[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0622151B2 - Liquid circulation type battery - Google Patents

Liquid circulation type battery

Info

Publication number
JPH0622151B2
JPH0622151B2 JP59266814A JP26681484A JPH0622151B2 JP H0622151 B2 JPH0622151 B2 JP H0622151B2 JP 59266814 A JP59266814 A JP 59266814A JP 26681484 A JP26681484 A JP 26681484A JP H0622151 B2 JPH0622151 B2 JP H0622151B2
Authority
JP
Japan
Prior art keywords
liquid
active material
electrode active
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59266814A
Other languages
Japanese (ja)
Other versions
JPS61143948A (en
Inventor
修 浜本
勲 野口
忠義 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59266814A priority Critical patent/JPH0622151B2/en
Publication of JPS61143948A publication Critical patent/JPS61143948A/en
Publication of JPH0622151B2 publication Critical patent/JPH0622151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体循環型電池に関し、さらに詳しくは正、負
極活物質共に液状である二次電池または燃料電池等の液
体循環型電池に関する。
Description: TECHNICAL FIELD The present invention relates to a liquid circulation type battery, and more particularly to a liquid circulation type battery such as a secondary battery or a fuel cell in which both positive and negative electrode active materials are liquid.

(従来の技術) 正負極活物質が共に液状である電池として著名なもの
に、活物質再生型燃料電池やレドックス・フロー型二次
電池(活物質を電池化学的に再生する燃料電池)があ
る。従来、これらの電池においては、正、負極活物質を
それぞれ一基ずつの独立した容器に貯蔵するか、または
各活物質を数基ずつの容器に分離貯蔵していた。第4図
は、従来の2タンク方式レドックス・フロー型電池シス
テムの説明図であるが、正、負極活物質はそれぞれ別の
タンク1、2に貯蔵され、ポンプ3a、36によりそれ
ぞれ電池セルスタック4の各セルに導入され、電解反応
が行なわれる。本電池(鉄−クロム電池)の場合、正極
活物質量を負極活物質量より10〜20%程度多く使用
して、両活物質間の充放電状態のアンバランスの影響を
小さくする処置がとられ、したがって、実際の大型二次
電池システムにおいても、正極液タンクは負極液タンク
よりも若干大型のものが用いられる。
(Prior Art) Well-known batteries in which both positive and negative electrode active materials are liquid are active material regenerative fuel cells and redox flow secondary batteries (fuel cells in which active materials are chemically regenerated by batteries). . Conventionally, in these batteries, each of the positive and negative electrode active materials is stored in an independent container, or each active material is separately stored in several containers. FIG. 4 is an explanatory view of a conventional two-tank type redox flow type battery system. Positive and negative electrode active materials are stored in different tanks 1 and 2, respectively, and the battery cell stack 4 is pumped by pumps 3a and 36, respectively. Is introduced into each cell and the electrolytic reaction is performed. In the case of the present battery (iron-chromium battery), the amount of the positive electrode active material used may be 10 to 20% larger than the amount of the negative electrode active material so as to reduce the influence of the imbalance in the charge / discharge state between the both active materials. Therefore, even in an actual large-sized secondary battery system, the positive electrode liquid tank is slightly larger than the negative electrode liquid tank.

(発明が解決しようとする問題点) しかし、このような電池システムにおいては、貯蔵容器
を最低2基必要とし、電池建造費の低減および電池設備
所要面積の縮小を行なう上で限界があった。
(Problems to be Solved by the Invention) However, in such a battery system, at least two storage containers are required, and there is a limit in reducing the battery construction cost and the battery equipment required area.

本発明の目的は、上述の電池システムにおいて、正、負
極活物質の貯蔵を1個の簡単かつ安価な容器で行なうこ
とができる液体循環型電池を提供することにある。
An object of the present invention is to provide a liquid circulation type battery in the above-mentioned battery system, which can store the positive and negative electrode active materials in one simple and inexpensive container.

(問題点を解決するための手段) 本発明者らは、液状の正、負極活物質を用いる電池にお
いては、両極液を循環使用するため、その液量(液レベ
ル)にほとんど変動がなく、従って1個の貯蔵容器を両
極液の液面レベルがほぼ一致するところ、換言すれば両
極液が接する面の液圧がほぼ等しいところに簡単かつ安
価な合成樹脂シートを設置し、分割して両極液の貯蔵容
器としても、十分実用上の強度を有することに着目し、
本発明を完成したものである。
(Means for Solving the Problem) In the battery using the liquid positive and negative electrode active materials, the present inventors circulate and use the bipolar liquid, so that the liquid amount (liquid level) hardly changes. Therefore, install a simple and inexpensive synthetic resin sheet in one storage container where the liquid levels of the bipolar liquids are almost the same, in other words, where the liquid pressures of the surfaces in contact with the bipolar liquids are almost equal, and divide them into bipolar electrodes. Focusing on having sufficient practical strength as a liquid storage container,
The present invention has been completed.

本発明は、正極室および負極室を有する電池セルスタッ
クと、液状である正極活物質および負極活物質をそれぞ
れ貯蔵する貯蔵容器とを備え、上記正極活物質および負
極活物質をそれぞれ上記正極室および負極室に循環させ
て電解反応を行わせる液体循環型電池において、上記貯
蔵容器を正極活物質および負極活物質の液面レベルがほ
ぼ一致するところで合成樹脂シートにより分割し、該分
割された各室にそれぞれ正極活物質および負極活物質を
貯蔵するようにしたことを特徴とする。
The present invention includes a battery cell stack having a positive electrode chamber and a negative electrode chamber, and a storage container that stores a liquid positive electrode active material and a negative electrode active material, respectively, the positive electrode active material and the negative electrode active material respectively the positive electrode chamber and In a liquid circulation type battery that circulates in a negative electrode chamber to carry out an electrolytic reaction, the storage container is divided by a synthetic resin sheet when the liquid level of the positive electrode active material and the negative electrode active material are substantially the same, and each of the divided chambers is divided. The positive electrode active material and the negative electrode active material are respectively stored in

本発明に用いられる合成樹脂シートは該シートの両面に
かかる水圧がほぼ等しい、両極液の液面レベルがほぼ一
致するところに設置されるため、該合成樹脂シートの材
料は、自らの形状を保持できる程度の構造強度を有し、
耐食性材料であればよい。
Since the synthetic resin sheet used in the present invention is installed at a place where the water pressures applied to both sides of the sheet are almost equal and the liquid level of the bipolar liquid is almost the same, the material of the synthetic resin sheet retains its own shape. It has enough structural strength,
Any corrosion resistant material may be used.

上記分割された貯蔵容器の各室内には、液が押出し流で
流れるように、壁面と接する端部に交互に空隙を有する
半仕切板を設けることもできる。この半仕切板も自らの
形状を保つことができる強度を有していればよい。
In each chamber of the above-mentioned divided storage container, a semi-partition plate having voids alternately at the end contacting the wall surface may be provided so that the liquid flows in the extruding flow. The semi-partition plate may also have strength enough to maintain its own shape.

本発明の貯蔵容器が適用される二次電池の構成を第1図
に示す。この装置は、槽7内をプラスチックシート6で
仕切って形成した正極液タンク1および負極液タンク2
と、両極液タンク1、2の各液をそれぞれポンプ3aお
よび3bによりセルスタック4に送液するライン5aお
よび5bとからなる。鉄−クロム電池の場合、充電状態
では例えば2価のクロムイオン(Cr2+)の水溶液と3
価の鉄イオン(Fe3+)の水溶液とがそれぞれのタンク
1および2に貯えられ、これをセルスタック4に流す
と、正極ではFe3+が電子を1個受け取って2価のFe
2+となり、負極ではCr2+が電子を1個を失い3価のC
3+となる。負極と正極で授受された電子は、図示しな
い外部回路を通って仕事をし、電力を放出する。
FIG. 1 shows the structure of a secondary battery to which the storage container of the present invention is applied. This apparatus comprises a positive electrode liquid tank 1 and a negative electrode liquid tank 2 formed by partitioning a tank 7 with a plastic sheet 6.
And the lines 5a and 5b for feeding the respective liquids of the bipolar liquid tanks 1 and 2 to the cell stack 4 by the pumps 3a and 3b, respectively. In the case of an iron-chromium battery, in the charged state, for example, an aqueous solution of divalent chromium ions (Cr 2+ ) and 3
An aqueous solution of valent iron ions (Fe 3+ ) is stored in the respective tanks 1 and 2, and when this is passed through the cell stack 4, Fe 3+ receives one electron at the positive electrode and receives divalent Fe.
2+ , and in the negative electrode, Cr 2+ loses one electron and is trivalent C.
It becomes r 3+ . The electrons transferred between the negative electrode and the positive electrode work through an external circuit (not shown) and emit electric power.

上記実施例によれば、タンクを簡単なプラスチックシー
ト6で仕切るだけで、従来の2個のタンクを1個のタン
クにすることができ、装置構成を簡単かつコンパクトに
することができるとともに、電池建造費の低減を図るこ
とができる。
According to the above-mentioned embodiment, by simply partitioning the tank with the simple plastic sheet 6, two conventional tanks can be made into one tank, and the device configuration can be made simple and compact, and the battery can be made compact. The construction cost can be reduced.

第2図および第3図は、それぞれ半仕切板を設けた本発
明のさらに好適な実施例を示す貯蔵タンクの正面図およ
び平面図である。この貯蔵タンク7は、プラスチックシ
ート6を設けて一個のタンク内に両極液の貯蔵室を設け
る点は第1図の実施例と同じであるが、各貯蔵室に懸垂
型半仕切板8と直立型半仕切板10(第2図)および平
面仕切板9(第3図)を液の入口から出口方向に交互に
設けた点で異なる。
2 and 3 are respectively a front view and a plan view of a storage tank showing a further preferred embodiment of the present invention provided with a half partition plate. This storage tank 7 is the same as the embodiment of FIG. 1 in that a plastic sheet 6 is provided and a storage chamber for the bipolar liquid is provided in one tank, but a suspension type semi-partition plate 8 and an upright plate are provided in each storage chamber. The difference is that the mold half partition plate 10 (Fig. 2) and the flat partition plate 9 (Fig. 3) are provided alternately from the liquid inlet to the liquid outlet.

このような半仕切板を設けることにより、ライン5aお
よび5bから流入した液は、半仕切板によって形成され
た流路(小室)を押出し流によって流れ、最後の室より
出た液がポンプ3a、3bによって電池セルスタックに
送液されるので、タンク内の活物質の偏在の問題を解決
することができる。従来は活物質の偏在の問題を解決す
るために、タンクに攪拌機を設けて完全混合型のタンク
にするか、偏在を無視する形で充放電が行なわれていた
が、本発明によれば、活物質の偏在を逆に利用して、充
放電エネルギー効率を例えば従来の約10%向上させる
ことができ、また充電到達深度が大きく改善されるの
で、充放電エネルギー密度も約20%向上する。また、
鉄−クロムレドックス・フロー型二次電池の充放電エネ
ルギー効率も約5%程度向上することができる。
By providing such a semi-partition plate, the liquid that flows in from the lines 5a and 5b flows through the flow path (small chamber) formed by the semi-partition plate by the extruding flow, and the liquid that comes out of the last chamber is pumped by the pump 3a, Since the liquid is sent to the battery cell stack by 3b, the problem of uneven distribution of the active material in the tank can be solved. Conventionally, in order to solve the problem of uneven distribution of the active material, a tank is provided with a stirrer to form a complete mixing type tank, or charging / discharging is performed in a manner that ignores uneven distribution, but according to the present invention, By conversely utilizing the uneven distribution of the active material, the charge / discharge energy efficiency can be improved by, for example, about 10% of the conventional level, and the charging depth can be greatly improved, so that the charge / discharge energy density is also increased by about 20%. Also,
The charge / discharge energy efficiency of the iron-chromium redox flow type secondary battery can be improved by about 5%.

(発明の効果) 本発明によれば、1基の活物質貯蔵タンクを正極液と負
極液の液面レベルがほぼ一致するところで仕切って正極
液タンクと負極液タンクとするため、該仕切材として自
らの形状を保持するだけの構造強度を有する、簡単かつ
安価な合成樹脂シートを用いることができ、これによ
り、従来の電池システムにおいて限界であった電池建造
費および電池設備所要面積の低減および縮小を同時に図
ることができる。例えばタンク(容器)建造費で約30
%、タンク所要面積で約40%の低減が可能となる。
(Effect of the Invention) According to the present invention, one active material storage tank is partitioned off at a position where the liquid levels of the positive electrode liquid and the negative electrode liquid are substantially the same to form the positive electrode liquid tank and the negative electrode liquid tank. It is possible to use a simple and inexpensive synthetic resin sheet that has the structural strength to retain its own shape, which reduces and reduces the battery construction cost and the area required for battery equipment, which were the limits of conventional battery systems. Can be achieved at the same time. For example, the tank (container) construction cost is about 30
%, The required area of the tank can be reduced by about 40%.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例であるレドックス・フロー
型二次電池の構成を示す説明図、第2図および第3図
は、それぞれ本発明における貯蔵容器の好適な実施例を
示す正面図および平面図、第4図は、従来の2基の貯蔵
容器を用いた二次電池の構成を示す説明図である。 1……正極液タンク、2……負極液タンク、3a、3b
……送液ポンプ、4……電池セルスタック、5a、5b
……送液管、6……プラスチックシート。
FIG. 1 is an explanatory view showing the structure of a redox flow type secondary battery which is an embodiment of the present invention, and FIGS. 2 and 3 are front views showing preferred embodiments of the storage container of the present invention. FIG. 4, a plan view, and FIG. 4 are explanatory views showing the configuration of a conventional secondary battery using two storage containers. 1 ... Positive electrode liquid tank, 2 ... Negative electrode liquid tank, 3a, 3b
...... Liquid feeding pump, 4 …… Battery cell stack, 5a, 5b
…… Liquid supply pipe, 6 …… Plastic sheet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極室および負極室を有する電池セルスタ
ックと、液状である正極活物質および負極活物質をそれ
ぞれ貯蔵する貯蔵容器とを備え、上記正極活物質および
負極活物質をそれぞれ上記正極室および負極室に循環さ
せて電解反応を行わせる液体循環型電池において、上記
貯蔵容器を正極活物質および負極活物質の液面レベルが
ほぼ一致するところで合成樹脂シートにより分割し、該
分割された各室にそれぞれ正極活物質および負極活物質
を貯蔵するようにしたことを特徴とする液体循環型電
池。
1. A battery cell stack having a positive electrode chamber and a negative electrode chamber, and a storage container for storing a liquid positive electrode active material and a negative electrode active material, respectively, wherein the positive electrode active material and the negative electrode active material are respectively stored in the positive electrode chamber. And a liquid circulation type battery which is circulated in the negative electrode chamber to carry out an electrolytic reaction, the storage container is divided by a synthetic resin sheet when the liquid level of the positive electrode active material and the liquid level of the negative electrode active material are substantially the same, and each of the divided A liquid circulation type battery characterized in that a positive electrode active material and a negative electrode active material are stored in chambers, respectively.
JP59266814A 1984-12-18 1984-12-18 Liquid circulation type battery Expired - Lifetime JPH0622151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266814A JPH0622151B2 (en) 1984-12-18 1984-12-18 Liquid circulation type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266814A JPH0622151B2 (en) 1984-12-18 1984-12-18 Liquid circulation type battery

Publications (2)

Publication Number Publication Date
JPS61143948A JPS61143948A (en) 1986-07-01
JPH0622151B2 true JPH0622151B2 (en) 1994-03-23

Family

ID=17436039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266814A Expired - Lifetime JPH0622151B2 (en) 1984-12-18 1984-12-18 Liquid circulation type battery

Country Status (1)

Country Link
JP (1) JPH0622151B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815093B2 (en) * 1986-05-24 1996-02-14 住友電気工業株式会社 Electrolyte circulation type secondary battery
JPH0227666A (en) * 1988-07-18 1990-01-30 Sumitomo Electric Ind Ltd Redox flow type secondary battery
JPH044569A (en) * 1990-04-19 1992-01-09 Sumitomo Electric Ind Ltd electrolyte storage tank
JP5226814B2 (en) * 2011-01-27 2013-07-03 パナソニック株式会社 Fuel cell system
JP2011108659A (en) * 2011-01-27 2011-06-02 Panasonic Corp Fuel cell system
JP7121044B2 (en) * 2017-04-28 2022-08-17 イーエスエス テック インコーポレーテッド Integrated hydrogen recycling system using pressurized multi-chamber tanks

Also Published As

Publication number Publication date
JPS61143948A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US4956244A (en) Apparatus and method for regenerating electrolyte of a redox flow battery
US4382116A (en) Zirconium carbide as an electrocatalyst for the chromous/chromic REDOX couple
US3996064A (en) Electrically rechargeable REDOX flow cell
US3666561A (en) Electrolyte circulating battery
US4482614A (en) Zinc-bromine battery with long term stability
EP0165000B1 (en) Metal-halogen secondary battery
KR940010444A (en) Membrane flow cell battery
EP0130723A2 (en) Secondary battery having a separator
US4663251A (en) Zinc-bromine battery
JPH0622151B2 (en) Liquid circulation type battery
JPH02195657A (en) Electrolyte circulation type secondary battery
JPS6122574A (en) Cell construction
JP2002329523A (en) Cell frame for redox flow battery
JP3220835B2 (en) Electrolyte flow battery
JPH0411340Y2 (en)
EP4396885A1 (en) Systems and methods for flowing, storing, and rebalancing electrolyte in redox flow battery system
JPH10334938A (en) Secondary battery for power storage
JPH0546063B2 (en)
US20240170696A1 (en) Radial mixing manifold
JPH044569A (en) electrolyte storage tank
JPH01124966A (en) Electrolyte flow type cell system
US20230061531A1 (en) Systems and methods for circulating electrolyte and electric current in series coupled redox flow battery cells
JPS60225366A (en) Redox flow battery
JPS6122575A (en) Cell construction
EP0091521B1 (en) Metal-bromine secondary battery