionally, the original heat insulation may not function.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記欠点を
改良し、断熱材自体の自立性を有し、ダレや落下がな
く、かつ、被保温保冷体の種々な形状に対応して変形で
きる現場付形性を有し、隙間部への充填も容易にできる
フレキシブルな断熱材から板状や定型の型物成形体にも
匹敵できる硬質の断熱材に至るまで同一の構成材料によ
り任意に対応でき、しかも比較的小さな熱伝導率0.0
2〜0.04Kcal/m・h・℃を示す優れた新規な
断熱材を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has improved the above-mentioned drawbacks, has the self-supporting property of the heat insulating material itself, is free from sagging and drops, and is deformable in accordance with various shapes of the heat insulation body. With the same constituent materials, from flexible heat insulators that can be shaped in the field and that can easily fill gaps to hard heat insulators that are comparable to plate-shaped or standard molded products It can be used and has a relatively low thermal conductivity of 0.0
An object of the present invention is to provide an excellent new heat insulating material showing 2 to 0.04 Kcal / m · h · ° C.

【0007】[0007]

【課題を解決するための手段】本発明は、合成樹脂発泡
体細片または合成樹脂発泡粒子が100cm3 /sec
・cm2 ・cmHg以下の酸素透過率を有する柔軟性の
プラスチック容器内に充填され、該容器内部に形成され
る空隙部の気体圧力が1〜759torrに減圧されて
なることを特徴とする断熱構造体である。
SUMMARY OF THE INVENTION The present invention provides a synthetic resin foam strip or synthetic resin foam particles of 100 cm 3 / sec.
A heat insulating structure characterized by being filled in a flexible plastic container having an oxygen permeability of cm 2 · cmHg or less, and reducing the gas pressure of the void formed inside the container to 1 to 759 torr. It is the body.

【0008】即ち、本発明においては、柔軟性のプラス
チック容器の外系から閉鎖された空間内に合成樹脂発泡
体細片または合成樹脂発泡粒子を充填させ、該空間内の
空隙部の圧力を外気圧より低く調整することにより、充
填された発泡体細片または発泡粒子相互の位置変動を抑
制すると共に、該充填材が外気圧に対抗して全体の形状
を保持させることにより形成される断熱構造体である。
That is, in the present invention, the synthetic resin foam strips or synthetic resin foam particles are filled in the space closed from the external system of the flexible plastic container, and the pressure in the void in the space is removed. By adjusting the pressure to be lower than atmospheric pressure, it is possible to suppress the positional fluctuation between the filled foam strips or the expanded particles and to keep the overall shape of the filling material against the atmospheric pressure. It is the body.

【0009】一般にプラスチック材料は圧力差があれば
気体を透過する性質を有するため、該プラスチック容器
の内部と外部の圧力差は経時的になくなっていく問題が
ある。そのため容器の材料としては気体の透過性を考慮
することが重要である。具体的には大気中から容器内へ
空気が透過し、容器内圧力が製造後の経時変化により大
気圧に等しくなり、製造直後の機能を喪失することにな
る。その結果、発泡体細片または発泡粒子が移動し易く
なり、欠充填部を発生したり、自立性がなくなったりす
る問題点が生じる。そのため、プラスチック容器材料に
ついてはその気体透過性の観点から選択し、必要期間の
間、当初設計の機能を保持させる必要があり、プラスチ
ック容器材料の酸素透過率が標準状態(STP)で10
0cm3 /sec・cm2 ・cmHg以下であることが
必要である。
Generally, a plastic material has a property of permeating a gas if there is a pressure difference, so that there is a problem that the pressure difference between the inside and the outside of the plastic container disappears with time. Therefore, it is important to consider the gas permeability as the material of the container. Specifically, air permeates from the atmosphere into the container, the internal pressure of the container becomes equal to the atmospheric pressure due to the change with time after manufacturing, and the function immediately after manufacturing is lost. As a result, the foam pieces or the foamed particles are likely to move, resulting in problems such as missing filling portions and lack of independence. Therefore, it is necessary to select the plastic container material from the viewpoint of its gas permeability, and to maintain the function of the original design for a necessary period, and the oxygen permeability of the plastic container material is 10 in the standard state (STP).
It should be 0 cm 3 / sec · cm 2 · cmHg or less.

【0010】酸素透過率が100cm3 /sec・cm
2 ・cmHgを越えると製造時の容器内圧が1torr
以下であっても数カ月後には大気圧に至ることになり、
実用に供するには問題である。長期に渡り容器内圧を大
気圧未満に保持するために好ましい容器材料の酸素透過
率は50cm3 /sec・cm2 ・cmHg以下が望ま
しい。
Oxygen permeability is 100 cm 3 / sec · cm
If the pressure exceeds 2 cmHg, the internal pressure of the container during manufacturing will be 1 torr.
Even if it is below, it will reach atmospheric pressure in a few months,
It is a problem for practical use. In order to keep the internal pressure of the container below atmospheric pressure for a long period of time, the oxygen permeability of the preferred container material is preferably 50 cm 3 / sec · cm 2 · cmHg or less.

【0011】前記容器は各種プラスチック材料からなる
フィルム、そのようなプラスチックフィルムと金属箔と
で構成されるラミネート材、表面に蒸着膜が形成された
プラスチックフィルム、或いは異種のプラスチック材料
からなる2以上の多層フィルム等のように気体遮断性を
有し、かつ、変形可能な袋体が使用される。また、フィ
ルム材料の厚みはその材料の気体透過性を考慮して設定
することができる。
The container is a film made of various plastic materials, a laminate material made of such plastic film and metal foil, a plastic film having a vapor deposition film formed on the surface, or two or more kinds made of different kinds of plastic materials. A bag that has a gas barrier property and is deformable, such as a multilayer film, is used. Further, the thickness of the film material can be set in consideration of the gas permeability of the material.

【0012】以下に単体のプラスチックフィルムの場合
に酸素透過率が100cm3 /sec・cm2 ・cmH
g以下となる膜厚(μm)を参考に記す。ポリアクリロ
ニトリル(0.02)、セロファン(0.21)、ナイ
ロン66(0.3)、ポリ塩化ビニリデン(0.5
3)、ナイロン6(3.8)、硬質ポリ塩化ビニル
(4.5)、結晶性ポリエチレンテレフタレート(3.
5)、非晶性ポリエチレンテレフタレート(5.9)、
高密度ポリエチレン(40.3)、低密度ポリエチレン
(288)、ポリプロピレン(230)等があるが、低
温用の保冷材として使用する場合には透湿率も低いこと
が望まれる。金属箔とのラミネート材料では問題無いが
樹脂フィルムでは疎水性の樹脂材料が好ましい。
In the case of a single plastic film, the oxygen permeability is 100 cm 3 / sec · cm 2 · cmH.
The film thickness (μm) that is less than or equal to g is described for reference. Polyacrylonitrile (0.02), cellophane (0.21), nylon 66 (0.3), polyvinylidene chloride (0.5
3), nylon 6 (3.8), rigid polyvinyl chloride (4.5), crystalline polyethylene terephthalate (3.
5), amorphous polyethylene terephthalate (5.9),
There are high-density polyethylene (40.3), low-density polyethylene (288), polypropylene (230) and the like, but when used as a low temperature cold insulating material, low moisture permeability is desired. There is no problem with a laminate material with a metal foil, but a hydrophobic resin material is preferable for a resin film.

【0013】また、実際には袋体として供給され、合成
樹脂発泡体細片や発泡粒子を充填した後、ヒートシール
等によりシールし気密性を維持させるため、接着の容易
なフィルム材料が好ましい。多層フィルムの具体例とし
ては、ポリ塩化ビニリデン/接着層/ポリオレフィン、
ポリ塩化ビニル/接着層/ポリオレフィン、ナイロン/
接着層/ポリオレフィン、PET/接着層/ポリオレフ
ィン、セロファン/接着層/ポリオレフィン、エチレン
ビニルアルコール共重合体/接着層/ポリオレフィン、
ナイロン/接着層/ポリ塩化ビニリデン/接着層/ポリ
オレフィン、ナイロン/接着層/セロファン(またはエ
チレンビニルアルコール共重合体)/接着層/ポリオレ
フィン、ナイロン/接着層/セロファン(またはエチレ
ンビニルアルコール共重合体)/ポリ塩化ビニリデン
(またはポリ塩化ビニル)/接着層/ポリオレフィン、
ポリオレフィン/接着層/セロファン(またはエチレン
ビニルアルコール共重合体)/接着層/ポリオレフィ
ン、ポリ塩化ビニリデン(またはポリ塩化ビニル)/接
着層/セロファン(またはエチレンビニルアルコール共
重合体)/接着層/ポリオレフィン、アイオノマー/接
着層/セロファン(またはエチレンビニルアルコール共
重合体)/接着層/ポリオレフィン、ポリオレフィン/
接着層/ポリ塩化ビニリデン(またはポリ塩化ビニル)
/接着層/ポリオレフィン、等の多層フィルムがある。
ここに、ポリオレフィンとはポリエチレン、ポリプロピ
レン、エチレン酢酸ビニル共重合体を示す。また、接着
層は必要に応じて構成されるがエチレン酢酸ビニル共重
合体が一般的である。これらの層間に金属箔や金属蒸着
膜が構成されていても良い。
In fact, a film material which is supplied as a bag and which is easily adhered is preferable in order to maintain airtightness by sealing with synthetic resin foam strips or foamed particles and then heat sealing or the like. Specific examples of the multilayer film include polyvinylidene chloride / adhesive layer / polyolefin,
Polyvinyl chloride / Adhesive layer / Polyolefin, Nylon /
Adhesive layer / polyolefin, PET / adhesive layer / polyolefin, cellophane / adhesive layer / polyolefin, ethylene vinyl alcohol copolymer / adhesive layer / polyolefin,
Nylon / adhesive layer / polyvinylidene chloride / adhesive layer / polyolefin, nylon / adhesive layer / cellophane (or ethylene vinyl alcohol copolymer) / adhesive layer / polyolefin, nylon / adhesive layer / cellophane (or ethylene vinyl alcohol copolymer) / Polyvinylidene chloride (or polyvinyl chloride) / Adhesive layer / Polyolefin,
Polyolefin / adhesive layer / cellophane (or ethylene vinyl alcohol copolymer) / adhesive layer / polyolefin, polyvinylidene chloride (or polyvinyl chloride) / adhesive layer / cellophane (or ethylene vinyl alcohol copolymer) / adhesive layer / polyolefin, Ionomer / adhesive layer / cellophane (or ethylene vinyl alcohol copolymer) / adhesive layer / polyolefin, polyolefin /
Adhesive layer / polyvinylidene chloride (or polyvinyl chloride)
There are multilayer films such as / adhesive layer / polyolefin.
Here, polyolefin refers to polyethylene, polypropylene, and ethylene-vinyl acetate copolymer. Further, the adhesive layer is constituted as required, but an ethylene vinyl acetate copolymer is generally used. A metal foil or a metal vapor deposition film may be formed between these layers.

【0014】本発明を構成する合成樹脂発泡体細片また
は合成樹脂発泡粒子の種類には特に限定はなく、ポリウ
レタン、ポリスチレン、ポリエチレン、ポリプロピレ
ン、ポリエステル、塩化ビニリデン系共重合体等の樹脂
を発泡させた通常のものが使用できる。これらは粒状発
泡体として形成された球状の発泡粒子、或いは、成形体
を裁断した細片の状態で使用に供される。細片または粒
子の大きさは直径0.5〜5mm程度とすることが好ま
しい。
There is no particular limitation on the kind of the synthetic resin foam strip or the synthetic resin foam particles constituting the present invention, and a resin such as polyurethane, polystyrene, polyethylene, polypropylene, polyester, vinylidene chloride copolymer is foamed. Ordinary ones can be used. These are used in the form of spherical foamed particles formed as a granular foam or in the form of a cut piece of a molded body. The size of the particles or particles is preferably about 0.5 to 5 mm in diameter.

【0015】容器内への充填率を高め、かつ、種々の形
状に対応できる現場付形性の点からは球状の発泡粒子が
望ましい。本発明の断熱構造体としての断熱性能は合成
樹脂発泡体の断熱性能に負うところが大きいため、使用
目的に応じて選択される。低熱伝導性を必要とする場合
は発泡体単体で低熱伝導率を示す硬質ポリウレタンフォ
ームの細片、または塩化ビニリデン系樹脂発泡粒子のよ
うに発泡体内部に低熱伝導性のフッ化炭化水素ガスを含
むものが好ましい。
Spherical expanded particles are desirable from the viewpoint of increasing the filling rate in the container and being capable of forming various shapes on site. The heat insulating performance of the heat insulating structure of the present invention depends largely on the heat insulating performance of the synthetic resin foam, and is therefore selected according to the purpose of use. When low thermal conductivity is required, a small piece of rigid polyurethane foam showing low thermal conductivity in the foam alone, or a vinylidene chloride resin foamed particle containing a fluorocarbon gas of low thermal conductivity inside the foam. Those are preferable.

【0016】また、容器内の空隙部に存在する空気は、
断熱構造体の熱伝導率を増加させるため空隙率は可能な
限り低くすることが必要なことから、最も好ましいもの
としては定容積内に最密充填が可能な球状粒子が好まし
く、通常30〜40%の空隙率となる球状の発泡粒子が
良い。中でも発泡粒子自体の熱伝導率が従来になく低い
塩化ビニリデン系樹脂発泡粒子が好ましく、断熱構造体
として0.020〜0.024kcal/m・h・℃と
いう低い熱伝導率が達成できる。
Further, the air existing in the void in the container is
Since it is necessary to make the porosity as low as possible in order to increase the thermal conductivity of the heat insulating structure, the most preferable one is a spherical particle that can be most closely packed in a constant volume, usually 30 to 40. A spherical expanded particle having a porosity of 10% is preferable. Among them, vinylidene chloride resin foamed particles having a low thermal conductivity of the foamed particles themselves are unprecedented, and a low thermal conductivity of 0.020 to 0.024 kcal / m · h · ° C can be achieved as a heat insulating structure.

【0017】本発明でいう塩化ビニリデン系樹脂発泡粒
子とは、塩化ビニリデン、及び、これと共重合可能なビ
ニルモノマー1種以上とから成り、塩化ビニリデンが3
0重量%以上を含み、ガラス転移点が85℃以上の非晶
質の塩化ビニリデン共重合体樹脂に有機揮発性発泡剤を
含有せしめた発泡性樹脂粒子を加熱発泡することにより
得られるものである。具体的には、例えば、特開昭63
−170433号、特開昭63−170434号、特開
昭63−170435号公報に詳述されるものが使用で
きる。
The vinylidene chloride resin foamed particles in the present invention are composed of vinylidene chloride and at least one vinyl monomer copolymerizable therewith, and vinylidene chloride is 3
It is obtained by heat-foaming expandable resin particles obtained by containing an organic volatile foaming agent in an amorphous vinylidene chloride copolymer resin containing 0% by weight or more and having a glass transition point of 85 ° C. or more. . Specifically, for example, JP-A-63
-170433, JP-A-63-170434 and JP-A-63-170435 can be used.

【0018】更に、該充填材の表面に輻射による熱伝導
を抑制する輻射防止剤を処理して断熱性能を向上させる
こともできる。輻射防止剤としては、カーボンブラッ
ク、グラファイト、コージェライト、ケイソウ土、ケイ
酸カルシュウム、SiC、TiO2 、ZrO、Cr
3 、SiO2 、Al2 3 、CoO、CaO等の微粒
子、金属粉末、金属箔等が挙げられる。
Further, the surface of the filling material may be treated with a radiation preventive agent for suppressing heat conduction due to radiation to improve the heat insulating performance. As radiation inhibitors, carbon black, graphite, cordierite, diatomaceous earth, calcium silicate, SiC, TiO 2 , ZrO, Cr
Examples include fine particles of O 3 , SiO 2 , Al 2 O 3 , CoO, CaO and the like, metal powder, metal foil and the like.

【0019】本発明における容器内部に形成される空隙
部の減圧状態は1〜759torrであることが好まし
い。1torrより小さい状態では高真空状態になり断
熱材を製造したり、気密性を維持する上で問題があり、
また、発泡体細片または発泡粒子の粒子間に形成される
空隙の大きさは、その圧力下における空気等の気体の平
均自由行程よりも遥かに大きく、真空粉末断熱材のよう
な断熱性能を要求するものではなく本発明の意図するも
のではない。製造の容易性からさらに好ましい下限の減
圧状態は100torr程度が良い。
The depressurized state of the voids formed inside the container in the present invention is preferably 1 to 759 torr. If it is less than 1 torr, it becomes a high vacuum state and there is a problem in manufacturing a heat insulating material or maintaining airtightness.
Further, the size of the voids formed between the particles of the foam strip or the expanded particles is much larger than the mean free path of the gas such as air under the pressure, and the heat insulation performance such as the vacuum powder heat insulating material can be obtained. It is not required and is not intended by the invention. A more preferable lower limit of the reduced pressure state is about 100 torr for ease of production.

【0020】減圧状態が759torrを越えると容器
内部の気体圧力は大気圧に等しくなり、内部に充填され
ている合成樹脂発泡体細片または発泡粒子相互の位置関
係が変動し易く自由に流動できる状態となるため、本発
明の目的である断熱構造体の自立性や被保温保冷体の形
状に追随した現場付形性が無くなる。本発明において容
器内部の減圧状態は極めて重要な役割を果たす。例え
ば、約700〜759torr程度の減圧状態であれ
ば、充填材である合成樹脂発泡体細片や発泡粒子は自由
に流動する事はないが、外力により相互の位置関係を変
動させることができ、外力を取り去れば変形された状態
を維持でき、被保温保冷体の形状に追随した現場付形性
を付与され、また断熱構造体としての自立性をも有し、
施工後のダレや落下を生じる事はない。
When the depressurized state exceeds 759 torr, the gas pressure inside the container becomes equal to the atmospheric pressure, and the positional relationship between the synthetic resin foam fine particles or the foamed particles filled inside is easy to change and can flow freely. Therefore, the self-supporting property of the heat insulating structure and the on-site formability following the shape of the heat insulation object, which are the objects of the present invention, are lost. In the present invention, the depressurized state inside the container plays a very important role. For example, in a depressurized state of about 700 to 759 torr, the synthetic resin foam strips and expanded particles that are the filler do not flow freely, but the mutual positional relationship can be changed by an external force, If you remove the external force, you can maintain the deformed state, give the site shapeability that follows the shape of the heat insulation body, and also have the self-supporting property as a heat insulating structure,
No sagging or dropping after construction.

【0021】容器内部の減圧状態が1〜700torr
程度の比較的高い減圧状態であれば、合成樹脂発泡体細
片または発泡粒子の相互の位置変動は起こり難くなり一
定形状の通常の硬質発泡断熱材と同質のものが得られ
る。本発明の一態様として独立気泡の発泡粒子内外の気
体移動を利用して施工時には柔軟性を有し現場付形が容
易にでき、被保温保冷体の形状に合わせて付形した状態
で放置することによりその形状が保持されたまま容器内
の発泡粒子相互の位置変動が起こり難い剛性のある硬質
発泡断熱材と同質の型物成形品へと変化する断熱構造体
を提供することができる。これは下記の原理を巧みに利
用した特徴ある使用法である。
The reduced pressure inside the container is 1 to 700 torr.
In a relatively high decompressed state, it is difficult for the synthetic resin foam strips or expanded particles to move relative to each other, and the same quality as a regular hard foam insulation material having a uniform shape can be obtained. As one aspect of the present invention, by utilizing gas movement inside and outside the foamed particles of closed cells, it has flexibility at the time of construction and can be easily shaped in the field, and is left in a shaped state according to the shape of the heat insulation body. As a result, it is possible to provide a heat insulating structure in which the shape of the heat insulating structure is changed to a molded product of the same quality as the rigid hard foam insulating material in which the positional variation between the expanded particles in the container is unlikely to occur while the shape is maintained. This is a characteristic usage that makes good use of the following principle.

【0022】一般に、有機揮発性発泡剤を含有する発泡
性樹脂粒子を加熱により発泡させた直後の独立気泡から
なる発泡粒子の気泡内部を構成する気体は発泡剤ガスの
みであり、空気は含まれずその分圧は零であるため発泡
粒子外部の大気中から拡散により発泡粒子の独立気泡内
へと空気が経時的に侵入し空気分圧が大気圧と等しくな
るに至る。
Generally, the gas forming the inside of the bubbles of the foamed particles consisting of the closed cells immediately after the foaming resin particles containing the organic volatile foaming agent is foamed by heating is only the foaming agent gas and does not contain air. Since the partial pressure is zero, the air invades into the closed cells of the expanded particles from the atmosphere outside the expanded particles over time, and the partial pressure of the air becomes equal to the atmospheric pressure.

【0023】従って、発泡粒子内部の空気分圧が大気圧
に等しくなる前に、この発泡粒子をガスバリアー性のあ
る容器内に充填し密封すれば、容器内の発泡粒子間に存
在する空隙を構成する空気が発泡粒子内部に取り込ま
れ、該空隙部は減圧状態となる。したがって、初期は柔
軟性を有するが経時的に剛性を持つに至る性質を有する
断熱構造体を提供することができる。
Therefore, if the expanded particles are filled and sealed in a container having a gas barrier property before the air partial pressure inside the expanded particles becomes equal to the atmospheric pressure, the voids existing between the expanded particles in the container will be formed. The constituent air is taken into the inside of the expanded particles, and the voids are in a reduced pressure state. Therefore, it is possible to provide a heat insulating structure having the property of initially having flexibility but having rigidity over time.

【0024】かかる特性を有効に利用するためには上述
のような発泡粒子内外の気体移動が短時間で完了する性
質の樹脂発泡粒子では製造上、取扱い上問題があり、緩
慢に上記気体移動が達成されることが好ましい。こうし
た点からも気体透過性の低い素材からなり、フッ化炭化
水素を発泡剤とする塩化ビニリデン系樹脂発泡粒子が発
泡性樹脂粒子として好ましいものである。
In order to effectively utilize such characteristics, there is a problem in production and handling in the resin foamed particles having the property that the gas movement inside and outside the foamed particles is completed in a short time as described above, and the above gas movement is slow. It is preferably achieved. From this point of view, vinylidene chloride resin foamed particles made of a material having low gas permeability and containing fluorohydrocarbon as a foaming agent are preferable as the expandable resin particles.

【0025】本発明における容器内部の空隙部を占める
気体としては一般的には空気であるが、断熱性能を向上
させるために空気よりも熱伝導率が小さい気体を充填す
ることは好ましい。空気よりも小さい熱伝導率を示す気
体としてはフッ化炭化水素、塩素化フッ化炭化水素と等
のフロン系化合物が好ましい。
The gas that occupies the voids inside the container in the present invention is generally air, but it is preferable to fill it with a gas having a lower thermal conductivity than that of air in order to improve the heat insulating performance. Freon-based compounds such as fluorinated hydrocarbons and chlorinated fluorinated hydrocarbons are preferable as the gas having a thermal conductivity smaller than that of air.

【0026】[0026]

【実施例】以下、実施例により本発明を説明する。な
お、本発明で用いた評価方法は次の通りである。 〔酸素透過率〕: ASTM D1434−7に準じ
て、ガス透過測定装置(東洋精機制作所)を用い標準状
態(STP)における酸素透過率を求める。
EXAMPLES The present invention will be described below with reference to examples. The evaluation method used in the present invention is as follows. [Oxygen permeability]: According to ASTM D1434-7, the oxygen permeability in a standard state (STP) is obtained using a gas permeation measuring device (Toyo Seiki Seisakusho).

【0027】〔熱伝導率〕 : JISA1412に基
づき測定する。 〔発泡粒子のかさ密度〕: 発泡後25℃の恒温室にて
24時間熟成した予備発泡粒子をメスシリンダーにて1
リットル分取し、その重量を測定し、かさ密度を求め
る。5回の測定の平均値を採用する。
[Thermal conductivity]: Measured according to JISA1412. [Bulk Density of Expanded Particles]: Pre-expanded particles aged for 24 hours in a temperature-controlled room at 25 ° C. after foaming were used in a measuring cylinder to
Collect liters, measure the weight, and obtain the bulk density. The average value of 5 measurements is adopted.

【0028】〔自立性〕 : 50×1000×10
00mmの大きさの断熱構造体を10mm長さの方向が
鉛直となるように床面に垂直に立て、両側辺部の床面か
ら500mm高さの部分全体を把持した際に、容器内部
の合成樹脂発泡体細片または発泡粒子相互の位置変動が
なく、かつ断熱構造体のたわみが鉛直方向から30゜以
内のたわみ角である場合を自立性があると判定する。
[Independence]: 50 × 1000 × 10
When a heat insulating structure with a size of 00 mm is erected vertically on the floor so that the direction of the length of 10 mm is vertical, and the entire 500 mm height from the floor of both sides is gripped, the inside of the container is composited. When there is no positional change between the resin foam strips or the expanded particles and the deflection of the heat insulating structure is within a deflection angle of 30 ° from the vertical direction, it is determined to be self-supporting.

【0029】〔現場付形性〕: 2B配管径のT字形継
ぎ手部に板状の断熱構造体を折り曲げて挟み込み、両面
から人手により軽く押さえつけた。T字配管に密着しそ
の形状に対応した変形が起こり、かつ変形後の断熱材厚
みがほぼ均等であり欠充填部の発生がないものを現場付
形性があると判定する。
[Formability on site]: A plate-shaped heat insulating structure was bent and sandwiched between T-shaped joints having a 2B pipe diameter and lightly pressed from both sides manually. It is judged that there is a site-shaped property when the T-shaped pipe comes into close contact with the T-shaped pipe, deformation corresponding to the shape occurs, the thickness of the heat insulating material after the deformation is substantially uniform, and the lack filling portion does not occur.

【0030】〔剛性〕 : 断熱構造体の曲げ弾性
率(JISA9511)が5kg/cm2 以上で、かつ
指圧により容器内部の合成樹脂発泡体片または発泡粒子
相互の位置関係にずれが生じない場合を剛性があると判
定する。
[Rigidity]: When the bending elastic modulus (JIS A9511) of the heat insulating structure is 5 kg / cm 2 or more, and the positional relationship between the synthetic resin foam pieces or the foamed particles inside the container does not shift due to finger pressure. Determined to be rigid.

【0031】[0031]

【実施例1】容器として高密度ポリエチレン(HDP
E)、ナイロン−6、および塩化ビニリデン−塩化ビニ
ル共重合体(PVDC)の単体素材からなる袋体(大き
さ50×1000×1000mm)を使用し、この袋体
の中に発泡粒子として0.5〜5.0mmの表1に掲げ
るかさ密度の塩化ビニリデン系樹脂発泡粒子(旭化成工
業(株)製、商品名:セルモア)を充填した後、容器内
を表1に掲げる圧力に減圧し、密封シールして断熱構造
体をそれぞれ得た。
Example 1 As a container, high density polyethylene (HDP
E), nylon-6, and vinylidene chloride-vinyl chloride copolymer (PVDC) used as a single body material (size 50 × 1000 × 1000 mm), and as a foamed particle, a bag body having a size of 50 × 1000 × 1000 mm was used. After filling with vinylidene chloride resin foam particles (made by Asahi Kasei Kogyo Co., Ltd., trade name: Cellmore) having a bulk density of 5 to 5.0 mm listed in Table 1, the pressure inside the container is reduced to the pressure listed in Table 1 and sealed. Each was sealed to obtain a heat insulating structure.

【0032】容器袋体の膜厚(μm)、および酸素透過
率(cm3 /sec・cm2 ・cmHg、STP)、断
熱構造体の製造直後、製造から100日後、および10
00日後の容器内圧力とその時点における断熱構造体の
自立性、現場付形性、剛性の評価結果、さらに100日
後の熱伝導率の値を表1に示す。
The film thickness (μm) of the container bag, the oxygen permeability (cm 3 / sec · cm 2 · cmHg, STP), immediately after the production of the heat insulating structure, 100 days after the production, and 10
Table 1 shows the pressure inside the container after 00 days, the evaluation results of the self-supporting property, the site formability, and the rigidity of the heat insulating structure at that time, and the value of the thermal conductivity after 100 days.

【0033】[0033]

【比較例1】容器材料を200μm厚みの低密度ポリエ
チレン(LDPE)と変更する他は実施例1とまったく
同様にして断熱構造体を製造し評価した。その結果を同
じく表1に示す。
Comparative Example 1 A heat insulating structure was manufactured and evaluated in exactly the same manner as in Example 1 except that the container material was changed to 200 μm thick low density polyethylene (LDPE). The results are also shown in Table 1.

【0034】[0034]

【実施例2】容器材料として塩化ビニリデン−塩化ビニ
ル共重合体からなる袋体(大きさ50×1000×10
00mm)を使用し、この袋体の中に表2に掲げる発泡
粒子、および発泡体粉砕片を充填した後、容器内圧を表
2に示す圧力に減圧し、密封シールして断熱構造体をそ
れぞれ得た。この評価結果を表2に合わせて示す。
Example 2 As a container material, a bag made of vinylidene chloride-vinyl chloride copolymer (size 50 × 1000 × 10
00 mm) was used to fill the bag with the expanded particles listed in Table 2 and the crushed pieces of the foam, and then the internal pressure of the container was reduced to the pressure shown in Table 2 and hermetically sealed to form the heat insulating structure. Obtained. The evaluation results are also shown in Table 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明の断熱構造体は、種々の形状をも
つ被保温保冷体の形状に追隋でき、隙間部等へ充填でき
る柔軟で自立性のある断熱体から定形の硬質断熱体まで
任意に提供でき、特に現場での付形性に優れた断熱構造
体として好適である。
INDUSTRIAL APPLICABILITY The heat insulating structure of the present invention is capable of tracking the shapes of various types of heat-insulated objects to be kept warm, from flexible and self-supporting heat insulators that can be filled into gaps to fixed hard heat insulators. It can be provided arbitrarily, and is particularly suitable as a heat insulating structure having excellent shapeability on site.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂発泡体細片または合成樹脂発泡
粒子が100cm3/sec・cm2 ・cmHg以下の
酸素透過率を有する柔軟性のプラスチック容器内に充填
され、該容器内部に形成される空隙部の気体圧力が1〜
759torrに減圧されてなることを特徴とする断熱
構造体。
1. A synthetic resin foam strip or synthetic resin foam particles is filled in a flexible plastic container having an oxygen transmission rate of 100 cm 3 / sec · cm 2 · cmHg or less, and formed inside the container. The gas pressure in the void is 1 to
A heat insulating structure characterized by being decompressed to 759 torr.
JP5032087A 1993-02-22 1993-02-22 Thermal insulating structure Withdrawn JPH06238795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032087A JPH06238795A (en) 1993-02-22 1993-02-22 Thermal insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5032087A JPH06238795A (en) 1993-02-22 1993-02-22 Thermal insulating structure

Publications (1)

Publication Number Publication Date
JPH06238795A true JPH06238795A (en) 1994-08-30

Family

ID=12349103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032087A Withdrawn JPH06238795A (en) 1993-02-22 1993-02-22 Thermal insulating structure

Country Status (1)

Country Link
JP (1) JPH06238795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079874A (en) * 1999-09-20 2001-03-27 Hitachi Chem Co Ltd Composite molding and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079874A (en) * 1999-09-20 2001-03-27 Hitachi Chem Co Ltd Composite molding and production thereof

Similar Documents

Publication Publication Date Title
US5084320A (en) Evacuated thermal insulation
EP0184415B1 (en) Evacuated heat insulation unit
EP1459005B1 (en) Method of preparing aerogel-containing insulation article
JP2518972B2 (en) Heat-insulating molded article, method for producing the same, and storage, packaging and transportation containers comprising the same, and heat-insulating material for refrigeration and freezer
CN107405858B (en) Vacuum insulation panel
EP3037261B1 (en) Insulating member and its attaching method
JP2599515B2 (en) Insulating molded body, method for producing the same, container made of the molded body, and heat insulating material in refrigerator and freezer
US6010762A (en) Self-evacuating vacuum insulation panels
WO2022091750A1 (en) Method for manufacturing laminate
JP5695212B2 (en) CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING SAME, AND METHOD FOR PRODUCING THE SAME
US11299885B2 (en) Aerogel containing foam board
JPH06238795A (en) Thermal insulating structure
JP7178941B2 (en) Polyethylene resin multilayer foam sheet
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JPH07332587A (en) Vacuum heat insulating material
JPH0563715B2 (en)
JP2016138638A (en) Laminate for vacuum heat insulation material and vacuum heat insulation material using laminate
JPS6060396A (en) Heat-insulating structure
JP2001009857A (en) Manufacture of plastic foam composite
JP2016507704A (en) Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same
JPS59137777A (en) Heat-insulator pack
JP3513143B2 (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP2694356B2 (en) Insulation structure
JPH08105687A (en) Vacuum insulating material
JPH0755088A (en) Vacuum heat insulating panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509