JPH06223767A - Direct imaging type reflection electron microscope - Google Patents
Direct imaging type reflection electron microscopeInfo
- Publication number
- JPH06223767A JPH06223767A JP5013455A JP1345593A JPH06223767A JP H06223767 A JPH06223767 A JP H06223767A JP 5013455 A JP5013455 A JP 5013455A JP 1345593 A JP1345593 A JP 1345593A JP H06223767 A JPH06223767 A JP H06223767A
- Authority
- JP
- Japan
- Prior art keywords
- sector
- sample
- magnet
- type
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 14
- 238000010894 electron beam technology Methods 0.000 claims description 14
- 238000013507 mapping Methods 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims 2
- 230000003287 optical effect Effects 0.000 abstract description 22
- 230000004075 alteration Effects 0.000 abstract description 17
- 238000001340 low-energy electron microscopy Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000003821 2-(trimethylsilyl)ethoxymethyl group Chemical group [H]C([H])([H])[Si](C([H])([H])[H])(C([H])([H])[H])C([H])([H])C(OC([H])([H])[*])([H])[H] 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、反射型電子顕微鏡に関
し、特に、試料への入射電子線とそれからの反射電子線
を分離するビームセパレータに工夫を施して、照射光学
系と拡大結像光学系とを平行にし、かつ、収差を少なく
した直接写像型反射電子顕微鏡に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection electron microscope, and more particularly to a beam separator for separating an incident electron beam on a sample and a reflected electron beam from the sample, so that an irradiation optical system and a magnifying imaging optical system can be obtained. The present invention relates to a direct mapping type reflection electron microscope in which the system is made parallel and aberration is reduced.
【0002】[0002]
【従来の技術】電子顕微鏡には、試料に対して電子が透
過する透過型と反射する反射型がある。また、像形成の
点から見て、直接写像型と走査型がある。この2つの観
点から、透過型で直接写像型のものがTEMと呼ばれる
電子顕微鏡であり、透過型で走査型のものがSTEMと
呼ばれる電子顕微鏡である。また、反射型で走査型のも
のがSEMである。これに対して、反射型で直接写像型
のものは、LEEMないしLEERM(Low Energy Ref
lecgtion Microscope )と呼ばれる。2. Description of the Related Art Electron microscopes are classified into a transmission type in which electrons are transmitted through a sample and a reflection type in which electrons are reflected. There are a direct mapping type and a scanning type from the viewpoint of image formation. From these two viewpoints, the transmission type and direct mapping type are electron microscopes called TEM, and the transmission type and scanning type are electron microscopes called STEM. A reflective type and a scanning type are SEMs. On the other hand, the reflection type and the direct mapping type are LEEM or LEERM (Low Energy Ref
lecgtion Microscope).
【0003】LEEMは、20〜200Vの低加速電子
を試料表面に垂直に当て、試料表面から反射して出てき
た電子を用いて直接像を得るものである。結像の原理は
TEM(透過型電子顕微鏡)と同じであるが、反射電子
を用いて像を得るため、試料面に対して折れ曲がった光
学系が必要である。図3は、従来のLEEMの光学系を
模式的に示す図であり、試料Sの面に対して斜め上方に
配置した電子銃1からの電子ビームは照射レンズ系2に
より絞られ、試料面に斜めに入射するように照射され
る。この斜めの電子ビームはビームセパレータ3により
試料面に垂直に曲げられ、カソード対物レンズ4により
減速されて試料Sに垂直に入射する。そして、試料Sか
ら反射された電子はカソード対物レンズ4により加速さ
れ、ビームセパレータ3に入射し、今度は反対側に曲げ
られ、入射電子線から反対の斜め上方へ分離され、結像
レンズ系5によりスクリーン6上に結像される。試料S
近傍では電子の速度は遅く、外乱の影響を受けやすいの
で、普通、試料Sから出た直後に上記のようにカソード
対物レンズ4により加速し、10〜20kVの加速電圧
で光学系を通すことが行われる。同じように、入射ビー
ムも10〜20kVの加速電圧で照射光学系2、3を通
過し、試料Sの直前でカソード対物レンズ4により減速
される。In LEEM, low-acceleration electrons of 20 to 200 V are applied perpendicularly to the sample surface, and an electron is directly obtained by using the electrons reflected from the sample surface. The principle of image formation is the same as that of a TEM (transmission electron microscope), but since an image is obtained using reflected electrons, an optical system that is bent with respect to the sample surface is required. FIG. 3 is a diagram schematically showing an optical system of a conventional LEEM, in which an electron beam from an electron gun 1 arranged obliquely above the surface of the sample S is focused by an irradiation lens system 2 so that the sample surface is irradiated with the electron beam. It is irradiated so that it is incident at an angle. This oblique electron beam is bent perpendicularly to the sample surface by the beam separator 3, decelerated by the cathode objective lens 4 and vertically incident on the sample S. Then, the electrons reflected from the sample S are accelerated by the cathode objective lens 4, enter the beam separator 3, are bent to the opposite side this time, are separated obliquely upward from the incident electron beam, and form the imaging lens system 5. An image is formed on the screen 6 by. Sample S
Since the velocity of electrons is low in the vicinity and is easily affected by disturbance, it is usually possible to accelerate the cathode objective lens 4 immediately after it comes out of the sample S and pass through the optical system at an acceleration voltage of 10 to 20 kV as described above. Done. Similarly, the incident beam also passes through the irradiation optical systems 2 and 3 at an acceleration voltage of 10 to 20 kV and is decelerated by the cathode objective lens 4 immediately before the sample S.
【0004】このように、カソード対物レンズ4は、電
子の加速、減速を行い、併せて、初段レンズとして像の
拡大を行う役割を担っている。As described above, the cathode objective lens 4 has a role of accelerating and decelerating electrons and, at the same time, enlarging an image as a first stage lens.
【0005】また、照射ビームと反射ビームは試料S近
傍で同一パスを通るので、照射ビームと反射ビームのパ
スを分離することが必要になる。この役割を担っている
のがビームセパレータ3であり、通常、磁場型セクター
が用いられている。この磁場型セクターは、幸い1個で
この振り分けが可能である。なぜならば、ローレンツ力
により進行方向に対して同じ向きに力を受けるが、電子
の向きが逆なので、反対方向に曲げられることになるた
めである。Further, since the irradiation beam and the reflected beam pass through the same path in the vicinity of the sample S, it is necessary to separate the paths of the irradiation beam and the reflected beam. The beam separator 3 plays this role, and a magnetic field type sector is usually used. Fortunately, one magnetic field type sector can be used for this allocation. This is because the Lorentz force exerts a force in the same direction as the traveling direction, but since the electrons have opposite directions, they are bent in the opposite direction.
【0006】ところが、この磁場型セクターが作る2次
収差は、最終的に得られる像を歪ませる(あるいは、ボ
ケさせる。)。収差の影響を出来るだけ少なくするため
の対策として、入射ビームと反射ビームとのなす角を出
来る限り小さくしたり、あるいは、ウィーンフィルタを
用いて、反射ビームだけは試料に対して垂直に出射さ
せ、2次収差の影響を受けないようにする(特願平3−
199134号)等の工夫がなされてきた。However, the secondary aberration created by the magnetic field type sector distorts (or blurs) the finally obtained image. As a measure to minimize the effect of aberration, the angle between the incident beam and the reflected beam is made as small as possible, or a Wien filter is used, and only the reflected beam is emitted perpendicular to the sample. Avoid the effects of secondary aberrations (Japanese Patent Application No. 3-
199134) etc. have been devised.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、従来、
結像される像に対する入射ビームの影響は余り考慮され
てこなかった。TEMとの類似で考えれば、像に対する
入射ビームの角度等の影響は極めて大きいと考えざるを
得ない。特に、軸合わせ等において、入射ビームのパタ
ーンが収差や軸の狂いを含まないものであることが必要
とされる。[Problems to be Solved by the Invention]
The effect of the incident beam on the image formed has not been taken into account very much. Considering the analogy with TEM, it must be considered that the influence of the angle of the incident beam on the image is extremely large. In particular, in alignment of axes, it is necessary that the pattern of the incident beam does not include aberration or axis deviation.
【0008】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、照射光学系と拡大結像光学系
とをほぼ平行に配置し、入射ビーム及び結像像の収差を
少なくした直接写像反射型電子顕微鏡を提供することで
ある。The present invention has been made in view of such a situation, and an object thereof is to arrange an irradiation optical system and a magnifying image forming optical system substantially in parallel with each other to reduce aberrations of an incident beam and an image formed image. Another object of the present invention is to provide a direct mapping reflection type electron microscope.
【0009】[0009]
【課題を解決するための手段】上記目的を達成する本発
明の直接写像反射型電子顕微鏡は、試料に照射する電子
ビームと試料から反射され照射電子ビームに対して反対
方向に進む電子線とをビームセパレータにより分離する
直接写像型反射電子顕微鏡において、ビームセパレータ
が3個のセクター型磁石で構成され、第2のセクター型
磁石は3つの端面を有し、1つの端面は試料に対向し、
他の2つの端面はそれぞれ第1及び第3のセクター型磁
石に対向して配置され、第1セクター型磁石に照射系が
接続され、第3のセクター型磁石に結像系が接続され、
前記照射系及び結像系が試料面法線に対してほぼ対称に
配置されていることを特徴とするものである。The direct mapping reflection electron microscope of the present invention which achieves the above object comprises an electron beam with which a sample is irradiated and an electron beam which is reflected from the sample and travels in the opposite direction to the irradiation electron beam. In a direct mapping reflection electron microscope which separates by a beam separator, the beam separator is composed of three sector type magnets, the second sector type magnet has three end faces, and one end face faces the sample,
The other two end faces are respectively arranged to face the first and third sector type magnets, the irradiation system is connected to the first sector type magnet, and the imaging system is connected to the third sector type magnet.
The irradiation system and the imaging system are arranged substantially symmetrically with respect to the normal to the sample surface.
【0010】[0010]
【作用】本発明においては、ビームセパレータが3個の
セクター型磁石で構成され、第2のセクター型磁石は3
つの端面を有し、1つの端面は試料に対向し、他の2つ
の端面はそれぞれ第1及び第3のセクター型磁石に対向
して配置され、第1セクター型磁石に照射系が接続さ
れ、第3のセクター型磁石に結像系が接続され、照射系
及び結像系が試料面法線に対してほぼ対称に配置されて
いるので、試料上の入射ビーム及びスクリーン上の結像
像の収差を少なくすることができ、良好な反射電子像を
得ることができると共に、軸合わせ等の調整が容易にな
る。また、光学系の配置の自由度も高くなり、装置をコ
ンパクトに構成することもできる。In the present invention, the beam separator is composed of three sector type magnets, and the second sector type magnet is three.
Two end faces, one end face facing the sample, and the other two end faces facing the first and third sector magnets, respectively, and the irradiation system connected to the first sector magnet. An image forming system is connected to the third sector magnet, and the irradiation system and the image forming system are arranged substantially symmetrically with respect to the normal to the sample surface. Aberrations can be reduced, a good backscattered electron image can be obtained, and adjustments such as axis alignment become easy. Moreover, the degree of freedom in the arrangement of the optical system is increased, and the device can be made compact.
【0011】[0011]
【実施例】以下、図面を参照にして本発明の直接写像反
射型電子顕微鏡の実施例について説明するが、本発明
は、特に、入射ビームの作る収差にも配慮したビームセ
パレータに特徴があるものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the direct image reflection type electron microscope of the present invention will be described below with reference to the drawings. The present invention is characterized by a beam separator in consideration of the aberration produced by an incident beam. Is.
【0012】図1は、本発明によるLEEMの概略の構
成を示す図であり、この装置は、電子銃1と照射レンズ
系2からなる照射光学系の光軸と、結像レンズ系5及び
スクリーン6からなる拡大結像光学系の光軸とは平行
で、両光軸の中間の軸A上に試料Sが配置される構成に
なっており、そのために、ビームセパレータ3が3つの
セクター型磁石31、32、33から構成されている。
このように配置すると、電子銃1からの電子ビームは、
照射レンズ系2により軸Aに平行に絞られ、第1のセク
ター型磁石31により右側に曲げられて第2のセクター
型磁石32に入射し、第2のセクター型磁石32により
反対方向にほぼ同じ角度曲げられて軸Aに沿って出射
し、カソード対物レンズ4により減速されて試料Sに垂
直に入射する。そして、試料Sから反射された電子は、
カソード対物レンズ4により加速され、今度は第2のセ
クター型磁石32により入射ビームから反対の方向に分
離されて第3のセクター型磁石33に入射し、第3のセ
クター型磁石33により反対方向にほぼ同じ角度曲げら
れて軸Aに平行な軸に沿って出射し、結像レンズ系5に
よりスクリーン6上に結像される。FIG. 1 is a diagram showing a schematic structure of an LEEM according to the present invention. This apparatus has an optical axis of an irradiation optical system composed of an electron gun 1 and an irradiation lens system 2, an imaging lens system 5 and a screen. 6 is parallel to the optical axis of the magnifying and imaging optical system, and the sample S is arranged on an axis A intermediate between the optical axes. Therefore, the beam separator 3 has three sector magnets. It is composed of 31, 32, and 33.
With this arrangement, the electron beam from the electron gun 1
The irradiation lens system 2 squeezes the light in parallel with the axis A, bends it to the right by the first sector magnet 31, enters the second sector magnet 32, and the second sector magnet 32 in the same direction in the opposite direction. The sample is bent at an angle and emitted along the axis A, is decelerated by the cathode objective lens 4, and is vertically incident on the sample S. Then, the electrons reflected from the sample S are
Accelerated by the cathode objective lens 4, this time it is separated from the incident beam in the opposite direction by the second sector type magnet 32 and enters the third sector type magnet 33, and in the opposite direction by the third sector type magnet 33. It is bent at substantially the same angle, is emitted along an axis parallel to the axis A, and is imaged on the screen 6 by the imaging lens system 5.
【0013】ここで、各セクター型磁石31、32、3
3の端面は、通常の質量分析装置や電子線用オメガフィ
ルターと同じように、非点収差なしの結像や2次収差除
去のために、テーパーを設けたり、曲面にしてももちろ
んよい。図1では、簡単のためにこれらの端面は図示を
省略してある。また、フリンジ場調整のためのミラーも
設けてもよい。Here, each sector magnet 31, 32, 3
The end surface of 3 may be, of course, provided with a taper or a curved surface in order to form an image without astigmatism and to remove the second-order aberration, like an ordinary mass spectrometer or an omega filter for an electron beam. In FIG. 1, these end faces are not shown for simplicity. Also, a mirror for adjusting the fringe field may be provided.
【0014】この3個のセクター型磁石31、32、3
3は、試料Sをミラーとして考えれば、図2に示すよう
な4個のセクター型磁石31、32、32、33か
らなるオメガフィルターの後半の2つのセクター型磁石
32、33を軸の回りで180°回転したものに相当
すると理解することができる。すなわち、上記3個のセ
クター型磁石31、32、33によって構成されるビー
ムセパレータ3は電子光学的にはオメガフィルターに相
当し、中心の対称面で1次収差、2次の開口収差、湾曲
収差が消せる等のオメガフィルターが持つ光学特性の殆
どを実現することができる。したがって、例えば、第1
のセクター型磁石31による2次収差を第2のセクター
型磁石32により補正することができるし、また、第2
のセクター型磁石32と第3のセクター型磁石33の関
係でも同様である。そのため、試料S上の入射ビーム及
びスクリーン6上の結像像の収差を少なくすることがで
きる。また、入射ビームの持つエネルギーの拡がりは、
第3のセクター型磁石33の出口において分散が生じな
いように、各セクター型磁石のパラメータを設定するこ
とも可能で、試料Sが作るエネルギーの拡がりを第3の
セクター型磁石33の出口において分散させ、エネルギ
ー分析器としても働かせることができる。また、第2の
セクター型磁石32において、入射側と出射側のビーム
のなす角をθ≒80°〜110°程度と非常に大きく取
ることが可能で、従来のビームセパレータにおけるθ≒
15°〜45°と比較して非常に大きく、その前段と後
段の光学系の接触の問題が起き難くなり、これらの光学
系を近接して配置することができる。These three sector type magnets 31, 32, 3
Considering the sample S as a mirror, 3 is the two sector type magnets 32, 33 in the latter half of the omega filter composed of four sector type magnets 31, 32, 32, 33 as shown in FIG. It can be understood that it corresponds to the one rotated by 180 °. That is, the beam separator 3 composed of the three sector magnets 31, 32, and 33 corresponds to an omega filter in terms of electron optics, and has a first-order aberration, a second-order aperture aberration, and a curvature aberration at the center symmetry plane. It is possible to realize most of the optical characteristics of the omega filter, such as eliminating the noise. Thus, for example, the first
The second-order aberration caused by the sector type magnet 31 can be corrected by the second sector type magnet 32.
The same applies to the relationship between the sector type magnet 32 and the third sector type magnet 33. Therefore, the aberration of the incident beam on the sample S and the image formed on the screen 6 can be reduced. Also, the energy spread of the incident beam is
It is also possible to set the parameters of each sector magnet so that dispersion does not occur at the outlet of the third sector magnet 33, and the spread of energy produced by the sample S is dispersed at the outlet of the third sector magnet 33. And can also act as an energy analyzer. Further, in the second sector type magnet 32, it is possible to make the angle formed by the beams on the incident side and the emission side as very large as θ≈80 ° to 110 °, and in the conventional beam separator, θ≈
It is very large as compared with 15 ° to 45 °, and the problem of contact between the optical system in the preceding stage and the optical system in the subsequent stage is less likely to occur, and these optical systems can be arranged close to each other.
【0015】以上、本発明の直接写像反射型電子顕微鏡
を実施例に基づいて説明したが、本発明はこの実施例に
限定されず種々の変形が可能である。Although the direct mapping reflection type electron microscope of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment and various modifications can be made.
【0016】[0016]
【発明の効果】以上の説明から明らかなように、本発明
の直接写像反射型電子顕微鏡によると、ビームセパレー
タが3個のセクター型磁石で構成され、第2のセクター
型磁石は3つの端面を有し、1つの端面は試料に対向
し、他の2つの端面はそれぞれ第1及び第3のセクター
型磁石に対向して配置され、第1セクター型磁石に照射
系が接続され、第3のセクター型磁石に結像系が接続さ
れ、照射系及び結像系が試料面法線に対してほぼ対称に
配置されているので、試料上の入射ビーム及びスクリー
ン上の結像像の収差を少なくすることができ、良好な反
射電子像を得ることができると共に、軸合わせ等の調整
が容易になる。また、光学系の配置の自由度も高くな
り、装置をコンパクトに構成することもできる。As is apparent from the above description, according to the direct mapping reflection type electron microscope of the present invention, the beam separator is composed of three sector type magnets, and the second sector type magnet has three end faces. One of the end faces faces the sample, and the other two end faces are arranged to face the first and third sector magnets, respectively, and the irradiation system is connected to the first sector magnet. Since the imaging system is connected to the sector magnet and the irradiation system and the imaging system are arranged almost symmetrically with respect to the normal to the sample surface, the incident beam on the sample and the aberration of the image formed on the screen are reduced. Therefore, a good backscattered electron image can be obtained, and adjustments such as axis alignment become easy. Moreover, the degree of freedom in the arrangement of the optical system is increased, and the device can be made compact.
【図1】本発明によるLEEMの概略の構成を示す図で
ある。FIG. 1 is a diagram showing a schematic configuration of an LEEM according to the present invention.
【図2】本発明によるLEEMがオメガフィルターに相
当することを説明するための図である。FIG. 2 is a diagram for explaining that the LEEM according to the present invention corresponds to an omega filter.
【図3】従来のLEEMの概略の構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a conventional LEEM.
S…試料 A…中心軸 1…電子銃 2…照射レンズ系 3…ビームセパレータ 4…カソード対物レンズ 5…結像レンズ系 6…スクリーン 31…第1のセクター型磁石 32…第2のセクター型磁石 33…第3のセクター型磁石 32…セクター型磁石 32…セクター型磁石 S ... Sample A ... Central axis 1 ... Electron gun 2 ... Irradiation lens system 3 ... Beam separator 4 ... Cathode objective lens 5 ... Imaging lens system 6 ... Screen 31 ... First sector magnet 32 ... Second sector magnet 33 ... 3rd sector type magnet 32 ... sector type magnet 32 ... sector type magnet
Claims (1)
射され照射電子ビームに対して反対方向に進む電子線と
をビームセパレータにより分離する直接写像型反射電子
顕微鏡において、ビームセパレータが3個のセクター型
磁石で構成され、第2のセクター型磁石は3つの端面を
有し、1つの端面は試料に対向し、他の2つの端面はそ
れぞれ第1及び第3のセクター型磁石に対向して配置さ
れ、第1セクター型磁石に照射系が接続され、第3のセ
クター型磁石に結像系が接続され、前記照射系及び結像
系が試料面法線に対してほぼ対称に配置されていること
を特徴とする直接写像型反射電子顕微鏡。1. A direct mapping type reflection electron microscope in which an electron beam irradiating a sample and an electron beam reflected from the sample and traveling in a direction opposite to the irradiating electron beam are separated by a beam separator, and the sector has three beam separators. The second sector magnet has three end surfaces, one end surface faces the sample, and the other two end surfaces face the first and third sector magnets, respectively. The irradiation system is connected to the first sector magnet, the imaging system is connected to the third sector magnet, and the irradiation system and the imaging system are arranged substantially symmetrically with respect to the normal to the sample surface. Direct mapping type backscattered electron microscope characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05013455A JP3123850B2 (en) | 1993-01-29 | 1993-01-29 | Direct mapping reflection electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05013455A JP3123850B2 (en) | 1993-01-29 | 1993-01-29 | Direct mapping reflection electron microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06223767A true JPH06223767A (en) | 1994-08-12 |
JP3123850B2 JP3123850B2 (en) | 2001-01-15 |
Family
ID=11833625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05013455A Expired - Fee Related JP3123850B2 (en) | 1993-01-29 | 1993-01-29 | Direct mapping reflection electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3123850B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1058287A2 (en) * | 1999-06-01 | 2000-12-06 | Jeol Ltd. | Magnetic energy filter |
EP1389793A2 (en) | 2002-08-02 | 2004-02-18 | LEO Elektronenmikroskopie GmbH | Electron microscopy system |
WO2005024881A2 (en) | 2003-09-05 | 2005-03-17 | Carl Zeiss Smt Ag | Particle-optical systems, components and arrangements |
JP2006351902A (en) * | 2005-06-17 | 2006-12-28 | Consortium For Advanced Semiconductor Materials & Related Technologies | Via hole forming method and semiconductor device |
-
1993
- 1993-01-29 JP JP05013455A patent/JP3123850B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1780762A1 (en) * | 1999-06-01 | 2007-05-02 | Jeol Ltd. | Magnetic energy filter |
EP1058287A3 (en) * | 1999-06-01 | 2005-06-15 | Jeol Ltd. | Magnetic energy filter |
EP1058287A2 (en) * | 1999-06-01 | 2000-12-06 | Jeol Ltd. | Magnetic energy filter |
EP1389793A2 (en) | 2002-08-02 | 2004-02-18 | LEO Elektronenmikroskopie GmbH | Electron microscopy system |
EP2996138A1 (en) * | 2002-08-02 | 2016-03-16 | Carl Zeiss Microscopy GmbH | Electron microscope system |
EP1389793A3 (en) * | 2002-08-02 | 2009-06-10 | Carl Zeiss NTS GmbH | Electron microscopy system |
EP1668662A2 (en) * | 2003-09-05 | 2006-06-14 | Carl Zeiss SMT AG | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
JP2007513460A (en) * | 2003-09-05 | 2007-05-24 | カール・ツァイス・エスエムティー・アーゲー | Particle optical system and apparatus, and particle optical component for such system and apparatus |
EP1668662A4 (en) * | 2003-09-05 | 2010-12-15 | Zeiss Carl Smt Ag | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
JP4794444B2 (en) * | 2003-09-05 | 2011-10-19 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Particle optical system and apparatus, and particle optical component for such system and apparatus |
US8097847B2 (en) | 2003-09-05 | 2012-01-17 | Carl Ziess Smt Ag | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
US8637834B2 (en) | 2003-09-05 | 2014-01-28 | Carl Zeiss Microscopy Gmbh | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
US9224576B2 (en) | 2003-09-05 | 2015-12-29 | Carl Zeiss Microscopy Gmbh | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
WO2005024881A2 (en) | 2003-09-05 | 2005-03-17 | Carl Zeiss Smt Ag | Particle-optical systems, components and arrangements |
US9673024B2 (en) | 2003-09-05 | 2017-06-06 | Applied Materials Israel, Ltd. | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
US10504681B2 (en) | 2003-09-05 | 2019-12-10 | Carl Zeiss Microscopy Gmbh | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
JP2006351902A (en) * | 2005-06-17 | 2006-12-28 | Consortium For Advanced Semiconductor Materials & Related Technologies | Via hole forming method and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3123850B2 (en) | 2001-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5319207A (en) | Imaging system for charged particles | |
US7531799B2 (en) | Charged particle beam column | |
JP4384027B2 (en) | Charged particle beam apparatus and method for inspecting a sample | |
JP7336926B2 (en) | Multi-electron beam imager with improved performance | |
US4978855A (en) | Electron microscope for investigation of surfaces of solid bodies | |
US7022987B2 (en) | Particle-optical arrangements and particle-optical systems | |
EP2091064A1 (en) | Electron beam device | |
JPH04242060A (en) | Reflecting electronic microscope | |
US20030218133A1 (en) | Charged particle beam column and method for directing a charged particle beam | |
US6878937B1 (en) | Prism array for electron beam inspection and defect review | |
JPH11195396A (en) | Corpuscular beam device having energy filter | |
EP3923314A1 (en) | Dual beam microscope system for imaging during sample processing | |
JP3123850B2 (en) | Direct mapping reflection electron microscope | |
JP2000228162A (en) | Electron beam device | |
US3500042A (en) | Ionic microanalyzer which includes a convex mirror as an ion energy filter | |
EP0953202A1 (en) | Particle beam device | |
JP2003187730A (en) | Beam separator and reflection electron microscope | |
US4429222A (en) | Transmission electron microscope | |
JP4071473B2 (en) | Scanning electron microscope with monochromator | |
JPH05109381A (en) | Direct projection-type reflecting electron microscope | |
US4097739A (en) | Beam deflection and focusing system for a scanning corpuscular-beam microscope | |
JP3790646B2 (en) | Low energy reflection electron microscope | |
JPH01264149A (en) | Charged particle beam applied device | |
JP3696827B2 (en) | Energy filter | |
JP4135221B2 (en) | Mapping electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |