JPH0622274B2 - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPH0622274B2 JPH0622274B2 JP58204799A JP20479983A JPH0622274B2 JP H0622274 B2 JPH0622274 B2 JP H0622274B2 JP 58204799 A JP58204799 A JP 58204799A JP 20479983 A JP20479983 A JP 20479983A JP H0622274 B2 JPH0622274 B2 JP H0622274B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- type
- semiconductor
- bipolar transistor
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 56
- 239000000758 substrate Substances 0.000 claims description 23
- 239000012212 insulator Substances 0.000 claims description 19
- 238000002955 isolation Methods 0.000 claims description 17
- 230000000295 complement effect Effects 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000005260 alpha ray Effects 0.000 description 3
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005360 phosphosilicate glass Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910021339 platinum silicide Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0623—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
Description
【発明の詳細な説明】 [技術分野] この発明は、バイポーラトランジスタと相補型のMIS
FETとを同一基板上に形成する技術に関するもので、
たとえば、同一のシリコン基板上にバイポーラトランジ
スタとCMOS素子とを形成する上で有効な技術に関す
るものである。TECHNICAL FIELD The present invention relates to a bipolar transistor and a complementary MIS.
It relates to the technology of forming FET and the same substrate,
For example, it relates to a technique effective in forming a bipolar transistor and a CMOS element on the same silicon substrate.
[背景技術] 相補型のMISFETを備えた半導体集積回路装置(以
下、ICという)は、動作時間の高速化および消費電力
の低減化という点で優れている反面、他のICを駆動す
るためのドライブ能力が低いという難点がある。[Background Art] A semiconductor integrated circuit device (hereinafter referred to as an IC) having a complementary MISFET is excellent in that the operation time is shortened and the power consumption is reduced, while it is used for driving another IC. There is a drawback that the driving ability is low.
そこで、そのような難点を解決する手法として、同一基
板上に相補型のMISFETとバイポーラトランジスタ
とを混在させる方法が知られている(たとえば、特開昭5
4-131887号公報参照)。この種の混在型のICでは、第
1の導電型の半導体基板、たとえばP型のシリコン基板
上にエピタキシャル成長させた第2の導電型の半導体
層、たとえばN型のシリコン層中に各素子が形成され
る。Therefore, as a method for solving such a problem, there is known a method of mixing complementary MISFETs and bipolar transistors on the same substrate (for example, Japanese Patent Laid-Open No. Sho 5).
4-131887). In this type of mixed type IC, each element is formed in a second conductive type semiconductor layer, for example, an N type silicon layer epitaxially grown on a first conductive type semiconductor substrate, for example, a P type silicon substrate. To be done.
ところで、前記エピタキシャル成長半導体層について
は、MISFETのドレイン容量を低減し、かついわゆ
るパンチスルーを防止するという観点から、一般に、た
とえば5〜6μm程度あるいはそれ以上に厚く形成され
ていた。したがって、混在型のICにおけるバイポーラ
トランジスタの性能、特にしゃ断周波数fTは、バイポ
ーラ素子のみを形成したICに比べて低いものとなり、
動作速度が低減することを本発明者は発見した。By the way, the epitaxially grown semiconductor layer is generally formed to have a thickness of, for example, about 5 to 6 μm or more from the viewpoint of reducing the drain capacitance of the MISFET and preventing so-called punch-through. Therefore, the performance of the bipolar transistor in the mixed type IC, in particular, the cutoff frequency f T is lower than that of the IC in which only the bipolar element is formed,
The inventor has found that the operating speed is reduced.
一方、この種のICにおいては、各素子の信頼性を向上
するため、バイポーラトランジスタを同一基板上の相補
型のMISFETから完全に電気的に分離し、かつ、ラ
ッチアップ耐圧を向上させることが必要であると考えら
れる。On the other hand, in this type of IC, in order to improve the reliability of each element, it is necessary to completely electrically separate the bipolar transistor from the complementary MISFET on the same substrate and to improve the latch-up breakdown voltage. Is considered to be.
[発明の目的] この発明の目的は、バイポーラトランジスタと相補型M
ISFETを同一基板上に形成した半導体装置の集積度
を向上する技術を提供することにある。[Object of the Invention] An object of the present invention is to provide a bipolar transistor and a complementary M
It is an object of the present invention to provide a technique for improving the integration degree of a semiconductor device in which ISFETs are formed on the same substrate.
この発明の他の目的は、パイポーラトランジスタと相補
型のMISFETとを同一基板上に有するICにおい
て、バイポーラトランジスタの遮断周波数fTを大きく
し素子の動作速度を高める技術を提供することにある。Another object of the present invention is to provide a technique for increasing the cut-off frequency f T of a bipolar transistor and increasing the operating speed of an element in an IC having a bipolar transistor and a complementary MISFET on the same substrate.
この発明の他の目的は、同様のICにおいて、各素子間
を絶縁物分離領域で完全に分離し、ラッチアップを確実
に防止することができる技術を提供することにある。Another object of the present invention is to provide a technique capable of completely isolating elements from each other in an insulator isolation region in a similar IC and reliably preventing latch-up.
この発明の他の目的は、同様のICにおいて、耐α線強
度を向上する技術を提供することにある。Another object of the present invention is to provide a technique for improving the α-ray resistance strength in the same IC.
この発明の前記ならびにその他の目的と新規な特徴は、
この明細書の記述および添付図面から明らかになるであ
ろう。The above and other objects and novel features of the present invention are as follows.
It will be apparent from the description of this specification and the accompanying drawings.
[発明の概要] ここで開示される発明のうち代表的なものの概要を簡単
に説明すれば、下記のとおりである。[Outline of the Invention] The outline of a typical one of the inventions disclosed herein will be briefly described as follows.
すなわち、半導体基板の一面に設けたエピタキシャル成
長半導体層中にバイポーラトランジスタと相補型のMI
SFETとを形成するICにおいて、バイポーラトラン
ジスタが形成される領域のエピタキシャル成長半導体層
と半導体基板との界面部分にバイポーラトランジスタの
コレクタ領域を構成する高濃度半導体領域を設け、Nチ
ャネル型のMISFETが形成されるP型のウエル領域
と半導体基板との界面部分にP+型の高濃度半導体領域
を設け、Pチャネル型のMISFETが形成されるN型
のウエル領域と半導体基板との界面部分にN+型の高濃
度半導体領域を設け、かつこれらの素子が形成される各
領域の境界部分に半導体基板に達する深さの絶縁物分離
領域を設け、さらにバイポーラトランジスタのコレクタ
コンタクト部分が形成される領域とベース領域が形成さ
れる領域との境界部分に前記高濃度半導体領域に達する
深さの分離領域を設け、この分離領域と前記の絶縁物分
離領域とでコレクタ、ベース接合を終端させるものであ
る。That is, a bipolar transistor and a complementary MI are provided in an epitaxially grown semiconductor layer provided on one surface of a semiconductor substrate.
In an IC that forms an SFET, a high-concentration semiconductor region that forms a collector region of a bipolar transistor is provided at an interface between an epitaxially grown semiconductor layer and a semiconductor substrate in a region where a bipolar transistor is formed, and an N-channel type MISFET is formed. that provided a high-concentration semiconductor region of the P + -type interface between the P-type well region and the semiconductor substrate, N + -type interface between the N-type well region and the semiconductor substrate of the MISFET of P-channel type is formed A high-concentration semiconductor region, an insulator isolation region having a depth reaching the semiconductor substrate is provided at the boundary of each region where these elements are formed, and the region where the collector contact portion of the bipolar transistor is formed and the base. An isolation region having a depth reaching the high-concentration semiconductor region at the boundary with the region where the region is formed Provided, it is intended to terminate the collector, a base junction with the separation region and the insulator isolation region.
[実施例] 図はこの発明の最も好ましい一実施例を示す断面構造図
である。[Embodiment] FIG. 1 is a sectional structural view showing a most preferred embodiment of the present invention.
P型のシリコン半導体基板1の一面には、N−型のエピ
タキシャル成長シリコン半導体層2(前述したとおり、
この半導体層2の厚さは通常のバイポーラ型のICにお
けるエピタキシャル層の厚さに近く、たとえば1〜2μ
m程度である)が形成されるが、その半導体層2には、
N型のウエル領域3およびP型のウエル領域4の形成に
よって不純物が導入されている。これらウエル領域3,
4は相補型のMISFET、たとえばCMOS素子を形
成すべき部分である。N型のウエル領域3にはPチャネ
ル型のMOSFETが形成され、もう一方のP型のウエ
ル領域4にはNチャネル型のMOSFETが形成され
る。また、エピタキシャル成長に先んじて、半導体基板
1の表面のうち、バイポーラトランジスタを形成すべき
部分には、予めアンチモン等のN型の不純物が高濃度に
ドープされN+型の不純物半導体領域5が形成されてい
る。このN+型の不純物半導体領域5はバイポーラトラ
ンジスタのコレクタ領域を構成するものである。On one surface of the P-type silicon semiconductor substrate 1, the N − -type epitaxially grown silicon semiconductor layer 2 (as described above,
The thickness of the semiconductor layer 2 is close to the thickness of the epitaxial layer in a normal bipolar type IC, for example, 1 to 2 μm.
m) is formed on the semiconductor layer 2.
Impurities are introduced by the formation of the N-type well region 3 and the P-type well region 4. These well regions 3,
Reference numeral 4 is a portion where a complementary MISFET, for example, a CMOS device is to be formed. A P-channel type MOSFET is formed in the N-type well region 3, and an N-channel type MOSFET is formed in the other P-type well region 4. Prior to the epitaxial growth, an N + -type impurity semiconductor region 5 is formed in advance in a high concentration of an N-type impurity such as antimony in a portion of the surface of the semiconductor substrate 1 where a bipolar transistor is to be formed. ing. The N + -type impurity semiconductor region 5 constitutes the collector region of the bipolar transistor.
N+型の不純物半導体領域5がある部分、ならびにN型
ウエル領域3およびP型ウエル領域4の各境界部分には
それぞれ絶縁物分離領域6が形成されている。絶縁物分
離領域6は、溝7とそれを埋める絶縁物8とからなり、
溝7の幅はたとえば3μm程度である。また、溝7の深
さはエピタキシャル成長層2を貫き基板1に達してお
り、絶縁物分離領域6はN+型の不純物半導体領域5
(およびその上の領域)、ならびに各ウエル領域3,4
を完全に分離している。溝7の形成については、サイド
エッチングがほとんど生じない反応性イオンエッチング
を用いるのが良い。また、絶縁物8としてはポリシリコ
ンあるいは二酸化シリコン等を用いることができ、特に
溝7の内面に熱酸化による酸化膜9aを形成することに
よって絶縁を完全にする。絶縁物8としてポリシリコン
を用いる場合、バッファ層としてシリコンナイトライド
(Si3N4)膜9bを介在させるのが良い。なお、溝7
および酸化膜9aを形成した後、化学気相成長法(CV
D法)等による絶縁物8の埋込み処理の前に、溝7の底
部にチャンネルストッパとしてP+型の領域(図示せ
ず)をイオン打込みによって形成することもできる。Insulator isolation regions 6 are formed at the portion where the N + -type impurity semiconductor region 5 is present and at each boundary between the N-type well region 3 and the P-type well region 4. The insulator isolation region 6 is composed of a groove 7 and an insulator 8 filling the groove 7,
The width of the groove 7 is, for example, about 3 μm. Further, the depth of the groove 7 penetrates the epitaxial growth layer 2 and reaches the substrate 1, and the insulator isolation region 6 is the N + -type impurity semiconductor region 5.
(And the area above it), and each well area 3, 4
Are completely separated. For formation of the groove 7, it is preferable to use reactive ion etching which hardly causes side etching. Moreover, polysilicon, silicon dioxide, or the like can be used as the insulator 8, and in particular, the insulation is completed by forming an oxide film 9a by thermal oxidation on the inner surface of the groove 7. When polysilicon is used as the insulator 8, silicon nitride is used as the buffer layer.
It is preferable to interpose the (Si 3 N 4 ) film 9b. The groove 7
And after forming the oxide film 9a, a chemical vapor deposition method (CV
It is also possible to form a P + -type region (not shown) as a channel stopper at the bottom of the groove 7 by ion implantation before the filling process of the insulator 8 by the (D method) or the like.
以上のようにして分離された各領域には、従来と同様の
技術によって、バイポーラトランジスタ10、Pチャネ
ル型のMOSFET11およびNチャネル型のMOSF
ET12がそれぞれ形成されている。バイポーラトラン
ジスタ10はN+型の不純物半導体領域5からなるコレ
クタ領域のほか、P型のベース領域13、N+型のエミ
ッタ領域14を含み、各領域には開口を通して図示しな
い各電極がオーミックコンタクトされている。なおこの
場合、ベース領域13とN+型のコレクタコンタクト部
分15とは前記絶縁物分離領域6と同様の構造の分離領
域60によって分離されており、コレクタ−ベース間の
耐圧の向上が図られている。また、エミッタ領域14の
上にはポリシリコン層16が電極下地層として設けら
れ、エミッタのシャロー化が図られている。In each of the regions separated as described above, the bipolar transistor 10, the P-channel type MOSFET 11 and the N-channel type MOSF are formed by the same technique as the conventional technique.
ET12 is formed respectively. The bipolar transistor 10 includes a P-type base region 13 and an N + -type emitter region 14 in addition to a collector region composed of an N + -type impurity semiconductor region 5, and each region is ohmic-contacted with an electrode (not shown) through an opening. ing. In this case, the base region 13 and the N + -type collector contact portion 15 are separated by the isolation region 60 having the same structure as the insulator isolation region 6, so that the breakdown voltage between the collector and the base is improved. There is. Further, a polysilicon layer 16 is provided as an electrode underlayer on the emitter region 14 so as to make the emitter shallow.
一方、MOSFET11,12はP+型あるいはN+型
のソースおよびドレインの各領域17,18;19,2
0とゲート電極21,22とによってそれぞれ構成され
ている。各ゲート電極21,22は厚さ35nm程度の
薄いゲート酸化膜(SiO2膜)23上に位置し、下層
のポリシリコン層21a,22aと上層のモリブデンシ
リサイド(MoSi2)層21b,22bとからなる。図
示はしないが、このような各素子の表面には、リンシリ
ケートガラス等のパッシベーション膜が形成され、つい
でそれに所定の穴あけがなされ、アルミニウム等の金属
配線が形成されている。最後にファイナルパッシベーシ
ョン膜を形成し素子を完成させる。On the other hand, MOSFETs 11 and 12 are P + type or N + type source and drain regions 17 and 18, respectively;
0 and gate electrodes 21 and 22 respectively. Each of the gate electrodes 21 and 22 is located on a thin gate oxide film (SiO 2 film) 23 having a thickness of about 35 nm, and is composed of the lower polysilicon layers 21a and 22a and the upper molybdenum silicide (MoSi 2 ) layers 21b and 22b. Become. Although not shown, a passivation film of phosphosilicate glass or the like is formed on the surface of each such element, and then a predetermined hole is formed in the film to form a metal wiring of aluminum or the like. Finally, a final passivation film is formed to complete the device.
この方法によれば、エピタキシャル成長半導体層2を薄
く形成でき、バイポトーラランジスタのfTを大きくで
き、高速化できると同時に、U溝を形成しているため素
子分離が完全となり、ラッチアップを防止できるととも
に集積度が向上する。According to this method, the epitaxially grown semiconductor layer 2 can be formed thin, the f T of the bipolar transistor can be increased, the speed can be increased, and at the same time, since the U groove is formed, element isolation is complete and latch-up can be prevented. Together with this, the degree of integration is improved.
以上説明した実施例では、主として、バイポーラトラン
ジスタ10の性能向上の方に主眼をおいた例を示した
が、図中二点鎖線で示すように、N型ウエル領域3の下
部、つまり基板1とエピタキシャル層2との界面部分に
N+型の高濃度な不純物半導体領域50およびP+型の
高濃度な不純物半導体領域40を形成するようにするこ
とができる。この高濃度な領域50はバイポーラトラン
ジスタ部分における前記N+型の領域5と同時に、ま
た、領域40は領域5および50とセルフアラインに形
成すれば良く、マスクを変えるだけで新たなマスクを追
加することなく容易に形成することができる。そうすれ
ば、P、N両チャネル型のMOSFETがいわゆる退化
構造を有することになり、α線耐量を増し、α線による
ソフトエラー等を防止しICの信頼性を増すことができ
る。In the embodiment described above, an example was mainly focused on improving the performance of the bipolar transistor 10. However, as shown by a chain double-dashed line in the figure, the lower part of the N-type well region 3, that is, the substrate 1 It is possible to form the N + -type high-concentration impurity semiconductor region 50 and the P + -type high-concentration impurity semiconductor region 40 at the interface with the epitaxial layer 2. The high-concentration region 50 may be formed at the same time as the N + type region 5 in the bipolar transistor portion, and the region 40 may be formed in self-alignment with the regions 5 and 50. A new mask is added only by changing the mask. Can be easily formed without. Then, the P-channel and N-channel MOSFETs have a so-called degenerate structure, the α-ray resistance can be increased, the soft error due to the α-rays can be prevented, and the reliability of the IC can be increased.
[効 果] バイポーラトランジスタのエピタキシャル成長半導体
層2を薄く形成でき、fTが高まるため高速動作が向上
する。[Effect] Since the epitaxially grown semiconductor layer 2 of the bipolar transistor can be formed thin and f T is increased, high speed operation is improved.
各素子間を絶縁物分離領域によって完全に分離してい
るので、ラッチアップを確実に防ぐことができる。しか
もまた、絶縁物分離領域を溝埋込み構造としているの
で、その部分の占有面積をを低減することができ、集積
度をも大幅に向上することができる。Since the respective elements are completely separated by the insulator separation region, latch-up can be surely prevented. Moreover, since the insulating material isolation region has a groove-buried structure, the area occupied by that portion can be reduced and the degree of integration can be greatly improved.
N型ウエル領域の下部にN+型の高濃度な不純物半導
体領域を、また、P型ウエル領域の下部にP+型の高濃
度な不純物半導体領域を設け、いわゆる退化構造をとっ
ているので、耐α線の強度が向上し、信頼性の高いデバ
イスを得ることができる。また、同構造によってラッチ
アップも向上する。The high-concentration impurity semiconductor region of the N + type at the bottom of the N-type well region, providing a high concentration impurity semiconductor regions of P + type in the lower part of the P-type well region, since taking a so-called degeneration structure, The strength of α-ray resistance is improved, and a highly reliable device can be obtained. Further, the same structure also improves latchup.
分離領域と絶縁物分離領域とでバイポーラトランジス
タのコレクタ、ベース接合を終端させることにより、そ
の耐圧を向上させることができる。By terminating the collector / base junction of the bipolar transistor in the isolation region and the insulator isolation region, the breakdown voltage can be improved.
以上この発明を実施例に基づき具体的に説明したが、こ
の発明は前記実施例に限定されるものではなく、その要
旨を逸脱しない範囲で種々変更可能であることはいうま
でもない。たとえば、モリブデンシリサイド21b,2
2bは他のシリサイド(白金シリサイド等)であっても良
い。Although the present invention has been specifically described above based on the embodiments, the present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention. For example, molybdenum silicide 21b, 2
2b may be another silicide (platinum silicide or the like).
添付図面はこの発明の一実施例を示す断面構造図であ
る。 1……半導体基板、2……エピタキシャル成長半導体
層、3……N型ウエル領域、4……P型ウエル領域、4
0……P+型の高濃度な不純物半導体領域、5,50…
…N+型の高濃度な不純物半導体領域、6,60……絶
縁物分離領域、7……溝、8……絶縁物、9a……酸化
膜、9b……シリコンナイトライド(Si3N4)膜、1
0……バイポーラトランジスタ、11……Pチャネル型
のMISFET(MOSFET)、12……Nチャネル型
のMISFET(MOSFET)、13……P型ベース領
域、14……エミッタ領域、15……N型コレクタコン
タクト部、16……ポリシリコン層、17,18……P
+型ソース,ドレイン層、19,20……N+型ソー
ス,ドレイン層、21,22……ゲート電極、21a,
22a……ポリシリコン層、21b,22b……モリブ
デンシリサイド層。The accompanying drawings are cross-sectional structural views showing an embodiment of the present invention. 1 ... Semiconductor substrate, 2 ... Epitaxial growth semiconductor layer, 3 ... N-type well region, 4 ... P-type well region, 4
0 ... P + type high-concentration impurity semiconductor region, 5, 50 ...
... N + -type high-concentration impurity semiconductor region, 6, 60 ... Insulator isolation region, 7 ... Groove, 8 ... Insulator, 9a ... Oxide film, 9b ... Silicon nitride (Si 3 N 4 ) Membrane, 1
0 ... Bipolar transistor, 11 ... P-channel type MISFET (MOSFET), 12 ... N-channel type MISFET (MOSFET), 13 ... P-type base region, 14 ... Emitter region, 15 ... N-type collector Contact part, 16 ... Polysilicon layer, 17, 18 ... P
+ Type source / drain layers, 19, 20 ... N + type source / drain layers 21, 22 ... Gate electrodes, 21a,
22a ... Polysilicon layer, 21b, 22b ... Molybdenum silicide layer.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/73 (72)発明者 中島 伸治 東京都小平市上水本町1450番地 株式会社 日立製作所デバイス開発センタ内 (72)発明者 荻上 勝己 東京都小平市上水本町1450番地 株式会社 日立製作所デバイス開発センタ内 (56)参考文献 特開 昭56−169359(JP,A) 特開 昭57−180146(JP,A) 特開 昭57−204144(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication part H01L 29/73 (72) Inventor Shinji Nakajima 1450, Kamimizuhonmachi, Kodaira-shi, Tokyo Hitachi, Ltd. Device In the development center (72) Inventor Katsumi Ogigami 1450, Kamimizumoto-cho, Kodaira-shi, Tokyo Inside the device development center, Hitachi, Ltd. (56) Reference JP-A-56-169359 (JP, A) JP-A-57-180146 (JP, A) JP-A-57-204144 (JP, A)
Claims (2)
導電型の第2導電型のエピタキシャル成長半導体層を設
け、このエピタキシャル成長半導体層中にバイポーラト
ランジスタと相補型のMISFETとを形成した半導体
集積回路装置において、前記バイポーラトランジスタが
形成される領域の前記エピタキシャル成長半導体層と前
記半導体基板との界面部分に前記バイポーラトランジス
タのコレクタ領域を構成する第2導電型の高濃度半導体
領域を設け、前記相補型のMISFETを形成する領域
の前記エピタキシャル成長半導体層のうち、第2導電型
のMISFETが形成される第1導電型のウエル領域と
前記半導体基板との界面部分に第1導電型の高濃度半導
体領域を設け、第1導電型のMISFETが形成される
第2導電型のウエル領域と前記半導体基板との界面部分
に第2導電型の高濃度半導体領域を設け、かつ前記バイ
ポーラトランジスタが形成される領域、前記第1導電型
のMISFETが形成される領域、前記第2導電型のM
ISFETが形成される領域のそれぞれの境界部分に前
記高濃度半導体領域を貫いて前記半導体基板に達するよ
うな深さをもつ溝とこの溝を埋める絶縁物とからなる絶
縁物分離領域を設け、さらに前記バイポーラトランジス
タが形成される領域のうち、コレクタコンタクト部分が
形成される領域とベース領域が形成される領域との境界
部分に前記高濃度半導体領域に達するような深さをもつ
溝とこの溝を埋める絶縁物とからなる分離領域を設け、
前記分離領域と前記絶縁物分離領域とでコレクタ、ベー
ス接合を終端させたことを特徴とする半導体集積回路装
置。1. A semiconductor integrated device comprising a first-conductivity-type semiconductor substrate provided on one surface thereof with a second-conductivity-type epitaxial growth semiconductor layer of the opposite conductivity type, and a bipolar transistor and a complementary-type MISFET formed in the epitaxial-growth semiconductor layer. In the circuit device, a high-concentration semiconductor region of a second conductivity type, which constitutes a collector region of the bipolar transistor, is provided at an interface portion between the epitaxial growth semiconductor layer and the semiconductor substrate in a region where the bipolar transistor is formed, and the complementary type semiconductor device is provided. A high-concentration semiconductor region of the first conductivity type is formed at the interface between the well region of the first conductivity type in which the second conductivity type MISFET is formed and the semiconductor substrate of the epitaxially grown semiconductor layer in the region for forming the MISFET. And a second conductivity type wafer on which a first conductivity type MISFET is formed. A second-conductivity-type high-concentration semiconductor region is provided at an interface between the region and the semiconductor substrate, and a region where the bipolar transistor is formed, a region where the first-conductivity-type MISFET is formed, and the second-conductivity type M
An insulator isolation region including a trench having a depth that penetrates the high-concentration semiconductor region and reaches the semiconductor substrate and an insulator that fills the trench is provided at each boundary of regions where ISFETs are formed, and A groove having such a depth as to reach the high-concentration semiconductor region is formed at a boundary portion between a region where the collector contact portion is formed and a region where the base region is formed in the region where the bipolar transistor is formed. Providing a separation region consisting of an insulator to be buried,
A semiconductor integrated circuit device characterized in that the collector and base junctions are terminated by the isolation region and the insulator isolation region.
1〜2μm程度である特許請求の範囲第1項に記載の半
導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein the epitaxially grown semiconductor layer has a thickness of about 1 to 2 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58204799A JPH0622274B2 (en) | 1983-11-02 | 1983-11-02 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58204799A JPH0622274B2 (en) | 1983-11-02 | 1983-11-02 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6097661A JPS6097661A (en) | 1985-05-31 |
JPH0622274B2 true JPH0622274B2 (en) | 1994-03-23 |
Family
ID=16496548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58204799A Expired - Lifetime JPH0622274B2 (en) | 1983-11-02 | 1983-11-02 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0622274B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6276758A (en) * | 1985-09-30 | 1987-04-08 | Toshiba Corp | Cmos semiconductor device |
JPS6290965A (en) * | 1985-09-30 | 1987-04-25 | Toshiba Corp | Cmos semiconductor device |
JPS6360553A (en) * | 1986-09-01 | 1988-03-16 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device and manufacture thereof |
US4819052A (en) * | 1986-12-22 | 1989-04-04 | Texas Instruments Incorporated | Merged bipolar/CMOS technology using electrically active trench |
JPS63236343A (en) * | 1987-03-25 | 1988-10-03 | Toshiba Corp | Manufacture of semiconductor device |
US4794434A (en) * | 1987-07-06 | 1988-12-27 | Motorola, Inc. | Trench cell for a dram |
US4939567A (en) * | 1987-12-21 | 1990-07-03 | Ibm Corporation | Trench interconnect for CMOS diffusion regions |
US4951102A (en) * | 1988-08-24 | 1990-08-21 | Harris Corporation | Trench gate VCMOS |
US5032529A (en) * | 1988-08-24 | 1991-07-16 | Harris Corporation | Trench gate VCMOS method of manufacture |
US5306939A (en) * | 1990-04-05 | 1994-04-26 | Seh America | Epitaxial silicon wafers for CMOS integrated circuits |
US5702973A (en) * | 1990-04-05 | 1997-12-30 | Seh America, Inc. | Method for forming epitaxial semiconductor wafer for CMOS integrated circuits |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169359A (en) * | 1980-05-30 | 1981-12-26 | Ricoh Co Ltd | Semiconductor integrated circuit device |
JPS57180146A (en) * | 1981-04-30 | 1982-11-06 | Fujitsu Ltd | Formation of elements isolation region |
-
1983
- 1983-11-02 JP JP58204799A patent/JPH0622274B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6097661A (en) | 1985-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5191401A (en) | MOS transistor with high breakdown voltage | |
KR910006672B1 (en) | Semiconductor integrated circuit device and its manufacturing method | |
JPH0618255B2 (en) | Semiconductor device | |
JPH0622274B2 (en) | Semiconductor integrated circuit device | |
JP3448546B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6028271A (en) | Vertical type mosfet | |
JP2000101074A (en) | Insulated gate semiconductor device and manufacture thereof | |
EP0091256B1 (en) | Cmos device | |
JPH04264776A (en) | Semiconductor device | |
EP0386779B1 (en) | MOS field-effect transistor having a high breakdown voltage | |
JPH06151728A (en) | Semiconductor integrated circuit device | |
JPH10270683A (en) | Semiconductor device and its manufacture | |
JPH09246550A (en) | Semiconductor device, and manufacture of semiconductor device, and insulated gate type of semiconductor device, and manufacture of insulated gate type of semiconductor device | |
JPS6038856A (en) | Manufacture of semiconductor device | |
JPS638623B2 (en) | ||
JPH09129763A (en) | Semiconductor integrated circuit | |
JP2508218B2 (en) | Complementary MIS integrated circuit | |
JPS6020571A (en) | Semiconductor device | |
KR900000070B1 (en) | The apparatus of semiconductor and method | |
JP3191285B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2953061B2 (en) | High breakdown voltage MOS transistor and method of manufacturing the same | |
JPS60120552A (en) | Bipolar cmis device and manufacture thereof | |
JPS6129149A (en) | Semiconductor integrated circuit device | |
JPS6199365A (en) | Semiconductor integrated circuit device | |
JPH118381A (en) | Semiconductor device |