JPH06236807A - Resin-bonded magnet and its manufacture - Google Patents
Resin-bonded magnet and its manufactureInfo
- Publication number
- JPH06236807A JPH06236807A JP5267483A JP26748393A JPH06236807A JP H06236807 A JPH06236807 A JP H06236807A JP 5267483 A JP5267483 A JP 5267483A JP 26748393 A JP26748393 A JP 26748393A JP H06236807 A JPH06236807 A JP H06236807A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- magnetic powder
- resin
- rare earth
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子機器などに使用さ
れる小型モーターやアクチュエータに利用される樹脂結
合型磁石及び該樹脂結合型磁石の押出成形を用いた製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-bonded magnet used for small motors and actuators used in electronic equipment and a method for manufacturing the resin-bonded magnet by extrusion molding.
【0002】[0002]
【従来の技術】従来小型DCモーター等に用いられてい
る円弧状磁石としては、焼結フェライト磁石、樹脂結合
型フェライト磁石が主に使用されており、また、円筒状
磁石としては、焼結フェライト磁石、樹脂結合型フェラ
イト磁石の他に焼結希土類磁石、樹脂結合型希土類磁石
も使用されていた。これら磁石の成形で、焼結法は、例
えば特公昭51−38917号公報に開示されているよ
うに磁性粉末のみを金型中に充填し成形した後該磁性粉
末を焼結するかあるいは、特開昭56−125814号
公報あるいは特開昭63−209108号公報等に開示
されているように磁性粉末とバインダーからなる混合物
を成形後、この成形体を焼結する方法である。樹脂結合
型磁石の成形には、射出成形法、圧縮成形法、押出成形
法が主に用いられていた。射出成形法は、例えば特公昭
55−33173号公報あるいは特公昭58−5349
1号公報等に開示されているように磁性粉末と熱可塑性
樹脂からなる磁石原料を十分な流動性が得られる温度ま
で加熱した状態で金型中に充填し、所定の形状に成形す
るものである。また、圧縮成形法は、特公昭50−18
559号公報あるいは特開平1−310522号公報等
に開示されているように磁性粉末と熱硬化性樹脂からな
る磁石原料をプレスの金型中に充填し圧縮して成形する
方法である。また、押出成形法は、特開昭61−121
307号公報あるいは特開昭62−208612号公報
等に開示されているように磁性粉末と熱可塑性樹脂から
なる磁石原料を十分な流動性が得られる温度まで加熱し
た状態で金型を通過させ、その後冷却して所定の形状に
成形するものである。2. Description of the Related Art Sintered ferrite magnets and resin-bonded ferrite magnets are mainly used as arc-shaped magnets used in small DC motors and the like, and sintered ferrite magnets are used as cylindrical magnets. In addition to magnets and resin-bonded ferrite magnets, sintered rare earth magnets and resin-bonded rare earth magnets have also been used. In the molding of these magnets, the sintering method is, for example, as disclosed in Japanese Patent Publication No. S51-38917, in which only the magnetic powder is filled in a mold and molded, and then the magnetic powder is sintered. As disclosed in Japanese Laid-Open Patent Publication No. 56-125814 or Japanese Laid-Open Patent Publication No. 63-209108, a method is used in which a mixture of magnetic powder and a binder is molded and then the molded body is sintered. Injection molding, compression molding, and extrusion molding have been mainly used for molding resin-bonded magnets. The injection molding method is, for example, Japanese Patent Publication No. 55-33173 or Japanese Patent Publication No. 58-5349.
As disclosed in Japanese Patent Publication No. 1 etc., a magnet raw material composed of a magnetic powder and a thermoplastic resin is filled in a mold while being heated to a temperature at which sufficient fluidity is obtained, and molded into a predetermined shape. is there. Further, the compression molding method is described in Japanese Examined Patent Publication No. 50-18.
As disclosed in Japanese Patent No. 559 or Japanese Patent Laid-Open No. 1-310522, it is a method in which a magnet raw material composed of a magnetic powder and a thermosetting resin is filled in a die of a press and compressed. Further, the extrusion molding method is described in JP-A-61-121
No. 307 or JP-A-62-208612, a magnet raw material composed of a magnetic powder and a thermoplastic resin is passed through a mold while being heated to a temperature at which sufficient fluidity is obtained, Then, it is cooled and molded into a predetermined shape.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前述の
従来技術では、以下のような課題を有している。However, the above-mentioned prior art has the following problems.
【0004】近年、OA機器、カメラ、家電製品等の小
型化はますます進んでおり、これら機器に使用されるモ
ーターも小型化が進んでいる。これに伴いモーターに使
用される小型の磁石の需要も増えている。従来の磁石が
有する課題として、円弧形状磁石については、 (1)一般に円弧形状磁石は、電機子(ローター)の外
側に界磁用として設置し、巻線を施した内側の電機子を
回転させるという方法で使用される。従来の円弧形状磁
石は、磁石肉厚が1.0mm以上のもののみで、肉厚
1.0mm未満の薄肉の磁石がなかった。そのため、モ
ーターを小型化する際、電機子の大きさが小さくなるた
め、モーター特性(トルク等)を維持してモーターを小
型化することが難しい、コイル線の巻線が難しく断線し
易いという課題があった。In recent years, OA equipment, cameras, home electric appliances and the like have been further miniaturized, and motors used in these equipment have also been miniaturized. Along with this, there is an increasing demand for small magnets used in motors. Regarding the arc-shaped magnets, the conventional magnets have the following problems. (1) Generally, the arc-shaped magnet is installed as a field magnet on the outer side of the armature (rotor), and the inner armature with the winding is rotated. Used in that way. Conventional arc-shaped magnets have a magnet wall thickness of 1.0 mm or more, and there is no thin magnet having a wall thickness of less than 1.0 mm. Therefore, when the motor is downsized, the size of the armature is reduced, which makes it difficult to maintain the motor characteristics (torque and the like) and downsize the motor, and it is difficult to wind the coil wire and easily break. was there.
【0005】(2)従来の磁石は磁気特性が低いフェラ
イト磁石が主であり、小型モーター用に磁石を小型化し
て体積を小さくすると必要な磁界強度を得ることが困難
になり、モーター特性が低下してしまうという課題もあ
った。(2) The conventional magnets are mainly ferrite magnets having low magnetic characteristics, and it becomes difficult to obtain a necessary magnetic field strength when the magnet is downsized and the volume thereof is reduced for a small motor, resulting in deterioration of motor characteristics. There was also a problem of doing it.
【0006】(3)従来の円弧形状磁石の製造方法につ
いても、次のような課題を有している。(3) The conventional method of manufacturing an arc-shaped magnet also has the following problems.
【0007】焼結法で製造した磁石は靱性が低く、割
れ、欠けが生じ易い。そのため、磁石肉厚1.0mm未
満の磁石では、モーターに組み込む際に割れが生じてし
まいモーターに使用することは困難である。The magnet manufactured by the sintering method has low toughness and is apt to be cracked or chipped. Therefore, a magnet having a magnet wall thickness of less than 1.0 mm will be cracked when incorporated into a motor and is difficult to use in a motor.
【0008】射出成形法ではキャビティーへの磁石原
料の充填が必要であるが、磁性粉末を多量に含んだ磁石
原料を充填させるためには、キャビティーの厚みが1.
0mm以上必要である。従って磁石肉厚が1.0mm未
満の磁石は成形ができない。In the injection molding method, it is necessary to fill the cavity with the magnet raw material. In order to fill the magnet raw material containing a large amount of magnetic powder, the cavity has a thickness of 1.
0 mm or more is required. Therefore, a magnet having a magnet wall thickness of less than 1.0 mm cannot be molded.
【0009】圧縮成形法においても、原料粉末を均一
に型内に充填するためには型のギャップが1.0mm以
上あることが望ましい。成形パンチの強度面では、円弧
形状のパンチは座屈変形を起こし易いことから、肉厚が
1.0mm未満の場合パンチの破壊が起こり磁石の成形
は不可能である。従って、圧縮成形法を用いても肉厚
1.0mm未満の磁石の成形はできない。Also in the compression molding method, it is desirable that the mold gap be 1.0 mm or more in order to uniformly fill the raw material powder into the mold. In terms of strength of the forming punch, an arc-shaped punch is likely to cause buckling deformation. Therefore, when the wall thickness is less than 1.0 mm, the punch is broken and the magnet cannot be formed. Therefore, even if the compression molding method is used, a magnet having a wall thickness of less than 1.0 mm cannot be molded.
【0010】押出成形法においても、従来の方法では
金型から押し出されたところで冷却するため肉厚1.0
mm未満の磁石では変形が起こり易く、要求される寸法
精度を満たす磁石を得ることは困難である。Even in the extrusion molding method, in the conventional method, the thickness is 1.0 because the material is cooled when it is extruded from the mold.
A magnet having a diameter of less than mm is likely to be deformed, and it is difficult to obtain a magnet satisfying the required dimensional accuracy.
【0011】肉厚1.0mm未満の磁石を得る方法と
して、上記射出成形、圧縮成形あるいは押出成形した磁
石を切削加工によって肉厚1.0mm未満に加工すると
いう方法も考えられる。しかしながらこれら磁石は、切
削加工によって微細な傷が入ること、磁石内部に密度ば
らつきがあり切削加工により低密度な部分が表面に現れ
ることにより機械的強度が弱くなる。そのため、モータ
ーに組み込む際に割れが生じてしまいモーターに使用す
ることは困難である。As a method of obtaining a magnet having a wall thickness of less than 1.0 mm, a method of cutting the injection-molded, compression-molded or extrusion-molded magnet into a wall thickness of less than 1.0 mm can be considered. However, the mechanical strength of these magnets is weakened due to fine scratches due to cutting, and density variations inside the magnets, and low density portions appearing on the surface due to cutting. Therefore, it is difficult to use it for a motor because it will crack when it is incorporated into the motor.
【0012】また、円筒形状磁石については、 (1)円筒形状磁石は、円弧形状磁石と同様に電機子
(ローター)の外側に界磁用として設置し、巻線を施し
た内側の電機子を回転させるという方法で使用される場
合と、円筒状のヨークに接着しローターとして使用され
る場合がある。従来の円筒形状磁石も、磁石肉厚が1.
0mm以上のものが多く、そのため、モーターを小型化
する際、外側の界磁用として使用する場合、電機子の大
きさが小さくなるためモーター特性(トルク等)を維持
してモーターを小型化することが難しい、コイル線の巻
線が難しく断線し易いという課題があった。また、ロー
ターとして使用する場合もローター外径が大きくなるた
め小型化することが難しいという課題があった。Regarding the cylindrical magnet, (1) the cylindrical magnet is installed as a field magnet on the outer side of the armature (rotor) like the circular arc magnet, and the inner armature wound is wound. It may be used by a method of rotating or may be used as a rotor by being bonded to a cylindrical yoke. Conventional cylindrical magnets have a magnet wall thickness of 1.
Most of them are 0 mm or more. Therefore, when used as an external field for miniaturizing the motor, the size of the armature is reduced, so that the motor characteristics (torque etc.) are maintained and the motor is miniaturized. However, there is a problem that it is difficult to wind the coil wire and the wire is easily broken. Further, when used as a rotor, there is a problem that it is difficult to reduce the size because the outer diameter of the rotor becomes large.
【0013】(2)磁石肉厚が0.1mm未満のもので
は、下記に示す理由で磁気特性が低いため、小型モータ
ー用に磁石を小型化して体積を小さくすると必要な磁界
強度を得ることが困難になり、モーター特性が低下して
しまうという課題があった。(2) If the thickness of the magnet is less than 0.1 mm, the magnetic characteristics are low for the following reason. Therefore, if the magnet is downsized and the volume is reduced for a small motor, the required magnetic field strength can be obtained. There was a problem that it became difficult and the motor characteristics deteriorate.
【0014】(3)従来の円筒形状磁石の製造方法につ
いても、円弧形状磁石の製造と同様に以下のような課題
を有している。(3) The conventional method of manufacturing a cylindrical magnet has the following problems as in the case of manufacturing an arc magnet.
【0015】焼結法で製造した磁石は靱性が低く、割
れ、欠けが生じ易い。そのため、円筒形状で肉厚1.0
mm未満の磁石を得ることは困難である。The magnet manufactured by the sintering method has low toughness and is apt to be cracked or chipped. Therefore, the cylindrical shape has a wall thickness of 1.0
It is difficult to obtain a magnet of less than mm.
【0016】射出成形法でも円弧形状磁石の場合と同
様に、磁性粉末を多量に含んだ磁石原料を充填させるた
めにキャビティーの厚みが1.0mm以上必要であり、
従って磁石肉厚が1.0mm未満の磁石は成形ができな
い。In the injection molding method as well, as in the case of the arc-shaped magnet, the thickness of the cavity must be 1.0 mm or more to fill the magnet raw material containing a large amount of magnetic powder.
Therefore, a magnet having a magnet wall thickness of less than 1.0 mm cannot be molded.
【0017】圧縮成形法においては、原料粉末を均一
に型内に充填するためには型のギャップが1.0mm以
上あることが望ましい。成形パンチの機械的強度面でも
肉厚が1.0mm未満の場合、強度不足からパンチの破
壊が起こり易く磁石の成形は困難である。従って、圧縮
成形法を用いても肉厚1.0mm未満の磁石の成形は難
しい。無理に肉厚1.0mm未満の磁石を成形する場合
は、加圧力が高くできないため、成形品中の空孔が多く
なり密度が低くなって磁気特性、機械的強度共に低下し
てしまう。In the compression molding method, it is desirable that the mold gap be 1.0 mm or more in order to uniformly fill the raw material powder into the mold. In terms of the mechanical strength of the forming punch, when the wall thickness is less than 1.0 mm, the punch is easily broken due to insufficient strength, and it is difficult to form the magnet. Therefore, even if the compression molding method is used, it is difficult to mold a magnet having a wall thickness of less than 1.0 mm. When a magnet having a wall thickness of less than 1.0 mm is forcibly formed, the pressing force cannot be increased, so that the number of holes in the formed product increases and the density decreases, resulting in a decrease in both magnetic properties and mechanical strength.
【0018】円筒形状磁石でも従来の押出成形法で
は、金型から押し出されたところで冷却するため肉厚
1.0mm未満の磁石では変形が起こり易く、要求され
る寸法精度を満たす磁石を得ることは困難である。Even in the case of a cylindrical magnet, in the conventional extrusion molding method, since the magnet is cooled when it is extruded from the mold, a magnet having a wall thickness of less than 1.0 mm is likely to be deformed, and a magnet satisfying the required dimensional accuracy cannot be obtained. Have difficulty.
【0019】肉厚1.0mm未満の磁石を得る方法と
して、射出成形、圧縮成形あるいは押出成形した磁石を
切削加工によって肉厚1.0mm未満に加工するという
方法も考えられる。しかしながら、円弧形状磁石の場合
と同様に機械的強度が弱くなるため、モーターに組み込
む際に割れが生じてしまいモーターに使用することは困
難である。As a method of obtaining a magnet having a wall thickness of less than 1.0 mm, a method of cutting an injection-molded, compression-molded or extrusion-molded magnet to a wall thickness of less than 1.0 mm can be considered. However, as in the case of the arc-shaped magnet, the mechanical strength becomes weak, so that cracks occur when it is incorporated into the motor, and it is difficult to use it in the motor.
【0020】そこで本発明は上記のような課題を解決す
るもので、第1の目的は機械的強度に優れた肉厚0.1
mm以上1.0mm未満の薄肉の樹脂結合型円弧形状磁
石及び樹脂結合型円筒形状磁石を提供することにある。
第2の目的は磁石組成物の融点以下の温度に金型中にて
冷却固化しながら押出成形することにより前記した磁石
の有効な製造方法を提供することにある。第3の目的
は、磁性粉末に希土類磁性粉末を用いることにより磁気
特性、機械的強度共に優れた肉厚0.1mm以上1.0
mm未満の薄肉の樹脂結合型円弧形状磁石、樹脂結合型
円筒形状磁石を提供すること及び、それら磁石の有効な
製造方法を提供することにある。Therefore, the present invention is to solve the above problems, and a first object thereof is to achieve a wall thickness of 0.1 which is excellent in mechanical strength.
An object is to provide a thin resin-bonded arc-shaped magnet and a resin-bonded cylindrical magnet having a thickness of not less than 1.0 mm and less than 1.0 mm.
A second object is to provide an effective method for producing the above-mentioned magnet by extruding while cooling and solidifying in a mold at a temperature below the melting point of the magnet composition. The third purpose is to use a rare earth magnetic powder as the magnetic powder, which has excellent magnetic properties and mechanical strength, and has a wall thickness of 0.1 mm or more and 1.0 or more.
A thin resin-bonded arc-shaped magnet having a thickness of less than mm, a resin-bonded cylindrical magnet, and an effective manufacturing method of these magnets are provided.
【0021】[0021]
【課題を解決するための手段】本発明の樹脂結合型磁石
は、組成が磁性粉末および熱可塑性樹脂、または、磁性
粉末、熱可塑性樹脂および添加剤からなり、外半径が
1.5mm以上50mm以下、肉厚が0.1mm以上
1.0mm未満の円弧形状磁石で、該磁石の長さをL
(mm)、圧壊荷重をP(N)としたとき下記の式にて
定める圧壊強さKが2N/mm以上であることを特徴と
する。The resin-bonded magnet of the present invention has a composition of magnetic powder and a thermoplastic resin, or magnetic powder, a thermoplastic resin and an additive, and an outer radius of 1.5 mm or more and 50 mm or less. , An arc-shaped magnet having a wall thickness of 0.1 mm or more and less than 1.0 mm, and the length of the magnet is L
(Mm) and the crush load is P (N), the crush strength K defined by the following formula is 2 N / mm or more.
【0022】K= P/L また、組成が磁性粉末および熱可塑性樹脂、または、磁
性粉末、熱可塑性樹脂および添加剤からなり、外径がφ
2mm以上φ100mm以下、肉厚が0.1mm以上
1.0mm未満の円筒形状磁石で、該磁石の長さをL
(mm)、圧壊荷重をP(N)としたとき下記の式にて
定める圧壊強さKが1N/mm以上であることを特徴と
する。K = P / L Further, the composition is composed of magnetic powder and thermoplastic resin, or magnetic powder, thermoplastic resin and additive, and the outer diameter is φ.
A cylindrical magnet having a diameter of 2 mm or more and φ100 mm or less and a wall thickness of 0.1 mm or more and less than 1.0 mm, and the length of the magnet is L
(Mm) and the crush load is P (N), the crush strength K determined by the following formula is 1 N / mm or more.
【0023】K= P/L また、本発明の樹脂結合型磁石の製造方法は、磁性粉末
および熱可塑性樹脂、または、磁性粉末、熱可塑性樹脂
および添加剤からなる磁石組成物を、該磁石組成物の融
点以下の温度に金型中にて冷却固化しながら押出成形す
ることを特徴とする。K = P / L Further, in the method for producing a resin-bonded magnet of the present invention, a magnetic powder and a thermoplastic resin, or a magnet composition comprising a magnetic powder, a thermoplastic resin and an additive is used. It is characterized in that it is extruded while being cooled and solidified in a mold at a temperature below the melting point of the product.
【0024】また、前記磁性粉末が、希土類元素(ただ
しイットリウム(Y)を含む)とコバルトを主体とする
遷移金属からなる希土類磁性粉末、希土類元素と鉄を主
体とする遷移金属およびほう素からなる希土類磁性粉末
あるいは希土類元素と鉄を主体とする遷移金属および窒
素からなる希土類磁性粉末であることを特徴とする。The magnetic powder is a rare earth magnetic powder composed of a rare earth element (including yttrium (Y)) and a transition metal mainly containing cobalt, and a rare earth element and a transition metal mainly containing iron and boron. It is characterized in that it is a rare earth magnetic powder or a rare earth magnetic powder composed of a transition metal mainly composed of a rare earth element and iron and nitrogen.
【0025】[0025]
【作用】本発明の薄肉円弧形状及び円筒形状の樹脂結合
型磁石を用いることにより、小型で高特性なモーターや
アクチュエーターを作製することが可能となる。また、
本発明の製造方法を用いることにより、該薄肉円弧形
状、円筒形状の樹脂結合型磁石を製造することが可能で
ある。By using the thin-walled arc-shaped and cylindrical resin-bonded magnets of the present invention, it becomes possible to manufacture a motor and an actuator having a small size and high characteristics. Also,
By using the manufacturing method of the present invention, it is possible to manufacture the thin-walled arc-shaped and cylindrical resin-bonded magnet.
【0026】本発明において、円弧形状磁石の外半径を
1.5mm以上50mm以下としたのは、外半径が50
mmよりも大きい場合、成形体が大径、薄肉のため変形
し易く、一般に要求される寸法精度(外径寸法公差で±
0.05mm以内)を満足する磁石を製造することが困
難なためである。また、外半径1.5mm未満の場合、
金型加工が難しく寸法精度の高い金型を作製することが
困難で、そのため成形された磁石の寸法精度が低くなっ
てしまうためである。また、円筒形状磁石の外径をφ2
mm以上φ100mm以下としたのは、外径が100m
mよりも大きい場合、成形体が大径、薄肉のため変形し
易く、一般に要求される寸法精度(外径寸法公差で±
0.05mm以内)を満足する磁石を製造することが困
難になるためである。また、外径がφ2mm未満の場
合、金型そのものの作製が困難で磁石成形ができないた
めである。In the present invention, the arc-shaped magnet has an outer radius of 1.5 mm or more and 50 mm or less when the outer radius is 50 mm.
If it is larger than mm, the molded body has a large diameter and thin wall and is easily deformed, and the generally required dimensional accuracy (outer diameter dimensional tolerance ±
This is because it is difficult to manufacture a magnet that satisfies (0.05 mm or less). When the outer radius is less than 1.5 mm,
This is because it is difficult to process the metal mold, and it is difficult to manufacture a metal mold having high dimensional accuracy, and thus the dimensional accuracy of the molded magnet becomes low. In addition, the outer diameter of the cylindrical magnet is φ2.
mm to φ100 mm or less is that the outer diameter is 100 m
If it is larger than m, the molded product is large in diameter and thin and easily deforms, and generally required dimensional accuracy (outer diameter dimensional tolerance ±
This is because it becomes difficult to manufacture a magnet satisfying the condition (0.05 mm or less). Also, if the outer diameter is less than φ2 mm, it is difficult to manufacture the mold itself and magnet molding cannot be performed.
【0027】本発明において、磁石肉厚を0.1mm以
上1.0mm未満としたのは、肉厚0.1mm未満の薄
肉にすると、磁性粉末を高体積率含んだ磁石であるため
十分な機械的強度が得られず、組み込み時に割れる等の
問題が発生し実用が困難になるためである。また、肉厚
1.0mm以上になると、例えばモーターの電機子の小
型化ができないといった問題があり、もはや薄肉磁石と
しての効果が小さくなるためである。In the present invention, the reason why the magnet wall thickness is set to 0.1 mm or more and less than 1.0 mm is that when the wall thickness is made thinner than 0.1 mm, it is a magnet containing a magnetic powder at a high volume ratio, so that a sufficient mechanical strength can be obtained. This is because practical strength is not obtained and problems such as cracking at the time of assembly occur, which makes practical use difficult. Further, when the wall thickness is 1.0 mm or more, there is a problem that, for example, the armature of the motor cannot be miniaturized, and the effect as a thin magnet is no longer small.
【0028】本発明において、機械的強度は円弧形状磁
石、円筒形状磁石共に、 K= P/L なる式で示される値を用いた。円弧形状磁石、円筒形状
磁石の機械的強度は公的規格では定められていないた
め、単位長さ当たりの圧壊荷重の値を圧壊強さとして用
いた。実用上は本値を用いて十分評価できる。本発明に
おいて、円弧形状磁石の圧壊強さを2N/mm以上、円
筒形状磁石の圧環強さを1N/mm以上としたのは、こ
の値未満の機械的強度では、通常の取扱い時あるいはモ
ーターへの組み込み時に磁石が破損し易く、また、モー
ター完成体としたとき、落下試験等の衝撃試験において
磁石の破損によるモーターの動作不良を起こし易いため
である。In the present invention, as the mechanical strength, a value represented by the equation K = P / L was used for both the arc-shaped magnet and the cylindrical magnet. Since the mechanical strength of arc-shaped magnets and cylindrical magnets is not specified by official standards, the value of the crush load per unit length was used as the crush strength. In practice, this value can be used for sufficient evaluation. In the present invention, the crushing strength of the arc-shaped magnet is set to 2 N / mm or more, and the radial crushing strength of the cylindrical magnet is set to 1 N / mm or more. This is because the magnet is apt to be damaged during the assembling, and when the motor is completed, the motor is apt to malfunction due to the damage to the magnet in an impact test such as a drop test.
【0029】本発明の樹脂結合型磁石の製造方法は、流
動状態の磁石原料をスクリューまたはプランジャーを使
って金型中に送り込み、注入された磁石組成物を金型中
を冷却しながら通過させ金型外に押し出し成形する。そ
の際、金型中にて前記磁石組成物の融点以下の温度に冷
却固化しながら押出成形することにより、円弧形状、円
筒形状共に密度が均一で高い寸法精度を有する磁石を成
形することができる。ここで温度を磁石組成物の融点以
下としたのは、温度が融点より高いと、成形体がまだ軟
らかい状態で金型から押し出され型外で容易に変形して
しまい、寸法精度が低下してしまうからである。また、
異方性を有する磁性粉末を用いる場合、成形時金型内に
磁場を印加し磁石組成物中の磁性粉末を配向させ異方性
磁石を製造することもできる。この場合も、金型中にて
前記磁石組成物の融点以下の温度に冷却固化しながら押
出成形することにより、磁気特性の高い磁石を成形する
ことができる。ここでも温度を磁石組成物の融点以下と
したのは、温度が融点より高いと、成形体がまだ軟らか
い状態で金型から押し出され、型外で磁性粉末の配向が
乱れ磁気特性が低下してしまうためである。The method for producing a resin-bonded magnet according to the present invention is carried out by feeding a magnet raw material in a fluidized state into a mold using a screw or a plunger and allowing the injected magnet composition to pass through while cooling the mold. Extrude out of the mold. At that time, by extruding while cooling and solidifying in the mold to a temperature not higher than the melting point of the magnet composition, it is possible to form a magnet having uniform density and high dimensional accuracy in both arcuate shape and cylindrical shape. . Here, the temperature is set to be equal to or lower than the melting point of the magnet composition because when the temperature is higher than the melting point, the molded body is extruded from the mold in a still soft state and easily deformed outside the mold, and the dimensional accuracy decreases. Because it will be. Also,
When the magnetic powder having anisotropy is used, it is also possible to manufacture a anisotropic magnet by applying a magnetic field in the mold during molding to orient the magnetic powder in the magnet composition. Also in this case, a magnet having high magnetic characteristics can be formed by extrusion molding while cooling and solidifying in the mold to a temperature not higher than the melting point of the magnet composition. Here again, the temperature is set to be equal to or lower than the melting point of the magnet composition because, when the temperature is higher than the melting point, the molded body is extruded from the mold in a still soft state, the orientation of the magnetic powder is disturbed outside the mold, and the magnetic properties are deteriorated. This is because it ends up.
【0030】本発明に使用する磁性粉末としてはフェラ
イト粉末や希土類磁性粉末などがあるが、磁気特性の高
い希土類磁性粉末が望ましい。The magnetic powder used in the present invention includes ferrite powder and rare earth magnetic powder, but rare earth magnetic powder having high magnetic properties is desirable.
【0031】本発明に利用できる樹脂は、熱可塑性樹脂
で例えばポリアミド、ポリフェニレンサルファイド(P
PS)等のプラスチック、塩素化ポリエチレンなどのエ
ラストマー、合成ゴムなどがある。添加剤としては、金
属石けん(ステアリン酸亜鉛、ステアリン酸カルシウム
など)、ワックス等の滑剤や酸化防止剤などを用いるこ
とができる。The resin that can be used in the present invention is a thermoplastic resin such as polyamide or polyphenylene sulfide (P
Examples include plastics such as PS), elastomers such as chlorinated polyethylene, and synthetic rubber. As the additives, metal soap (zinc stearate, calcium stearate, etc.), lubricants such as wax, and antioxidants can be used.
【0032】[0032]
【実施例】以下、本発明について実施例に基づき詳細に
説明する。EXAMPLES The present invention will now be described in detail based on examples.
【0033】図1は本発明の円弧形状の樹脂結合型磁石
の1実施例を示している。図1でRが外半径、Tが肉
厚、Lが長さである。また、図2は本発明の円筒形状の
樹脂結合型磁石の1実施例を示している。図2でDが外
径、Tが肉厚、Lが長さである。FIG. 1 shows an embodiment of an arc-shaped resin-bonded magnet of the present invention. In FIG. 1, R is the outer radius, T is the wall thickness, and L is the length. FIG. 2 shows one embodiment of the cylindrical resin-bonded magnet of the present invention. In FIG. 2, D is the outer diameter, T is the wall thickness, and L is the length.
【0034】図3は本発明の樹脂結合型磁石の製造工程
の1実施例を示している。磁性粉末と樹脂と必要ならば
添加剤を所望の混合比に秤量、混合した後に、2軸押出
機等の混練機で樹脂が溶融する温度以上に加熱して混練
し、コンパウンドを作製する。このコンパウンドを成形
機に投入し易い大きさに粉砕し押出成形機に投入する。
投入した磁石組成物を押出成形機のシリンダー内で再び
加熱し、流動状態としてスクリューまたはプランジャー
にて押出機に接続された金型中に送り込む。等方性磁石
を成形する場合は、磁場を印加せずに磁石組成物を冷却
固化しながら金型から押し出す。異方性磁石を成形する
場合は、金型内に注入された磁石組成物を、磁場を印加
した金型中を通過させることで、原料中の磁性粉末の磁
化容易軸を磁場方向に配向して成形し、冷却固化し、磁
石成形体として金型から押し出す。押し出された磁石成
形体を引き取り、適当な長さに切断する。このようにし
て樹脂結合型磁石を製造する。FIG. 3 shows one embodiment of the manufacturing process of the resin-bonded magnet of the present invention. The magnetic powder, the resin and, if necessary, the additives are weighed and mixed in a desired mixing ratio, and then heated to a temperature at which the resin is melted or higher in a kneader such as a twin-screw extruder and kneaded to prepare a compound. This compound is crushed into a size that can be easily put into a molding machine and then put into an extrusion molding machine.
The charged magnet composition is heated again in the cylinder of the extrusion molding machine and is sent in a fluidized state by a screw or a plunger into a mold connected to the extrusion machine. When molding an isotropic magnet, the magnet composition is extruded from the mold while being cooled and solidified without applying a magnetic field. When molding an anisotropic magnet, the magnet composition injected into the mold is passed through the mold to which a magnetic field is applied to orient the easy axis of magnetization of the magnetic powder in the raw material in the magnetic field direction. Then, it is cooled, solidified, and extruded from the mold as a magnet molded body. The extruded magnet molded body is taken out and cut into an appropriate length. In this way, the resin-bonded magnet is manufactured.
【0035】上記の製造工程のうち押出成形工程の1実
施例について、図4に基づいて説明する。図4は円弧形
状磁石の製造装置の1実施例を示している。押出成形機
は、材料投入部であるホッパー101、シリンダ10
2、スクリュー103、シリンダ部に金型を取り付ける
ためのアダプタープレート104、金型105およびス
クリュー駆動用モータ(図には記入していない)から成
っている。金型内に磁場を印加する場合は、電磁コイル
110、ポールピース111を金型を挟むように外側に
配置した構成とする。この押出成形機に粉砕した原料コ
ンパウンド112を投入する。この原料コンパウンドを
シリンダ102内にてヒーター106により加熱し、流
動状態として金型105内を通過させる。この際、金型
温度をヒーター108、冷却板109により調節し、磁
石成形体を金型から冷却固化しながら押し出す。冷却板
109は空気あるいは冷却水といった冷媒によって冷却
する。あるいは冷却を冷却板によらず、直接成形体に空
気あるいは冷却水を吹き付けて行っても良い。An embodiment of the extrusion molding process among the above manufacturing processes will be described with reference to FIG. FIG. 4 shows an embodiment of an apparatus for manufacturing an arc-shaped magnet. The extrusion molding machine includes a hopper 101 and a cylinder 10 which are material input parts.
2, a screw 103, an adapter plate 104 for attaching a die to the cylinder portion, a die 105, and a screw driving motor (not shown in the figure). When a magnetic field is applied to the inside of the mold, the electromagnetic coil 110 and the pole piece 111 are arranged outside so as to sandwich the mold. The crushed raw material compound 112 is put into this extruder. This raw material compound is heated in the cylinder 102 by the heater 106, and is passed through the mold 105 in a fluidized state. At this time, the mold temperature is adjusted by the heater 108 and the cooling plate 109, and the magnet molded body is extruded from the mold while being cooled and solidified. The cooling plate 109 is cooled by a refrigerant such as air or cooling water. Alternatively, cooling may be performed by directly blowing air or cooling water onto the molded body instead of using the cooling plate.
【0036】円筒形状磁石を製造する場合は、図5に示
すように金型を円筒形状磁石成形用のものに変更するこ
とにより製造可能である。製造方法は上記円弧形状磁石
の製造方法と同様であり、金型温度をヒーター208、
冷却板209により調節し、磁石成形体を金型205か
ら冷却固化しながら押し出す。When a cylindrical magnet is manufactured, it can be manufactured by changing the mold to a cylindrical magnet molding tool as shown in FIG. The manufacturing method is the same as the manufacturing method of the above arc-shaped magnet, and the mold temperature is set to the heater 208,
The magnet molded body is extruded from the mold 205 while being cooled and solidified by adjusting with the cooling plate 209.
【0037】以下、さらに詳細な実施例を示す。A more detailed embodiment will be described below.
【0038】(実施例1)組成がSm(Co0.672Cu
0.08Fe0.22Zr0.028)8.35となるように原料を溶
解、鋳造後、できたインゴットを熱処理して磁気的に硬
化させ、その後該インゴットを粉砕して平均粒径が15
μmの磁性粉末を得た。この粉末を粉末Aとする。ま
た、他の種類の粉末として、Nd14(Fe0.95C
o0.05)80.5B5.5 の組成となるように原料を溶解、鋳
造し、得られたインゴットから急冷薄帯製造装置を用
い、アルゴンガス雰囲気中で急冷薄帯を作製した。この
急冷薄帯を粉砕し、平均粒径20μmの磁石粉末を得
た。この粉末を粉末Bとする。また、他の種類の粉末と
して、Sm2Fe17の組成となるように原料を溶解、鋳
造し、得られたインゴットを粗粉砕した。この粉末を窒
素中にて460℃で窒化処理を行い、その後さらに粉砕
して平均粒径20μmの磁石粉末を得た。この粉末を粉
末Cとする。(Example 1) The composition was Sm (Co 0.672 Cu).
0.08 Fe 0.22 Zr 0.028 ) 8.35 After melting and casting the raw material, the resulting ingot was heat-treated and magnetically hardened, and then the ingot was crushed to obtain an average particle size of 15
A magnetic powder of μm was obtained. This powder is designated as powder A. As another type of powder, Nd 14 (Fe 0.95 C
The raw material was melted and cast to have a composition of 0.05 ) 80.5 B 5.5 , and a quenched ribbon was produced from the obtained ingot using an apparatus for producing a quenched ribbon in an argon gas atmosphere. The quenched ribbon was crushed to obtain magnet powder having an average particle size of 20 μm. This powder is designated as powder B. As another type of powder, the raw material was melted and cast so as to have a composition of Sm 2 Fe 17 , and the obtained ingot was roughly crushed. This powder was subjected to a nitriding treatment in nitrogen at 460 ° C., and then further pulverized to obtain a magnet powder having an average particle size of 20 μm. This powder is designated as powder C.
【0039】粉末AとPPSの粉末およびステアリン酸
亜鉛粉末を、それぞれの比率が90重量%、9.9重量
%および0.1重量%となるように混合した。また、粉
末Bとナイロン12粉末およびステアリン酸亜鉛粉末、
ヒドラジン系酸化防止剤をそれぞれの比率が95重量
%、4.9重量%、0.05重量%、0.05重量%と
なるように混合した。また、粉末Cとポリプロピレンの
粉末およびステアリン酸カルシウム粉末を、それぞれの
比率が92重量%、7.9重量%および0.1重量%と
なるように混合した。これらの混合物を2軸押出混練機
にて、PPSを使用したものは340℃、ナイロン1
2、ポリプロピレンを使用したものは260℃で混練し
た。この混練物を外径が1〜10mmの粒となるように
粉砕して原料コンパウンドとした。粉末Aを使用したも
のをコンパウンド1、粉末Bを使用したものをコンパウ
ンド2、粉末Cを使用したものをコンパウンド3とす
る。それぞれのコンパウンドの融点は、コンパウンド1
が290℃、コンパウンド2が175℃、コンパウンド
3が165℃であった。このコンパウンドを用い、図4
に示した押出成形機および金型を使用して外半径4.5
mm、肉厚0.5mmの円弧状磁石および外半径25m
m、肉厚0.9mmの円弧状磁石を成形した。コンパウ
ンド1および3の成形時には、金型中に15kOeの磁
場を印加し異方性磁石を成形した。コンパウンド2の成
形では磁場を印加せず等方性磁石を成形した。この際、
金型出口にて成形品の温度を測定し、成形品温度と成形
品の磁気特性、寸法精度(外半径ばらつき)との関係を
調べた。測定結果を表1に示す。Powder A, PPS powder and zinc stearate powder were mixed so that their respective proportions were 90% by weight, 9.9% by weight and 0.1% by weight. Also, powder B, nylon 12 powder and zinc stearate powder,
The hydrazine-based antioxidants were mixed so that the respective proportions were 95% by weight, 4.9% by weight, 0.05% by weight and 0.05% by weight. Further, the powder C, the polypropylene powder and the calcium stearate powder were mixed so that the respective proportions were 92% by weight, 7.9% by weight and 0.1% by weight. These mixtures were mixed with a twin-screw extrusion kneader using PPS at 340 ° C, nylon 1
2. Those using polypropylene were kneaded at 260 ° C. This kneaded material was crushed to give particles having an outer diameter of 1 to 10 mm to obtain a raw material compound. The powder A is used as compound 1, the powder B is used as compound 2, and the powder C is used as compound 3. The melting point of each compound is compound 1
Was 290 ° C., Compound 2 was 175 ° C., and Compound 3 was 165 ° C. Using this compound,
An outer radius of 4.5 using the extruder and mold shown in
mm, thickness 0.5 mm arc magnet and outer radius 25 m
An arc-shaped magnet having a thickness of 0.9 mm and a wall thickness of 0.9 mm was formed. At the time of molding the compounds 1 and 3, a magnetic field of 15 kOe was applied to the mold to mold the anisotropic magnet. In the molding of compound 2, an isotropic magnet was molded without applying a magnetic field. On this occasion,
The temperature of the molded product was measured at the die outlet, and the relationship between the molded product temperature, the magnetic characteristics of the molded product, and the dimensional accuracy (outer radius variation) was investigated. The measurement results are shown in Table 1.
【0040】[0040]
【表1】 [Table 1]
【0041】一般的に円弧形状の樹脂結合型磁石に要求
される寸法精度は、例えば外半径公差では±0.05m
m以下である。表1から明らかなように、磁石組成物の
融点以下の温度に冷却固化して成形品を押出成形するこ
とにより、良好な寸法精度を有する薄肉円弧形状磁石を
製造することが可能である。また、この方法を用いるこ
とにより良好な磁気特性を有する薄肉円弧形状磁石を製
造することも可能である。The dimensional accuracy generally required for an arc-shaped resin-bonded magnet is, for example, an outer radius tolerance of ± 0.05 m.
m or less. As is clear from Table 1, it is possible to manufacture a thin-walled arc-shaped magnet having good dimensional accuracy by cooling and solidifying to a temperature below the melting point of the magnet composition and extruding the molded product. It is also possible to manufacture a thin-walled arc-shaped magnet having good magnetic characteristics by using this method.
【0042】(実施例2)実施例1と同じコンパウンド
1、2、3を使用し同じ成形方法にて寸法を変えた円弧
形状磁石を作製し、寸法精度(外半径ばらつき)と機械
的強度(圧壊強さ)を測定した。圧壊強さは、長さ10
mmに切断した円弧形状磁石を図6に示すように置き上
方より圧壊荷重P(N)を加え、磁石が破壊したときの
荷重を磁石長さで除した値を用いた。結果を表2に示
す。(Example 2) Using the same compounds 1, 2 and 3 as in Example 1, an arc-shaped magnet having different dimensions was manufactured by the same molding method, and dimensional accuracy (outer radius variation) and mechanical strength ( The crush strength) was measured. Crush strength, length 10
An arc-shaped magnet cut into mm was placed as shown in FIG. 6, a crushing load P (N) was applied from above, and a value obtained by dividing the load when the magnet broke by the magnet length was used. The results are shown in Table 2.
【0043】[0043]
【表2】 [Table 2]
【0044】表2から明らかなように、外半径が1.5
mm未満あるいは50mmより大きくなると良好な寸法
精度が得られない。また、肉厚が0.1mm未満である
と圧壊強さが急激に低下してしまい実用に不適である。
外半径1.5mm以上50mm以下、肉厚0.1mm以
上では、良好な寸法精度、機械的強度を有している。 (実施例3)実施例2においてコンパウンド2を使用し
て作製した円弧形状磁石を用い、機械的強度(圧壊強
さ)とモーター組み込み時の不良率について調査した。
不良率はモーター300台組み込み時の不良の発生率を
示している。結果を表3に示す。As is clear from Table 2, the outer radius is 1.5.
If it is less than mm or greater than 50 mm, good dimensional accuracy cannot be obtained. Further, if the wall thickness is less than 0.1 mm, the crush strength is drastically reduced, which is not suitable for practical use.
When the outer radius is 1.5 mm or more and 50 mm or less and the wall thickness is 0.1 mm or more, good dimensional accuracy and mechanical strength are obtained. (Example 3) Using the arc-shaped magnet produced by using the compound 2 in Example 2, the mechanical strength (crush strength) and the failure rate at the time of incorporating the motor were investigated.
The defect rate indicates the rate of occurrence of defects when incorporating 300 motors. The results are shown in Table 3.
【0045】[0045]
【表3】 [Table 3]
【0046】表3から明らかなように、圧壊強さ2N/
mm未満であると急激にモーター組み込み時の不良率が
増加してしまう。これは、機械的強度が小さいため取扱
い時の磁石の破損が増大したことが原因である。圧壊強
さが2N/mm以上であれば不良率は小さく実用上問題
がない。As is clear from Table 3, the crush strength is 2 N /
If it is less than mm, the defective rate at the time of assembling the motor rapidly increases. This is because the mechanical strength is low and the damage to the magnet during handling is increased. If the crush strength is 2 N / mm or more, the defective rate is small and there is no practical problem.
【0047】(実施例4)実施例2と同様に実施例1と
同じコンパウンド1、2、3を使用し同じ成形方法に
て、内半径4.6mmで肉厚を変えた円弧形状磁石を作
製した。これを外径φ12mmのDCモーターのケース
に装着し、磁束量を測定した。測定は、電機子にコイル
線を10回巻回したものに発生する起電力から磁束量を
測定する方法で行った。磁石肉厚と磁束量の関係の測定
結果を図7に示す。比較例として、肉厚1.1mmの焼
結フェライト磁石の結果も合わせて示した。(Example 4) Similar to Example 2, using the same compounds 1, 2 and 3 as in Example 1 and by the same molding method, an arc-shaped magnet having an inner radius of 4.6 mm and varying wall thickness was produced. did. This was attached to a case of a DC motor having an outer diameter of 12 mm, and the amount of magnetic flux was measured. The measurement was performed by a method of measuring the amount of magnetic flux from the electromotive force generated in a coil wire wound around an armature 10 times. FIG. 7 shows the measurement result of the relationship between the magnet wall thickness and the amount of magnetic flux. As a comparative example, the results of a sintered ferrite magnet having a wall thickness of 1.1 mm are also shown.
【0048】モーター特性(トルク値)は発生する磁束
量に比例することが知られている。図7から明らかなよ
うに、肉厚0.1mm以上の円弧形状磁石を用いること
により従来のものと比較しても十分高い特性のモーター
を作製することが可能である。It is known that the motor characteristic (torque value) is proportional to the amount of magnetic flux generated. As is apparent from FIG. 7, it is possible to manufacture a motor having sufficiently high characteristics as compared with a conventional one by using an arc-shaped magnet having a wall thickness of 0.1 mm or more.
【0049】(実施例5)実施例1と同じコンパウンド
1、2、3を使用し、図3に示した押出成形機および金
型を使用して外径5.0mm、肉厚0.1mmの円筒状
磁石、外径50mm、肉厚0.5mmの円筒状磁石及び
外径80mm、肉厚0.9mmの円筒状磁石を成形し
た。コンパウンド1および3の成形時には、金型中に1
3kOeの放射状の磁場を印加し異方性磁石を成形し
た。コンパウンド2の成形では磁場を印加せず等方性磁
石を成形した。この際、金型出口にて成形品の温度を測
定し、成形品温度と成形品の磁気特性、寸法精度(外径
ばらつき)との関係を調べた。測定結果を表4に示す。(Embodiment 5) Using the same compounds 1, 2 and 3 as in Embodiment 1, using the extruder and mold shown in FIG. 3, the outer diameter is 5.0 mm and the wall thickness is 0.1 mm. A cylindrical magnet, an outer diameter of 50 mm and a wall thickness of 0.5 mm, and a cylindrical magnet having an outer diameter of 80 mm and a wall thickness of 0.9 mm were molded. When molding compounds 1 and 3, 1 in the mold
An anisotropic magnet was molded by applying a radial magnetic field of 3 kOe. In the molding of compound 2, an isotropic magnet was molded without applying a magnetic field. At this time, the temperature of the molded product was measured at the die outlet, and the relationship between the molded product temperature, the magnetic characteristics of the molded product, and the dimensional accuracy (outer diameter variation) was investigated. The measurement results are shown in Table 4.
【0050】[0050]
【表4】 [Table 4]
【0051】一般に円筒形状の樹脂結合型磁石に要求さ
れる寸法精度は、例えば外径公差で±0.05mm以下
である。表4から明らかなように、磁石組成物の融点以
下の温度に冷却固化して成形品を押出成形することによ
り、良好な寸法精度を有する薄肉円筒形状磁石を製造す
ることが可能である。また、この方法を用いることによ
り良好な磁気特性を有する薄肉円筒形状磁石を製造する
ことも可能である。The dimensional accuracy generally required for a cylindrical resin-bonded magnet is, for example, an outer diameter tolerance of ± 0.05 mm or less. As is clear from Table 4, it is possible to manufacture a thin-walled cylindrical magnet having good dimensional accuracy by cooling and solidifying to a temperature below the melting point of the magnet composition and extruding the molded product. It is also possible to manufacture a thin-walled cylindrical magnet having good magnetic characteristics by using this method.
【0052】(実施例6)実施例4と同じコンパウンド
1、2、3を使用し同じ成形方法にて寸法を変えた円筒
形状磁石を作製し、寸法精度(外径ばらつき)と機械的
強度(圧壊強さ)を測定した。圧壊強さは、所定の長さ
に切断した円筒形状磁石を図8に示すように置き上方よ
り圧壊荷重P(N)を加え、磁石が破壊したときの荷重
を磁石長さ(L)にて除した値を用いた。結果を表5に
示す。(Example 6) Cylindrical magnets having the same compounds 1, 2 and 3 as in Example 4 but different dimensions were produced by the same molding method, and dimensional accuracy (outer diameter variation) and mechanical strength ( The crush strength) was measured. As for the crushing strength, a cylindrical magnet cut to a predetermined length is placed as shown in FIG. 8 and a crushing load P (N) is applied from above, and the load when the magnet breaks is the magnet length (L). The divided value was used. The results are shown in Table 5.
【0053】[0053]
【表5】 [Table 5]
【0054】表5から明らかなように、外径が100m
mより大きくなると良好な寸法精度が得られない。ま
た、外径2mm未満では金型製造が困難となり成形が困
難である。さらに肉厚が0.1mm未満であると圧壊強
さが急激に低下してしまい実用に不適である。外径2m
m以上100mm以下、肉厚0.1mm以上では、良好
な寸法精度、機械的強度を有している。As is clear from Table 5, the outer diameter is 100 m.
If it is larger than m, good dimensional accuracy cannot be obtained. Further, if the outer diameter is less than 2 mm, it is difficult to manufacture a mold and molding is difficult. Further, if the wall thickness is less than 0.1 mm, the crushing strength sharply decreases, which is not suitable for practical use. Outer diameter 2m
When the thickness is m or more and 100 mm or less and the wall thickness is 0.1 mm or more, good dimensional accuracy and mechanical strength are obtained.
【0055】(実施例7)実施例6において作製した円
筒形状磁石をローターとしてモーターに組み込み、モー
ター落下試験の不良率と機械的強度(圧壊強さ)との関
係について調査した。不良率はモーター50台の落下試
験による不良の発生率を示している。結果を表6に示
す。Example 7 The cylindrical magnet produced in Example 6 was incorporated into a motor as a rotor, and the relationship between the defective rate of the motor drop test and the mechanical strength (crush strength) was investigated. The defect rate indicates the rate of occurrence of defects in the drop test of 50 motors. The results are shown in Table 6.
【0056】[0056]
【表6】 [Table 6]
【0057】表6から明らかなように、圧壊強さ1N/
mm未満であると急激にモーター不良率が増加してしま
う。これは、磁石の機械的強度が小さいため落下試験に
よる衝撃で磁石が破損し、そのためモーターの不良が増
大したからである。圧壊強さが1N/mm以上であれば
不良率は小さく実用上問題がない。As is clear from Table 6, the crushing strength is 1 N /
If it is less than mm, the defective rate of the motor increases rapidly. This is because the mechanical strength of the magnet is small and the magnet is damaged by the impact of the drop test, which increases the defects of the motor. If the crush strength is 1 N / mm or more, the defective rate is small and there is no problem in practical use.
【0058】(実施例8)実施例6と同様にコンパウン
ド1、2、3を使用し同じ成形方法にて、外径24mm
で肉厚を変えた円筒形状磁石を作製した。これをロータ
ーに装着し、24極に着磁して表面磁束密度を測定し
た。磁石肉厚と表面磁束密度の関係を図9に示す。比較
例として、肉厚2mmの焼結フェライト磁石の結果も合
わせて示した。(Embodiment 8) An outer diameter of 24 mm was obtained by the same molding method using compounds 1, 2 and 3 as in Embodiment 6.
A cylindrical magnet having different wall thickness was manufactured. This was mounted on a rotor and magnetized to 24 poles to measure the surface magnetic flux density. FIG. 9 shows the relationship between the magnet wall thickness and the surface magnetic flux density. As a comparative example, the results of a sintered ferrite magnet having a thickness of 2 mm are also shown.
【0059】モーター特性(トルク値)は表面磁束密度
に比例することが知られている。図9から明らかなよう
に、肉厚0.1mm以上の円筒形状磁石を用いることに
より従来のものと比較しても十分高い特性のモーターを
作製することが可能である。It is known that the motor characteristic (torque value) is proportional to the surface magnetic flux density. As is clear from FIG. 9, by using a cylindrical magnet having a wall thickness of 0.1 mm or more, it is possible to manufacture a motor having sufficiently high characteristics as compared with the conventional one.
【0060】[0060]
【発明の効果】以上述べたように本発明の円弧形状ある
いは円筒形状の樹脂結合型磁石を用いることにより、従
来に比べ非常に小型なモーター、アクチュエーターを作
製することが可能となるという優れた効果を有する。ま
た、本発明の製造方法を用いることにより、従来製造が
できなかった、磁気特性が高く寸法精度が良好な上記薄
肉円弧形状磁石及び円筒形状磁石を製造することができ
るという効果も有する。そのため、OA機器、民生機器
等の小型軽量化、ひいては省資源化に大いに効果を発揮
するものである。As described above, by using the arc-shaped or cylindrical resin-bonded magnet of the present invention, it is possible to manufacture a motor and an actuator which are much smaller than conventional ones. Have. Further, by using the manufacturing method of the present invention, it is possible to manufacture the above thin-walled arc-shaped magnet and cylindrical magnet having high magnetic characteristics and good dimensional accuracy, which could not be conventionally manufactured. Therefore, it is very effective in reducing the size and weight of office automation equipment, consumer equipment, etc., and thus saving resources.
【図1】 本発明の円弧状樹脂結合型磁石の1実施例を
示す図。FIG. 1 is a diagram showing an embodiment of an arc-shaped resin-bonded magnet of the present invention.
【図2】 本発明の円筒状樹脂結合型磁石の1実施例を
示す図。FIG. 2 is a diagram showing an embodiment of a cylindrical resin-bonded magnet of the present invention.
【図3】 本発明の実施例における樹脂結合型磁石の製
造工程を示す図。FIG. 3 is a diagram showing a manufacturing process of a resin-bonded magnet in an example of the present invention.
【図4】 本発明の実施例における円弧状樹脂結合型磁
石の押出成形装置を示す図。FIG. 4 is a diagram showing an extrusion molding device for an arc-shaped resin-bonded magnet in an example of the present invention.
【図5】 本発明の実施例における円筒状樹脂結合型磁
石の押出成形装置を示す図。FIG. 5 is a diagram showing an extrusion molding apparatus for a cylindrical resin-bonded magnet in an example of the present invention.
【図6】 本発明の実施例における円弧形状磁石の圧壊
強さ測定の荷重負荷方向を示す図。FIG. 6 is a diagram showing a load application direction of crush strength measurement of an arc-shaped magnet in an example of the present invention.
【図7】 本発明の実施例における円弧形状磁石肉厚と
磁束量との関係を示す図。FIG. 7 is a diagram showing a relationship between an arc-shaped magnet wall thickness and a magnetic flux amount in the example of the present invention.
【図8】 本発明の実施例における円筒形状磁石の圧壊
強さ測定の荷重負荷方向を示す図。FIG. 8 is a diagram showing a load application direction for measuring the crushing strength of a cylindrical magnet in an example of the present invention.
【図9】 本発明の実施例における円筒形状磁石肉厚と
表面磁束密度との関係を示す図。FIG. 9 is a diagram showing the relationship between the wall thickness of a cylindrical magnet and the surface magnetic flux density in the example of the present invention.
101,201 ホッパー 102,202 シリンダ 103,203 スクリュー 104,204 アダプタープレート 105,205 金型 106,206 ヒーター 107,207 ヒーター 108,208 ヒーター 109,209 冷却板 110,210 電磁コイル 111 ポールピース 112,211 原料コンパウンド 113,212 磁石成形品 P 圧壊荷重 R 磁石外半径 D 磁石外径 T 磁石肉厚 L 磁石長さ 101, 201 Hopper 102, 202 Cylinder 103, 203 Screw 104, 204 Adapter plate 105, 205 Mold 106, 206 Heater 107, 207 Heater 108, 208 Heater 109, 209 Cooling plate 110, 210 Electromagnetic coil 111 Pole piece 112, 211 Raw material compound 113,212 Magnet molded product P Crash load R Magnet outer radius D Magnet outer diameter T Magnet wall thickness L Magnet length
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 7/02 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // H01F 7/02 K
Claims (5)
たは、磁性粉末、熱可塑性樹脂および添加剤からなり、
外半径が1.5mm以上50mm以下、肉厚が0.1m
m以上1.0mm未満の円弧形状磁石で、該磁石の長さ
をL(mm)、圧壊荷重をP(N)としたとき下記の式
にて定める圧壊強さKが2N/mm以上であることを特
徴とする樹脂結合型磁石。 K= P/L1. A composition comprising a magnetic powder and a thermoplastic resin, or a magnetic powder, a thermoplastic resin and an additive,
Outer radius is 1.5 mm or more and 50 mm or less, wall thickness is 0.1 m
An arc-shaped magnet having a length of m or more and less than 1.0 mm, where the length of the magnet is L (mm) and the crush load is P (N), the crush strength K determined by the following formula is 2 N / mm or more. Resin-bonded magnets characterized by the above. K = P / L
たは、磁性粉末、熱可塑性樹脂および添加剤からなり、
外径がφ2mm以上φ100mm以下、肉厚が0.1m
m以上1.0mm未満の円筒形状磁石で、該磁石の長さ
をL(mm)、圧壊荷重をP(N)としたとき下記の式
にて定める圧壊強さKが1N/mm以上であることを特
徴とする樹脂結合型磁石。 K= P/L2. A composition comprising a magnetic powder and a thermoplastic resin, or a magnetic powder, a thermoplastic resin and an additive,
Outer diameter φ2 mm or more φ100 mm or less, wall thickness 0.1 m
A cylindrical magnet of m or more and less than 1.0 mm, where the length of the magnet is L (mm) and the crush load is P (N), the crush strength K determined by the following formula is 1 N / mm or more. Resin-bonded magnets characterized by the above. K = P / L
磁性粉末、熱可塑性樹脂および添加剤からなる磁石組成
物を、該磁石組成物の融点以下の温度に金型中にて冷却
固化しながら押出成形することを特徴とする請求項1及
び2記載の樹脂結合型磁石の製造方法。3. A magnetic powder and a thermoplastic resin, or
The magnet composition comprising a magnetic powder, a thermoplastic resin and an additive is extruded while being cooled and solidified in a mold at a temperature not higher than the melting point of the magnet composition. A method for manufacturing a resin-bonded magnet.
ットリウム(Y)を含む)とコバルトを主体とする遷移
金属からなる希土類磁性粉末、希土類元素と鉄を主体と
する遷移金属およびほう素からなる希土類磁性粉末ある
いは希土類元素と鉄を主体とする遷移金属および窒素か
らなる希土類磁性粉末であることを特徴とする請求項1
及び2記載の樹脂結合型磁石。4. The magnetic powder comprises a rare earth magnetic powder consisting of a rare earth element (including yttrium (Y)) and a transition metal mainly containing cobalt, and a rare earth element and a transition metal mainly containing iron and boron. A rare earth magnetic powder or a rare earth magnetic powder composed of a transition metal mainly composed of a rare earth element and iron and nitrogen.
2. The resin-bonded magnet according to item 2 above.
ットリウム(Y)を含む)とコバルトを主体とする遷移
金属からなる希土類磁性粉末、希土類元素と鉄を主体と
する遷移金属およびほう素からなる希土類磁性粉末ある
いは希土類元素と鉄を主体とする遷移金属および窒素か
らなる希土類磁性粉末であることを特徴とする請求項3
記載の樹脂結合型磁石の製造方法。5. The rare earth magnetic powder comprising a rare earth element (including yttrium (Y)) and a transition metal mainly containing cobalt, and the rare earth element and a transition metal mainly containing iron and boron. 4. A rare earth magnetic powder or a rare earth magnetic powder composed of a transition metal mainly composed of a rare earth element and iron and nitrogen.
A method for producing the resin-bonded magnet described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5267483A JPH06236807A (en) | 1992-10-29 | 1993-10-26 | Resin-bonded magnet and its manufacture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29162392 | 1992-10-29 | ||
JP4-291623 | 1992-10-29 | ||
JP5267483A JPH06236807A (en) | 1992-10-29 | 1993-10-26 | Resin-bonded magnet and its manufacture |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003356612A Division JP2004104143A (en) | 1992-10-29 | 2003-10-16 | Resin-bonded magnet and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06236807A true JPH06236807A (en) | 1994-08-23 |
Family
ID=26547889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5267483A Withdrawn JPH06236807A (en) | 1992-10-29 | 1993-10-26 | Resin-bonded magnet and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06236807A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001020754A1 (en) * | 1999-09-16 | 2001-03-22 | Matsushita Electric Industrial Co., Ltd. | Permanent magnet field-type compact dc motor and method of making same |
JP2002008912A (en) * | 2000-06-23 | 2002-01-11 | Sumitomo Metal Mining Co Ltd | Rare earth bonded magnet |
JP2002080904A (en) * | 2000-09-08 | 2002-03-22 | Matsushita Electric Ind Co Ltd | Manufacturing method of die and resin magnet |
US6978533B1 (en) | 1999-08-06 | 2005-12-27 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing rare earth-iron bond magnet |
US6995488B1 (en) | 1999-08-27 | 2006-02-07 | Matsushita Electric Industrial Co., Ltd. | Permanent magnet field small DC motor |
JP2019536909A (en) * | 2016-11-18 | 2019-12-19 | アルケマ フランス | Sinterable magnetic powder composition and three-dimensional article made by sintering this composition |
-
1993
- 1993-10-26 JP JP5267483A patent/JPH06236807A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6978533B1 (en) | 1999-08-06 | 2005-12-27 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing rare earth-iron bond magnet |
US6995488B1 (en) | 1999-08-27 | 2006-02-07 | Matsushita Electric Industrial Co., Ltd. | Permanent magnet field small DC motor |
WO2001020754A1 (en) * | 1999-09-16 | 2001-03-22 | Matsushita Electric Industrial Co., Ltd. | Permanent magnet field-type compact dc motor and method of making same |
US6708388B1 (en) | 1999-09-16 | 2004-03-23 | Matsushita Electric Industrial Co., Ltd. | Method of making a permanent magnet field-type compact DC motor |
JP2002008912A (en) * | 2000-06-23 | 2002-01-11 | Sumitomo Metal Mining Co Ltd | Rare earth bonded magnet |
JP2002080904A (en) * | 2000-09-08 | 2002-03-22 | Matsushita Electric Ind Co Ltd | Manufacturing method of die and resin magnet |
JP2019536909A (en) * | 2016-11-18 | 2019-12-19 | アルケマ フランス | Sinterable magnetic powder composition and three-dimensional article made by sintering this composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100435610B1 (en) | METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET | |
EP0772211B1 (en) | Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet | |
EP0452580B1 (en) | A resin bound magnet and its production process | |
KR20010024183A (en) | Composition for bonded rare-earth permanent magnet, bonded rare-earth permanent magnet and method for manufacturing bonded rare-earth permanent magnet | |
US20020043301A1 (en) | Density enhanced, DMC, bonded permanent magnets | |
JPH06236807A (en) | Resin-bonded magnet and its manufacture | |
US20020036367A1 (en) | Method for producing & manufacturing density enhanced, DMC, bonded permanent magnets | |
JP5948805B2 (en) | Anisotropic bonded magnet and compound for anisotropic bonded magnet | |
JP2004104143A (en) | Resin-bonded magnet and its manufacturing method | |
JP3658868B2 (en) | Rare earth bonded magnet manufacturing method and rare earth bonded magnet | |
JP3729904B2 (en) | Rare earth bonded magnet manufacturing method | |
JPH09232132A (en) | Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet | |
JP3618647B2 (en) | Anisotropic magnet, method for manufacturing the same, and motor using the same | |
JP3883138B2 (en) | Manufacturing method of resin bonded magnet | |
JP4433068B2 (en) | Rare earth bonded magnet manufacturing method and rare earth bonded magnet | |
JP2002343623A (en) | Plastic sheet magnet molded body and manufacturing method therefor | |
JP3812926B2 (en) | Rare earth bonded magnet compound, method for producing the same, and R-T-B bonded magnet | |
JP4301222B2 (en) | Rare earth bonded magnet manufacturing method and rare earth bonded magnet | |
JPH04324909A (en) | Manufacture of resin-bonded type magnet | |
JPH11283817A (en) | Rare earth bonded magnet and composition thereof | |
JP2001185412A (en) | Anisotropic bonded magnet | |
JP3729908B2 (en) | Rare earth bonded magnet manufacturing method | |
JP3653852B2 (en) | Rare earth bonded magnet manufacturing method and rare earth bonded magnet | |
JP3686586B2 (en) | Rare earth bonded magnet composition and rare earth bonded magnet | |
JP4301221B2 (en) | Rare earth bonded magnet manufacturing method and rare earth bonded magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040330 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20040412 |