[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06224018A - Manufacture of r-fe-b-based sintered magnet - Google Patents

Manufacture of r-fe-b-based sintered magnet

Info

Publication number
JPH06224018A
JPH06224018A JP5324077A JP32407793A JPH06224018A JP H06224018 A JPH06224018 A JP H06224018A JP 5324077 A JP5324077 A JP 5324077A JP 32407793 A JP32407793 A JP 32407793A JP H06224018 A JPH06224018 A JP H06224018A
Authority
JP
Japan
Prior art keywords
atomic
exceeding
magnetic field
less
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5324077A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Shogo Tanaka
省吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5324077A priority Critical patent/JPH06224018A/en
Publication of JPH06224018A publication Critical patent/JPH06224018A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the magnetic characteristics by improving the orientation of molded body during the molding step in a magnetic field in order to manufacture an R-Fe-B-based sintered magnet. CONSTITUTION:Within the manufacturing method of R-Fe-B-based sintered magnet, 8-30 atomic % of R (where R: at least one of rare earth elements including Y) 2-28 atomic % of B, element M not exceeding specific atomic % (where M: combination of one or two of Co not exceeding 50 atomic %, Al, V, Mo, W, Ta, Nb not exceeding 9.5 atomic % Si, Ca, Mg, Ni, Mn, Cr not exceeding 8.0 atomic %, Ti, Zr, Hf not exceeding 4.5 atomic %, Cu, C not exceeding 3.5 atomic % and Zn not exceeding 0.2 atomic %. Furthermore, the total amount of M in the case of including exceeding two kinds of elements including (the value not exceeding the maximum value out of said element M) is to be sintered after the molding step of the residual Fe and the alloy particles comprising the indispesable impurities in the manufacture in pulse magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄−ボロン系焼
結永久磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron-boron system sintered permanent magnet.

【0002】[0002]

【従来の技術】近年、電子機器や精密機器の小型化、軽
量化の市場傾向に伴い、永久磁石においては従来のアル
ニコやフェライト磁石に代わり希土類磁石が多くの分野
で利用されるようになってきた。希土類永久磁石の中で
も、特に、高いエネルギ−積が得られる希土類−鉄−ボ
ロン系磁石の需要が増加しており、従来以上に高エネル
ギ−積でかつ高保磁力が要求される傾向にある。希土類
−鉄−ボロン系磁石の磁気特性を改善する試みは、種々
検討されており、種々添加元素による発明は多数開示さ
れている。また、従来の粉末冶金法に代わる手法である
超急冷法による希土類−鉄−ボロン系磁石の発明も多数
開示されている。超急冷法では、粉末冶金法とは違い、
高いエネルギ−積を得るために熱間で据え込み加工や押
し出し加工などの塑性加工を必要とし製造コストがかさ
むために実用的ではない。それゆえ、現在、市場で実用
化されているエネルギ−積が40MGOe以上の特性を
有する希土類−鉄−ボロン系磁石のほとんどは粉末冶金
法を利用し製造されている。
2. Description of the Related Art In recent years, along with the market trend toward miniaturization and weight reduction of electronic equipment and precision equipment, rare earth magnets have been used in many fields in permanent magnets instead of conventional alnico and ferrite magnets. It was Among rare earth permanent magnets, there is an increasing demand for rare earth-iron-boron-based magnets that can obtain a high energy product, and there is a tendency for higher energy products and higher coercive force to be required than ever. Various attempts have been made to improve the magnetic properties of rare earth-iron-boron magnets, and many inventions based on various additive elements have been disclosed. In addition, many inventions of rare earth-iron-boron magnets by superquenching method, which is an alternative to the conventional powder metallurgy method, have been disclosed. Unlike the powder metallurgy method, the ultra-quenching method
It is not practical because it requires hot plastic working such as upsetting or extrusion to obtain a high energy product, which increases manufacturing costs. Therefore, most of the rare earth-iron-boron based magnets having the energy product of 40 MGOe or more which are currently put to practical use in the market are manufactured by using the powder metallurgy method.

【0003】[0003]

【発明が解決しようとする課題】ところで、この希土類
−鉄−ボロン系焼結磁石を粉末冶金法により製造する方
法は、目的組成に希土類−鉄−ボロン系合金を溶解して
インゴットを得、これを平均粒子径が20〜500μm
程度まで粗粉砕し、これをさらに1〜20μm程度の粉
末に微粉砕した後、異方性焼結磁石を得る場合は磁場中
で成形し、焼結、熱処理の工程を経る方法が一般的であ
る。そして、特性の高い異方性焼結磁石を製造するため
の一手法として、磁場中成形後の配向度をできる限り向
上させることが検討されている。磁場中成形における配
向度向上のためには、印加磁場強度を大きくすることが
考えられるが、磁場発生装置のコイルの発熱量が大きく
なるため極端に磁場強度を大きくすることはできない。
By the way, in the method for producing this rare earth-iron-boron system sintered magnet by the powder metallurgy method, an ingot is obtained by melting the rare earth-iron-boron system alloy in a target composition. Has an average particle size of 20 to 500 μm
After roughly pulverizing to a certain degree and further finely pulverizing this to a powder of about 1 to 20 μm, in order to obtain an anisotropic sintered magnet, it is common to perform molding in a magnetic field, and then perform a step of sintering and heat treatment. is there. Then, as one method for producing an anisotropic sintered magnet having high characteristics, it has been studied to improve the degree of orientation after molding in a magnetic field as much as possible. It is possible to increase the applied magnetic field strength in order to improve the degree of orientation in the magnetic field molding, but the magnetic field strength cannot be extremely increased because the amount of heat generated by the coil of the magnetic field generator increases.

【0004】そこで本発明は、希土類−鉄−ボロン系焼
結磁石を製造するに際し、磁場中成形における成形体の
配向度を向上することにより、磁気特性を向上させるこ
とを課題とする。
Therefore, an object of the present invention is to improve the magnetic properties by improving the degree of orientation of the molded body in the magnetic field molding when manufacturing the rare earth-iron-boron system sintered magnet.

【0005】[0005]

【課題を解決するための手段】本発明は、原子百分比で
8〜30%のR(但しRはYを含む希土類元素の少なく
とも1種)、2〜28%の硼素B、所定%以下の元素M
(ここでMは、50%以下のCo、9.5%以下のA
l,V,Mo,W,Ta,Nb、8.0%以下のSi,
Ca,Mg,Ni,Mn,Cr、4.5%以下のTi,
Zr,Hf、3.5%以下のCu,C、0.2%以下の
Zn、の1種または2種以上の組み合わせであって、2
種以上含む場合の元素Mの合計量は、該元素Mのうち最
大値を有するものの値以下)を含有し、残部Feおよび
製造上不可避の不純物からなる合金粉末をパルス磁場中
で成形した後焼結することを特徴とする希土類−鉄−ボ
ロン系焼結磁石の製造方法である。本発明の最大の特徴
は、粉末の成形をパルス磁場中で行うことにある。すな
わち、印加時間の短いパルス磁界を利用して大きな磁場
を印加することにより、配向度を向上せんとするもので
ある。
According to the present invention, the atomic percentage of R is 8 to 30% (where R is at least one rare earth element containing Y), 2 to 28% of boron B, and a predetermined amount of element or less. M
(Here, M is Co of 50% or less and A of 9.5% or less.
l, V, Mo, W, Ta, Nb, Si of 8.0% or less,
Ca, Mg, Ni, Mn, Cr, Ti of 4.5% or less,
One or a combination of two or more of Zr, Hf, Cu, C of 3.5% or less and Zn of 0.2% or less, which is 2
The total amount of the element M in the case of containing more than one kind is less than or equal to the value of the element M having the maximum value), and the balance Fe and the alloy powder consisting of impurities unavoidable in production are molded in a pulsed magnetic field and then fired. And a rare earth-iron-boron-based sintered magnet manufacturing method. The greatest feature of the present invention is that the powder is molded in a pulsed magnetic field. That is, the orientation degree is improved by applying a large magnetic field using a pulsed magnetic field having a short application time.

【0006】本発明における成分範囲の限定理由は以下
の通りである。Rを8〜30%とするのは、8%未満で
はハードフェライトを越える1kOeの保磁力が得られ
ず、30%を越えると合金粉末が燃えやすく大量生産が
極めて困難になるからである。硼素を2〜28%とする
のは、2%以上で保磁力、残留磁束密度を向上する効果
があるが、28%を越えるとハードフェライトの残留磁
束密度約4kGを上回ることができなくなるからであ
る。残部はFeと不可避の不純物であるが、Feの一部
をM元素で置換してもよい。 本発明により得られる焼
結磁石の酸素含有量は、0.1〜1.2wt%の範囲と
するのが望ましい。工業生産上0.1wt.%未満にす
るのは困難であり、また1.2wt%を越えると磁気特
性が劣化し、パルス磁場による配向度向上の効果を十分
享受することができなくなるからである。
The reasons for limiting the component range in the present invention are as follows. The reason why R is set to 8 to 30% is that if it is less than 8%, a coercive force of 1 kOe exceeding hard ferrite cannot be obtained, and if it exceeds 30%, the alloy powder easily burns and mass production becomes extremely difficult. The reason why the content of boron is 2 to 28% is that when the content is 2% or more, the coercive force and the residual magnetic flux density are improved, but when the content exceeds 28%, the residual magnetic flux density of hard ferrite cannot exceed about 4 kG. is there. The balance is Fe and unavoidable impurities, but part of Fe may be replaced with M element. The oxygen content of the sintered magnet obtained by the present invention is preferably in the range of 0.1 to 1.2 wt%. 0.1 wt. %, It is difficult to make it less than 1.2%, and if it exceeds 1.2 wt%, the magnetic properties deteriorate and it becomes impossible to fully enjoy the effect of improving the orientation degree by the pulsed magnetic field.

【0007】[0007]

【実施例】出発原料として純度99.9wt.%の電解
鉄、電解コバルト、および硼素として純度99wt.%
のボロンを用い、Rとして純度99.7wt.%以上の
Ndを使用して、原子百分比で15%Nd、8%B、5
%Co、残部Feの最終焼結体を得るように秤量して高
周波溶解し、水冷銅鋳型に鋳造して合金インゴットを得
た。合金インゴットをスタンプミルにより粗粉砕した
後、ジェットミルにより平均粒径が3μmの微粉とし
た。
Example As a starting material, a purity of 99.9 wt. % Electrolytic iron, electrolytic cobalt, and boron having a purity of 99 wt. %
Of boron, with R having a purity of 99.7 wt. % Nd, 8% B, 5% Nd in atomic percentage
% Co and the balance Fe were weighed so as to obtain a final sintered body, high-frequency melted, and cast in a water-cooled copper mold to obtain an alloy ingot. The alloy ingot was roughly crushed with a stamp mill and then finely powdered with an average particle diameter of 3 μm by a jet mill.

【0008】次に、ダイスと下パンチで形成する成形空
間内に成形用原料を充填した後、磁場強度16、23、
32、43kOeのパルス磁場で、プレス方向と磁場配
向方向が直交するいわゆる横磁場成形をおこなった。成
形圧力は1t/cm2である。得られた成形体を108
0℃で1時間焼結した後、一度920℃で2時間保持し
た後室温まで徐冷、再度680℃で2時間の処理を加え
室温まで急冷して焼結磁石を得た。なお、焼結、熱処理
雰囲気は真空とした。また、磁場中成形を従来の静磁場
(10kOe、1t/cm2)で行った以外は上記と同
様にして焼結磁石を得た(従来例)。得られた磁石の磁
気特性(残留磁束密度Br、最大エネルギー積(BH)
max)を表1に示す。なお、磁石に含まれる酸素量
は、0.55〜0.65wt%であった。
Next, after filling a molding raw material into a molding space formed by a die and a lower punch, magnetic field strengths 16, 23,
With a pulsed magnetic field of 32 and 43 kOe, so-called transverse magnetic field molding was performed in which the pressing direction and the magnetic field orientation direction were orthogonal to each other. The molding pressure is 1 t / cm 2 . The obtained molded body is 108
After sintering at 0 ° C. for 1 hour, it was once held at 920 ° C. for 2 hours, gradually cooled to room temperature, again treated at 680 ° C. for 2 hours and rapidly cooled to room temperature to obtain a sintered magnet. The sintering and heat treatment atmosphere was vacuum. Further, a sintered magnet was obtained in the same manner as above (conventional example) except that the molding in a magnetic field was performed in a conventional static magnetic field (10 kOe, 1 t / cm 2 ). Magnetic properties of the obtained magnet (residual magnetic flux density Br, maximum energy product (BH)
max) is shown in Table 1. The amount of oxygen contained in the magnet was 0.55 to 0.65 wt%.

【0009】[0009]

【表1】 [Table 1]

【0010】次に、成形時のパルス磁場(23kOe)
印加回数と磁気特性の関係を調査した。結果を図1に示
すが、パルス磁場印加回数を増加することにより、磁気
特性が向上することがわかる。
Next, a pulsed magnetic field (23 kOe) during molding
The relationship between the number of applications and the magnetic characteristics was investigated. The results are shown in FIG. 1, and it can be seen that the magnetic characteristics are improved by increasing the number of times the pulsed magnetic field is applied.

【0011】[0011]

【発明の効果】以上説明したように本発明によれば、磁
場中成形にパルス磁場を用いることにより、磁気特性を
向上させることができる。
As described above, according to the present invention, magnetic characteristics can be improved by using a pulsed magnetic field for forming in a magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルス磁場印加回数と磁気特性の関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between the number of times a pulsed magnetic field is applied and magnetic characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子百分比で8〜30%のR(但しRは
Yを含む希土類元素の少なくとも1種)、2〜28%の
硼素B、所定%以下の元素M(ここでMは、 50%以下のCo、 9.5%以下のAl,V,Mo,W,Ta,Nb、 8.0%以下のSi,Ca,Mg,Ni,Mn,Cr、 4.5%以下のTi,Zr,Hf、 3.5%以下のCu,C、 0.2%以下のZn、 の1種または2種以上の組み合わせであって、2種以上
含む場合の元素Mの合計量は、該元素Mのうち最大値を
有するものの値以下)を含有し、残部Feおよび製造上
不可避の不純物からなる合金粉末をパルス磁場中で成形
した後、焼結することを特徴とする希土類−鉄−ボロン
系焼結磁石の製造方法。
1. Atomic percentage of 8 to 30% R (provided that R is at least one rare earth element including Y), 2 to 28% boron B, and a predetermined% or less element M (where M is 50 % Or less Co, 9.5% or less Al, V, Mo, W, Ta, Nb, 8.0% or less Si, Ca, Mg, Ni, Mn, Cr, 4.5% or less Ti, Zr , Hf, 3.5% or less of Cu, C, and 0.2% or less of Zn, and the total amount of the element M in the case of including two or more is the element M. (Less than or equal to the value having the maximum value), the alloy powder containing the balance Fe and impurities unavoidable in production is molded in a pulsed magnetic field and then sintered, and then the rare earth-iron-boron-based firing is performed. A method for manufacturing a magnet.
【請求項2】 パルス磁場中での成形は、プレス方向と
磁場配向方向が直交するものである請求項1に記載の希
土類−鉄−ボロン系焼結磁石の製造方法。
2. The method for producing a rare earth-iron-boron-based sintered magnet according to claim 1, wherein the forming in the pulsed magnetic field is such that the pressing direction and the magnetic field orientation direction are orthogonal to each other.
JP5324077A 1993-12-22 1993-12-22 Manufacture of r-fe-b-based sintered magnet Pending JPH06224018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5324077A JPH06224018A (en) 1993-12-22 1993-12-22 Manufacture of r-fe-b-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5324077A JPH06224018A (en) 1993-12-22 1993-12-22 Manufacture of r-fe-b-based sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60050111A Division JPS61208807A (en) 1985-03-13 1985-03-13 Permanent magnet

Publications (1)

Publication Number Publication Date
JPH06224018A true JPH06224018A (en) 1994-08-12

Family

ID=18161897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5324077A Pending JPH06224018A (en) 1993-12-22 1993-12-22 Manufacture of r-fe-b-based sintered magnet

Country Status (1)

Country Link
JP (1) JPH06224018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014392A2 (en) * 1998-12-15 2000-06-28 Shin-Etsu Chemical Co., Ltd. Rare earth/iron/boron-based permanent magnet alloy composition
WO2024007808A1 (en) * 2022-07-06 2024-01-11 烟台正海磁性材料股份有限公司 High-coercivity nd-fe-b series sintered magnet and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588998A (en) * 1978-12-28 1980-07-05 Inoue Japax Res Inc Magnetic press machine
JPS55160404A (en) * 1979-05-31 1980-12-13 Sumitomo Special Metals Co Ltd Manufacture of magnetically anisotropic permanent magnet and device thereof
JPS58157901A (en) * 1982-03-15 1983-09-20 Shin Etsu Chem Co Ltd Method for molding ferromagnetic fine powder
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS61208807A (en) * 1985-03-13 1986-09-17 Hitachi Metals Ltd Permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588998A (en) * 1978-12-28 1980-07-05 Inoue Japax Res Inc Magnetic press machine
JPS55160404A (en) * 1979-05-31 1980-12-13 Sumitomo Special Metals Co Ltd Manufacture of magnetically anisotropic permanent magnet and device thereof
JPS58157901A (en) * 1982-03-15 1983-09-20 Shin Etsu Chem Co Ltd Method for molding ferromagnetic fine powder
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS61208807A (en) * 1985-03-13 1986-09-17 Hitachi Metals Ltd Permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014392A2 (en) * 1998-12-15 2000-06-28 Shin-Etsu Chemical Co., Ltd. Rare earth/iron/boron-based permanent magnet alloy composition
EP1014392A3 (en) * 1998-12-15 2000-11-22 Shin-Etsu Chemical Co., Ltd. Rare earth/iron/boron-based permanent magnet alloy composition
CN1301513C (en) * 1998-12-15 2007-02-21 信越化学工业株式会社 Rare-earth/iron/boron based permanent magnet alloy composition
WO2024007808A1 (en) * 2022-07-06 2024-01-11 烟台正海磁性材料股份有限公司 High-coercivity nd-fe-b series sintered magnet and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JPH0424401B2 (en)
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPH01175705A (en) Manufacture of rare earth magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JP3307418B2 (en) Molding method and method for manufacturing sintered magnet
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JP3101799B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JPH0552647B2 (en)
JPS61208808A (en) Manufacture of sintered magnet
JPS61119006A (en) Manufacture of sintered magnet
JPS61214402A (en) Manufacture of sintered magnet
JPS6180805A (en) Permanent magnet material
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS61208809A (en) Manufacture of sintered magnet
JPH023206A (en) Rare earth-iron system permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet