[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06212550A - Ultra-fine polypropylene fiber nonwoven web and its production - Google Patents

Ultra-fine polypropylene fiber nonwoven web and its production

Info

Publication number
JPH06212550A
JPH06212550A JP5294470A JP29447093A JPH06212550A JP H06212550 A JPH06212550 A JP H06212550A JP 5294470 A JP5294470 A JP 5294470A JP 29447093 A JP29447093 A JP 29447093A JP H06212550 A JPH06212550 A JP H06212550A
Authority
JP
Japan
Prior art keywords
polymer
polypropylene
melt
weight
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5294470A
Other languages
Japanese (ja)
Inventor
Koichi Nagaoka
孝一 長岡
Shigetaka Nishimura
重孝 西村
Yasuhiro Yonezawa
安広 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5294470A priority Critical patent/JPH06212550A/en
Publication of JPH06212550A publication Critical patent/JPH06212550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide a raw material for ultra-fine polypropylene fiber nonwoven cloth having excellent mechanical properties, dimensional stability, flexibility and printability and useful as industrial material and clothes. CONSTITUTION:The nonwoven fabric web of ultra-fine polypropylene fiber is composed of ultra-fine fibers having an average fiber diameter of 0.1-10.0mum and a boiling water shrinkage of <=35% and composed of a mixture of 70-95wt.% of a crystalline polypropylene polymer and 30-5wt.% of an amorphous polyester polymer, wherein the core part of the fiber in the cross section of the single fiber is composed mainly of the polypropylene polymer and the sheath part is composed mainly of the polyester polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主としてポリプロピレ
ン系重合体からなり,機械的特性,寸法安定性,柔軟
性,印刷性が優れ,産業資材用や衣料素材用のポリプロ
ピレン系極細繊維不織布を得るのに好適な不織ウエブ
と,それを効率良く製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention obtains a polypropylene-based ultrafine fiber nonwoven fabric mainly composed of a polypropylene-based polymer, which has excellent mechanical properties, dimensional stability, flexibility and printability and is used for industrial materials and clothing materials. The present invention relates to a nonwoven web suitable for, and a method for efficiently producing the nonwoven web.

【0002】[0002]

【従来の技術】従来から,ポリプロピレン系重合体を用
いメルトブローン法により製造されたポリプロピレン系
極細繊維不織布が知られている。メルトブローン法と
は,溶融紡糸口金が溶融ポリマを吐出すると同時に高温
の高圧空気流により溶融紡出されたポリマ流を牽引・細
化して極細繊維を得る方法で,例えばインダストリアル
アンド エンジニアリング ケミストリの第48卷第8
号第1342〜1346頁(1956年)にはメルトブ
ローン法の基本的な装置及び方法が開示されており,こ
のメルトブローン法は,極めて細い繊維を得ることがで
きるため各種の素材を得るに関して適用されている。し
かしながら,このメルトブローン法により得られた前記
ポリプロピレン系極細繊維不織布は,各種の生活関連素
材や産業資材用素材として広範に用いられているもの
の,機械的特性や印刷性が劣るという問題を有してい
た。
2. Description of the Related Art A polypropylene-based ultrafine fiber nonwoven fabric manufactured by a melt blown method using a polypropylene-based polymer has been known. The melt-blown method is a method in which a melt-spinning die discharges a molten polymer and at the same time draws and thins a polymer stream melt-spun by a high-temperature high-pressure air stream to obtain ultrafine fibers. For example, Industrial and Engineering Chemistry No. 48 8th
No. 1342-1346 (1956) discloses a basic apparatus and method of the melt blown method. The melt blown method is applied to obtain various raw materials because extremely fine fibers can be obtained. There is. However, although the polypropylene-based ultrafine fiber nonwoven fabric obtained by the melt blown method is widely used as a material for various life-related materials and industrial materials, it has a problem of poor mechanical properties and printability. It was

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,機械的特性,寸法安定性,柔軟性,印刷性が優
れ,産業資材用や衣料素材用のポリプロピレン系極細繊
維不織布を得るのに好適な不織ウエブと,それを効率良
く製造することができる方法を提供しようとするもので
ある。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and obtains a polypropylene-based ultrafine fiber nonwoven fabric having excellent mechanical properties, dimensional stability, flexibility and printability, and for industrial materials and clothing materials. The present invention aims to provide a nonwoven web suitable for, and a method capable of efficiently producing the nonwoven web.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記課題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,結晶質ポリプロピレン系重合体70〜
95重量%と非結晶質ポリエステル系重合体30〜5重
量%との混合物からなる平均繊維径が0.1〜10.0
μmの極細繊維から構成され,単繊維断面において前記
ポリプロピレン系重合体が略芯部分を構成し,前記ポリ
エステル系重合体が略鞘部分を構成し,かつ沸水収縮率
が35%以下であることを特徴とするポリプロピレン系
極細繊維不織ウエブ,を要旨とするものである。また,
本発明は,メルトブローン法によりポリプロピレン系極
細繊維不織布を製造するに際し,重合体としてポリプロ
ピレン系重合体70〜95重量%と相対粘度が1.20
〜1.32のポリエステル系重合体30〜5重量%との
混合物を用い,ポリプロピレン系重合体の溶融流量に対
するポリエステル系重合体の溶融流量の比が1.5〜
6.0となるようにして溶融紡出し,溶融紡出されたポ
リマ流を溶融温度より高い温度の高圧空気流により牽引
・細化し,冷却した後,移動する捕集面上に捕集・堆積
させて不織ウエブとすることを特徴とするポリプロピレ
ン系極細繊維不織ウエブの製造方法,を要旨とするもの
である。
The present inventors have arrived at the present invention as a result of intensive studies to solve the above-mentioned problems. That is, the present invention relates to a crystalline polypropylene polymer 70-
The average fiber diameter composed of a mixture of 95% by weight and 30 to 5% by weight of the amorphous polyester polymer is 0.1 to 10.0.
that the polypropylene polymer constitutes a substantially core portion, the polyester polymer constitutes a substantially sheath portion, and the boiling water shrinkage ratio is 35% or less. The gist of the present invention is a polypropylene-based ultrafine fiber non-woven web. Also,
According to the present invention, when a polypropylene-based ultrafine fiber nonwoven fabric is manufactured by the melt blown method, the polypropylene-based polymer is 70 to 95% by weight and the relative viscosity is 1.20.
˜1.32 of a polyester polymer in an amount of 30 to 5 wt% and a ratio of the melt flow rate of the polyester polymer to the melt flow rate of the polypropylene polymer is 1.5 to
The polymer was melt-spun to 6.0, and the polymer stream melt-spun was drawn / thinned by a high-pressure air flow having a temperature higher than the melting temperature, cooled, and then collected / deposited on the moving collecting surface. The present invention is directed to a method for producing a polypropylene-based ultrafine fiber non-woven web, which is characterized in that a non-woven web is obtained.

【0005】次に,本発明を詳細に説明する。本発明に
おけるポリプロピレン系重合体とは,主として通常の繊
維形成性を有する結晶性ポリプロピレン重合体である
が,この他にエチレン成分が8重量%以下共重合された
ポリプロピレン系共重合体,あるいは混合された混合物
であってもよい。前記エチレン成分の共重合率あるいは
混合率が8重量%を超えると,共重合体あるいは混合物
の融点が低下し,不織ウエブを用いて得た不織布製品を
高温条件下で使用したときに,機械的特性や寸法安定性
が低下するので好ましくない。そして,このようなポリ
プロピレン系重合体は,メルトブローン法を適用した場
合,ポリエステル系重合体に比べて結晶化の程度の高い
ものである。本発明におけるポリエステル系重合体と
は,酸成分としてのフタル酸,テレフタル酸,イソフタ
ル酸,ナフタリン−2・6ジカルボン酸等の芳香族ジカ
ルボン酸もしくはアジピン酸,セバシン酸等の脂肪族ジ
カルボン酸又はこれらのエステル類と,ジオール成分と
してのエチレングリコール,ジエチレングリコール,1
・4ブタンジオール,ネオペンチルグリコール,シクロ
ヘキサン−1・4−ジメタノール等のジオール化合物と
から合成されるホモポリエステル重合体あるいは共重合
体であり,また,これらのポリエステル系重合体には,
パラオキシ安息香酸,5−ソジウムスルホイソフタル
酸,ポリアルキレングリコール,ペンタエリスリトー
ル,ビスフエノールA等が添加あるいは共重合されてい
てもよい。そして,このようなポリエステル系重合体
は,メルトブローン法を適用した場合,ポリプロピレン
系重合体に比べて結晶化の程度の低いものである。な
お,本発明において,前記ポリプロピレン系重合体及び
/又はポリエステル系重合体には,必要に応じて,例え
ば艶消し剤,顔料,光安定剤,熱安定剤,酸化防止剤等
の各種添加剤を本発明の効果を損なわない範囲内で添加
することができる。
Next, the present invention will be described in detail. The polypropylene-based polymer in the present invention is mainly a crystalline polypropylene polymer having an ordinary fiber-forming property. In addition to this, a polypropylene-based copolymer in which an ethylene component is copolymerized in an amount of 8% by weight or less, or a mixed polypropylene-based polymer It may be a mixture. When the copolymerization rate or mixing rate of the ethylene component exceeds 8% by weight, the melting point of the copolymer or the mixture is lowered, and when the nonwoven fabric product obtained using the nonwoven web is used under high temperature conditions, It is not preferable because the mechanical properties and dimensional stability are reduced. When such a polypropylene polymer is used, the degree of crystallization is higher than that of the polyester polymer when the melt blown method is applied. The polyester polymer in the present invention means an aromatic dicarboxylic acid such as phthalic acid, terephthalic acid, isophthalic acid, naphthalene-2,6 dicarboxylic acid or the like as an acid component, or an aliphatic dicarboxylic acid such as adipic acid, sebacic acid or the like. Esters of ethylene, ethylene glycol, diethylene glycol as diol component, 1
A homopolyester polymer or copolymer synthesized from a diol compound such as 4-butanediol, neopentyl glycol, cyclohexane-1-4-dimethanol, etc., and these polyester-based polymers include:
Paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A and the like may be added or copolymerized. When such a melt-blown method is applied, such a polyester-based polymer has a lower degree of crystallization than a polypropylene-based polymer. In the present invention, the polypropylene-based polymer and / or the polyester-based polymer may be added with various additives such as a matting agent, a pigment, a light stabilizer, a heat stabilizer, and an antioxidant, if necessary. It can be added within a range that does not impair the effects of the present invention.

【0006】本発明における前記極細繊維は,前記ポリ
プロピレン系重合体70〜95重量%と前記ポリエステ
ル系重合体30〜5重量%との混合物から構成され,単
繊維断面において前記ポリプロピレン系重合体が略芯部
分を構成し,前記ポリエステル系重合体が略鞘部分を構
成した構造を有している。この極細繊維において,ポリ
プロピレン系重合体とポリエステル系重合体の全重量に
対するポリエステル系重合体の比率すなわち混合比率が
5重量%未満であるとポリプロピレン系重合体の外周に
ポリエステル系重合体が位置せず,したがってポリプロ
ピレン系重合体とポリエステル系重合体とが互いに非相
溶性であるためにフイブリル化して機械的特性や印刷性
が向上せず,一方,この比率が30重量%を超えるとポ
リプロピレン系重合体特有の柔軟性が阻害され,しかも
製糸性や寸法安定性に対する障害が生じたりするので,
いずれも好ましくない。したがって,本発明では,前記
両重合体の混合比率を,ポリプロピレン系重合体が70
〜95重量%,好ましくは75〜92重量%,より好ま
しくは80〜90重量%,ポリエステル系重合体が30
〜5重量%,好ましくは25〜8重量%,より好ましく
は20〜10重量%とする。この極細繊維では,上述し
たように,単繊維断面において前記ポリプロピレン系重
合体が略芯部分を構成し,前記ポリエステル系重合体が
略鞘部分を構成した構造を有している。なお,ここでい
う前記ポリプロピレン系重合体が略芯部分を構成すると
いうことは,ポリプロピレン系重合体がこれとポリエス
テル系重合体との混合比率を超えて単繊維の中心部近傍
に偏在していわゆる芯部分を構成するということを意味
し,一方,前記ポリエステル系重合体が略鞘部分を構成
するということは,ポリエステル系重合体がポリプロピ
レン系重合体とこのポリエステル系重合体との混合比率
を超えて単繊維の表面層近傍に偏在していわゆる鞘部分
を構成するということを意味している。また,いわゆる
メルトブローン法を適用して得られるこの極細繊維で
は,前記ポリプロピレン系重合体は結晶化しやすいもの
であり,一方,前記ポリエステル系重合体は結晶化しに
くいものであり,したがって,相対的にいって,単繊維
断面において前記ポリプロピレン系重合体が構成する略
芯部分では結晶質,一方,単繊維断面において前記ポリ
エステル系重合体が構成する略鞘部分では非結晶質とな
っている。なお,ここでいう結晶質とは,ポリプロピレ
ン系重合体の結晶化の程度がポリエステル系重合体より
も高いということを意味し,一方,非結晶質とは,ポリ
エステル系重合体の結晶化の程度がポリプロピレン系重
合体よりも低いということを意味している。
The ultrafine fibers in the present invention are composed of a mixture of 70 to 95% by weight of the polypropylene-based polymer and 30 to 5% by weight of the polyester-based polymer. It has a structure in which a core portion is formed and the polyester polymer forms a substantially sheath portion. In this ultrafine fiber, if the ratio of the polyester polymer to the total weight of the polypropylene polymer and the polyester polymer, that is, the mixing ratio is less than 5% by weight, the polyester polymer is not located on the outer periphery of the polypropylene polymer. Therefore, since the polypropylene-based polymer and the polyester-based polymer are incompatible with each other, they are fibrillated and the mechanical properties and printability are not improved. On the other hand, when this ratio exceeds 30% by weight, the polypropylene-based polymer is Since the peculiar flexibility is hindered, and the yarn formability and dimensional stability are impaired,
Neither is preferable. Therefore, in the present invention, the mixing ratio of both polymers is 70
To 95% by weight, preferably 75 to 92% by weight, more preferably 80 to 90% by weight, and 30% by weight of the polyester polymer.
-5 wt%, preferably 25-8 wt%, more preferably 20-10 wt%. As described above, this ultrafine fiber has a structure in which the polypropylene polymer constitutes a substantially core portion and the polyester polymer constitutes a substantially sheath portion in a single fiber cross section. It should be noted that the fact that the polypropylene-based polymer here constitutes the substantially core portion means that the polypropylene-based polymer is unevenly distributed in the vicinity of the central portion of the single fiber in excess of the mixing ratio of the polypropylene-based polymer and the polyester-based polymer. This means that the polyester polymer constitutes the core portion, while the polyester polymer substantially constitutes the sheath portion means that the polyester polymer exceeds the mixing ratio of the polypropylene polymer and the polyester polymer. It means that it is unevenly distributed in the vicinity of the surface layer of the monofilament to form a so-called sheath portion. In addition, in this ultrafine fiber obtained by applying the so-called melt blown method, the polypropylene polymer is easy to crystallize, while the polyester polymer is hard to crystallize, and thus relatively relatively. In the cross section of the single fiber, the substantially core portion formed by the polypropylene polymer is crystalline, and on the other hand, the substantially sheath portion formed by the polyester polymer in the single fiber cross section is amorphous. The term "crystalline" means that the degree of crystallization of the polypropylene polymer is higher than that of the polyester polymer, while the term "amorphous" means the degree of crystallization of the polyester polymer. Is lower than the polypropylene polymer.

【0007】本発明における前記極細繊維からなる不織
ウエブは,沸水収縮率が35%以下のものである。この
不織ウエブは,上述したように,ポリプロピレン系重合
体とポリエステル系重合体とが特定比率で混合された混
合物からなる極細繊維から構成されたものであるが,前
記結晶質のポリプロピレン系重合体が単繊維断面におい
て略芯部分を構成すると共に略鞘部分を構成する前記非
結晶質のポリエステル系重合体の中に微在する結晶質の
ポリプロピレン系重合体がポリエステル系重合体の結晶
化を阻害するため収縮率が抑制され,メルトブローン法
を適用して不織ウエブを作成するに際し,ポリエステル
系重合体の高収縮率であるという欠点が改良され,沸水
収縮率が35%以下という寸法安定性の優れた不織ウエ
ブを得ることができ,得られた不織ウエブは衣料素材用
のみならず産業資材用の不織布製品を得るための不織ウ
エブとして広範に適用可能となる。また,この不織ウエ
ブでは,単繊維断面において略芯部分を構成する前記ポ
リプロピレン系重合体を前記ポリエステル系重合体が被
覆して略鞘部分を構成しているため,この繊維からなる
不織ウエブを用いて不織布製品としたとき機械的特性と
印刷性の向上した不織布製品を得ることができる。
The nonwoven web made of the ultrafine fibers in the present invention has a boiling water shrinkage of 35% or less. As described above, the non-woven web is composed of ultrafine fibers made of a mixture of a polypropylene-based polymer and a polyester-based polymer in a specific ratio. In the single fiber cross section, the crystalline polypropylene-based polymer, which is present in the amorphous polyester-based polymer that constitutes the substantially core portion and the substantially sheath portion in the single fiber cross section, inhibits the crystallization of the polyester-based polymer. Therefore, the shrinkage rate is suppressed, and the disadvantage of the polyester polymer having a high shrinkage rate is improved when the nonwoven web is prepared by applying the melt blown method, and the boiling water shrinkage rate is 35% or less. An excellent non-woven web can be obtained, and the obtained non-woven web is widely used as a non-woven web for obtaining nonwoven products for not only clothing materials but also industrial materials. It becomes possible to apply to. Further, in this non-woven web, since the polypropylene-based polymer forming the substantially core portion in the cross section of the single fiber is covered with the polyester-based polymer to form the substantially sheath portion, the non-woven web made of this fiber is formed. When used as a non-woven fabric product, a non-woven fabric product having improved mechanical properties and printability can be obtained.

【0008】本発明における前記ポリプロピレン系重合
体と前記ポリエステル系重合体との混合物からなる極細
繊維は,平均繊維径が0.1〜10.0μmのものであ
り,この平均繊維径が0.1μm未満であると製糸性が
低下し,一方,平均繊維径が10.0μmを超えると得
られた不織ウエブの風合いが硬くなり,この不織ウエブ
を用いて不織布製品を得たとき柔軟性に富む不織布を得
ることができず,いずれも好ましくない。
The ultrafine fibers made of a mixture of the polypropylene polymer and the polyester polymer in the present invention have an average fiber diameter of 0.1 to 10.0 μm, and the average fiber diameter is 0.1 μm. When the average fiber diameter is more than 10.0 μm, the texture of the obtained nonwoven web becomes hard, and when the average fiber diameter exceeds 10.0 μm, the nonwoven fabric becomes soft when it is obtained. It is not preferable because a rich nonwoven fabric cannot be obtained.

【0009】本発明における前記極細繊維からなる不織
ウエブは,公知のいわゆるメルトブローン法により効率
良く製造することができる。すなわち,重合体としてポ
リプロピレン系重合体70〜95重量%と相対粘度が
1.20〜1.32のポリエステル系重合体30〜5重
量%との混合物を用いメルトブローン法で溶融紡出し,
溶融紡出されたポリマ流を高温の高圧空気流により牽引
・細化し,冷却した後,移動する捕集面上に捕集・堆積
させて不織ウエブとする方法である。
The non-woven web composed of the ultrafine fibers in the present invention can be efficiently produced by a known so-called melt blown method. That is, using a mixture of 70 to 95% by weight of a polypropylene polymer and 30 to 5% by weight of a polyester polymer having a relative viscosity of 1.20 to 1.32 as a polymer, melt spinning is performed by a melt blown method,
This is a method in which a melt-spun polymer stream is drawn and thinned by a high-temperature, high-pressure air stream, cooled, and then collected and deposited on a moving collection surface to form a nonwoven web.

【0010】本発明の製造方法においては,前記ポリエ
ステル系重合体として相対粘度が1.20〜1.32の
ものを採用する。この相対粘度が1.20未満であると
重合度が低過ぎるために重合時に重合体のペレツト化が
困難となり,一方,相対粘度が1.32を超えると重合
度が高過ぎるために製糸工程において溶融紡糸口金面で
のポリマ玉が発生したりして製糸性が低下し極細繊維の
形成が困難となり,しかも繊維形成に要するエネルギが
大となるので,いずれも好ましくない。したがって,本
発明では,この相対粘度を1.20〜1.32,好まし
くは1.21〜1.30,より好ましくは1.22〜
1.28とする。
In the production method of the present invention, a polyester polymer having a relative viscosity of 1.20 to 1.32 is used. If the relative viscosity is less than 1.20, the degree of polymerization is too low, and it becomes difficult to pelletize the polymer during polymerization. On the other hand, if the relative viscosity exceeds 1.32, the degree of polymerization is too high, and thus in the spinning process. Polymer balls are generated on the surface of the melt-spinning die, so that the spinnability is deteriorated and it becomes difficult to form ultrafine fibers, and moreover, the energy required for fiber formation is large, which is not preferable. Therefore, in the present invention, the relative viscosity is 1.20 to 1.32, preferably 1.21 to 1.30, and more preferably 1.22 to 1.30.
Set to 1.28.

【0011】本発明の製造方法においては,溶融紡出す
るに際して,前記ポリプロピレン系重合体の溶融流量に
対する前記ポリエステル系重合体の溶融流量の比を1.
5〜6.0となるようにして溶融紡出することが必要で
ある。この溶融流量の比を1.5〜6.0とすることに
より,ポリプロピレン系とポリエステル系という互いに
非相溶性の重合体からなる混合物を溶融紡糸口金に供給
したとき,重合度の低いポリマが流路抵抗の高いオリフ
イスの管壁付近を流れ,一方,重合度の高いポリマは流
路抵抗の低いオリフイスの中央部を流れることになり,
これらの流れの組み合わせにより単繊維断面において略
芯鞘型の構造を発現することになるのである。そして,
この溶融流量の比が1.5未満であると溶融流量比が小
さ過ぎるために単繊維断面において前記ポリエステル系
重合体が前記ポリプロピレン系重合体の中に点状に位置
したいわゆる海島型構造を呈して略芯鞘型の構造を発現
せず,したがって製糸性が低下し,仮に得られた不織ウ
エブを用いて不織布製品を作成したとしても得られた不
織布製品は機械的特性が著しく劣り,しかも沸水処理を
施したときいわゆるシボ立ちが発生して品位が著しく低
下する。一方,この溶融流量の比が6.0を超えると単
繊維断面において前記ポリプロピレン系重合体が略芯部
分でかつ前記ポリエステル系重合体が略鞘部分の芯鞘型
構造を発現するが,溶融流量比が大き過ぎるために製糸
工程において溶融紡糸口金面でのポリマ玉や吐出糸条の
ねじれ現象が発生したりして製糸性が極端に低下し,し
かも吐出糸条の均整度が劣ることになる。したがって,
本発明では,この溶融流量の比を1.5〜6.0,好ま
しくは2.0〜5.5,より好ましくは2.5〜5.0
とする。
In the production method of the present invention, the ratio of the melt flow rate of the polyester polymer to the melt flow rate of the polypropylene polymer is 1.
It is necessary to carry out melt spinning so as to be 5 to 6.0. By setting the ratio of the melt flow rates to 1.5 to 6.0, when a mixture of polypropylene-based and polyester-based polymers which are incompatible with each other is supplied to the melt-spinning die, a polymer with a low degree of polymerization flows. The high flow resistance flows near the wall of the orifice, while the polymer with high degree of polymerization flows in the central part of the orifice with low flow resistance.
By the combination of these flows, a substantially core-sheath type structure is developed in the single fiber cross section. And
If the ratio of the melt flow rate is less than 1.5, the melt flow rate ratio is too small, so that the polyester polymer exhibits a so-called sea-island structure in which dots are located in the polypropylene polymer in the single fiber cross section. Does not develop a substantially core-sheath type structure, and thus the spinnability deteriorates, and even if a non-woven product is made using the non-woven web obtained, the non-woven product obtained is remarkably inferior in mechanical properties. When treated with boiling water, so-called wrinkling occurs and the quality deteriorates significantly. On the other hand, when the ratio of the melt flow rate exceeds 6.0, the polypropylene polymer develops a core-sheath structure in which the polypropylene polymer has a substantially core portion and the polyester polymer has a substantially sheath portion in the cross section of the single fiber. Since the ratio is too large, polymer balls on the surface of the melt-spinning spinner and twisting phenomenon of the discharge yarn may occur, resulting in extremely low spinnability and poor uniformity of the discharge yarn. . Therefore,
In the present invention, the ratio of the melt flow rates is 1.5 to 6.0, preferably 2.0 to 5.5, more preferably 2.5 to 5.0.
And

【0012】本発明の製造方法においては,溶融紡出さ
れたポリマ流を牽引・細化する高圧空気流の温度をポリ
マ流の溶融温度より高い温度とすることが必要である。
この温度がポリマ流の溶融温度以下であると製糸性が低
下して極細繊維の形成が困難となり,好ましくない。
In the manufacturing method of the present invention, it is necessary to set the temperature of the high-pressure air stream for drawing and thinning the melt-spun polymer stream to a temperature higher than the melting temperature of the polymer stream.
If this temperature is lower than the melting temperature of the polymer flow, the spinnability deteriorates and it becomes difficult to form ultrafine fibers, which is not preferable.

【0013】本発明では,前記のようにして得られた不
織ウエブに,必要に応じて部分熱圧接処理を施して形態
を保持させることができる。この部分熱圧接処理を施す
に際しては公知の方法を適用することができる。例え
ば,得られた不織ウエブを加熱されたエンボスローラと
表面が平滑な金属ローラ等とからなる両ローラ間に通す
方法や,あるいは超音波融着装置を用いる方法がある。
加熱されたエンボスローラを用いる場合,圧接面積率を
5〜50%とし,この圧接面積率が5%未満であると点
状融着区域が少なく不織布の機械的特性が低下し,また
良好な寸法安定性を得ることができず,一方,この圧接
面積率が50%を超えると不織布が硬直化して柔軟性が
損なわれるため,いずれも好ましくない。また,ローラ
温度を150〜220℃とするのがよく,この温度が1
50℃未満であると融着区域における繊維間の融着力が
低くなるため不織布の機械的特性が低下し,また良好な
寸法安定性を得ることができず,一方,この温度が22
0℃を超えると不織布が硬直化して柔軟性が損なわれる
ため,いずれも好ましくない。熱エンボスローラを用い
る場合のエンボスパターンは,その圧接面積率が5〜5
0%の範囲内であれば特に限定されるものではなく,丸
型,楕円型,菱型,三角型,T字型,井型等,任意の形
状でよい。なお,この熱エンボスローラあるいは超音波
融着装置を用いる部分熱圧接処理は,連続工程あるいは
別工程のいずれであってもよい。
In the present invention, the non-woven web obtained as described above can be subjected to a partial hot-pressing treatment if necessary to retain its shape. A publicly known method can be applied when performing the partial hot-pressing treatment. For example, there is a method in which the obtained nonwoven web is passed between both rollers, which are a heated embossing roller and a metal roller having a smooth surface, or a method using an ultrasonic fusing device.
When a heated embossing roller is used, the pressure contact area ratio is 5 to 50%. If the pressure contact area ratio is less than 5%, the number of spot fusion areas is small and the mechanical properties of the non-woven fabric are deteriorated. Stability cannot be obtained, and on the other hand, if the pressure contact area ratio exceeds 50%, the nonwoven fabric becomes rigid and the flexibility is impaired, so both are not preferable. Also, the roller temperature is preferably 150 to 220 ° C., and this temperature is 1
If the temperature is lower than 50 ° C, the fusion strength between fibers in the fusion zone becomes low, so that the mechanical properties of the nonwoven fabric are deteriorated and good dimensional stability cannot be obtained.
If the temperature exceeds 0 ° C, the non-woven fabric becomes rigid and the flexibility is impaired. The embossing pattern when using the hot embossing roller has a pressing area ratio of 5 to 5
The shape is not particularly limited as long as it is within the range of 0%, and may be any shape such as a round shape, an elliptical shape, a rhombus shape, a triangular shape, a T shape, and a well shape. The partial thermal pressure welding process using this hot embossing roller or ultrasonic fusing device may be a continuous process or a separate process.

【0014】本発明では,前記のようにして得られた不
織ウエブに,必要に応じて高圧液体流処理により繊維間
に三次元交絡を施して形態を保持させることもできる。
この高圧液体流処理を施すに際しても公知の方法を適用
することができる。例えば,孔径が0.05〜1.0m
m特に0.1〜0.4mmの噴射孔を多数配列した装置
を用い,噴射圧力が5〜150kg/cm2 Gの高圧液
体を前記噴射孔から噴射する方法がある。噴射孔の配列
は,ウエブの進行方向と直交する方向に列状に配列す
る。この処理は,ウエブの片面あるいは両面のいずれに
施してもよいが,特に片面処理の場合には,噴射孔を複
数列に配列し噴射圧力を前段階で低く後段階で高くして
処理を施すと,均一で緻密な交絡形態と均一な地合いを
有する不織布を得ることができる。高圧液体としては,
水あるいは温水を用いるのが一般的である。噴射孔とウ
エブとの間の距離は,1〜15cmとするのがよい。こ
の距離が1cm未満であるとウエブの地合いが乱れ,一
方,この距離が15cmを超えると液体流がウエブに衝
突した時の衝撃力が低下し三次元的な交絡が十分に施さ
れず,いずれも好ましくない。この高圧液体流処理は,
連続工程あるいは別工程のいずれであってもよい。な
お,高圧液体流処理を施すに際し,ウエブを担持するス
クリーンのメツシユあるいは織組織を適宜変更すること
により,不織布の組織あるいは柄を変更することもでき
る。高圧液体流処理を施した後,ウエブから過剰水分を
除去する。この過剰水分を除去するに際しては,公知の
方法を適用することができる。例えば,マングルロール
等の絞り装置を用いて過剰水分をある程度除去し,引き
続き連続熱風乾燥機等の乾燥装置を用いて残余の水分を
除去するのである。
In the present invention, the non-woven web obtained as described above may be subjected to a high-pressure liquid flow treatment to cause a three-dimensional entanglement between the fibers to maintain the shape.
A well-known method can be applied when performing this high-pressure liquid flow treatment. For example, the pore size is 0.05-1.0m
m There is a method of ejecting a high-pressure liquid having an ejection pressure of 5 to 150 kg / cm 2 G from the ejection holes by using a device in which a large number of ejection holes of 0.1 to 0.4 mm are arranged. The injection holes are arranged in rows in a direction orthogonal to the direction of travel of the web. This treatment may be performed on one side or both sides of the web. In particular, in the case of one-side treatment, the injection holes are arranged in a plurality of rows and the injection pressure is lowered in the front stage and increased in the rear stage. As a result, it is possible to obtain a non-woven fabric having a uniform and dense entangled form and a uniform texture. As a high pressure liquid,
It is common to use water or warm water. The distance between the injection hole and the web is preferably 1 to 15 cm. When this distance is less than 1 cm, the texture of the web is disturbed, while when this distance exceeds 15 cm, the impact force when the liquid flow collides with the web is reduced and the three-dimensional entanglement is not sufficiently performed. Is also not preferable. This high pressure liquid flow treatment
It may be either a continuous process or a separate process. When performing the high-pressure liquid flow treatment, the structure or handle of the non-woven fabric can be changed by appropriately changing the mesh or woven structure of the screen carrying the web. After the high pressure liquid stream treatment, excess moisture is removed from the web. A known method can be applied to remove the excess water. For example, a squeezing device such as a mangle roll is used to remove excess water to some extent, and then a drying device such as a continuous hot air dryer is used to remove the remaining water.

【0015】[0015]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,昇温速度20℃/分の条件で測定し,
得られた融解吸熱曲線において極値を与える温度を融点
とした。 相対粘度:フエノールと四塩化エタンとの等重量比の混
合溶媒100ccに試料0.5gを溶解し,温度20℃
の条件で常法により測定した。 溶融流量(g):メルトインデクサ溶融流量測定装置を
用い,オリフイス径0.4mm,オリフイス長1.2m
m,荷重2160gの条件で10分間当りの溶融ポリマ
の吐出量を測定した。なお,測定温度は,溶融紡糸温度
と同一温度とした。 平均繊維径(μm):試料の電子顕微鏡写真を撮影して
求めた。 引張強力(kg/5cm幅)及び引張伸度(%):JI
S−L−1096Aに記載の方法に準じて測定した。す
なわち,試料長が10cm,試料幅が5cmの試料片1
0点を作成し,各試料片毎に不織布の経方向について,
定速伸長型引張試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用い,引張速度10c
m/分で伸長し,得られた切断時荷重値(kg/5cm
幅)の平均値を引張強力(kg/5cm幅),切断時伸
長率(%)の平均値を引張伸度(%)とした。 沸水収縮率(%):試料長と試料幅が各々25cmの試
料片複数点を作成し,沸騰水を用いて各試料片に処理時
間3分の条件で沸水処理を施した。この際,沸水処理前
試料片の面積S1 と沸水処理後試料片の面積S2 を求
め,得られたS1及びS2 から次式(1)により算出し
た値の平均値を沸水収縮率(%)とした。 沸水収縮率(%)=〔1−(S2 /S1 )〕×100・・・・・・・(1) 柔軟性:JIS−L−1096に記載のハンドルオメー
タ法に準じ,スリツト幅1cmの条件で測定した。 印刷性:油性,水性の両インクを用いて試料に印刷を施
し,印字の鮮明度及び耐久性を求め,各々下記のとおり
の三段階で評価した。 ◎:極めて良い,○:良い,×:不良
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using a C-2 type, the measurement is performed at a temperature rising rate of 20 ° C./min,
The temperature that gives the extreme value in the obtained melting endothermic curve was taken as the melting point. Relative viscosity: 0.5 g of a sample was dissolved in 100 cc of a mixed solvent of phenol and ethane tetrachloride in an equal weight ratio, and the temperature was 20 ° C.
It was measured by a conventional method under the conditions of. Melt flow rate (g): Using a melt indexer melt flow rate measuring device, orifice diameter 0.4 mm, orifice length 1.2 m
The discharge amount of the molten polymer per 10 minutes was measured under the conditions of m and a load of 2160 g. The measurement temperature was the same as the melt spinning temperature. Average fiber diameter (μm): Obtained by taking an electron micrograph of the sample. Tensile strength (kg / 5cm width) and tensile elongation (%): JI
It was measured according to the method described in S-L-1096A. That is, a sample piece 1 having a sample length of 10 cm and a sample width of 5 cm
Create 0 points, and for each sample piece, regarding the warp direction of the nonwoven fabric,
Tensile speed 10c using a constant speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.)
The load value at the time of cutting obtained by stretching at m / min (kg / 5cm
The average value of the width was taken as the tensile strength (kg / 5 cm width), and the average value of the elongation at break (%) was taken as the tensile elongation (%). Boiling water shrinkage ratio (%): A plurality of sample pieces each having a sample length and a sample width of 25 cm were prepared, and each sample piece was subjected to boiling water treatment using boiling water under a treatment time of 3 minutes. At this time, the area S1 of the sample piece before the boiling water treatment and the area S2 of the sample piece after the boiling water treatment were obtained, and the average value of the values calculated by the following equation (1) from the obtained S1 and S2 was taken as the boiling water shrinkage rate (%). did. Shrinkage rate of boiling water (%) = [1- (S2 / S1)] × 100 (1) Flexibility: According to the handle odometer method described in JIS-L-1096, the slit width is 1 cm. It was measured under the conditions. Printability: A sample was printed using both oil-based and water-based inks, and the sharpness and durability of the print were obtained, and each was evaluated in the following three grades. ◎: Very good, ○: Good, ×: Poor

【0016】実施例1 融点が160℃のポリプロピレン重合体95重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体5重量%との混合物を用い,メルトブ
ローン法により不織ウエブを製造した。すなわち,前記
両重合体の混合物を溶融し,これをダイから紡糸温度3
40℃,単孔吐出量0.2g/分で紡出し,溶融紡出さ
れたポリマ流を高圧空気流により牽引・細化した。この
とき,ポリプロピレン重合体の溶融流量に対するポリエ
チレンテレフタレート重合体の溶融流量の比は3.2で
あった。この高圧空気流として温度370℃,圧力1.
2kg/cm2 の加熱空気を用いた。牽引・細化に引き
続き,ポリマ流を冷却し繊維に形成した後,ダイから5
cm離れた位置に配設されかつ速度6.7m/分で移動
する金網製ベルト上に捕集・堆積させて不織ウエブを得
た。製糸性は良好であった。得られた不織ウエブの構成
繊維断面を電子顕微鏡を用い5000倍に拡大して観察
したところ,ポリプロピレン重合体の周囲をポリエチレ
ンテレフタレート重合体が薄膜状に被覆した略芯鞘型構
造を有したものであることが確認できた。得られた不織
ウエブの特性を表1に示す。本発明の不織ウエブは,表
1から明らかなように機械的特性,寸法安定性,柔軟
性,印刷性が優れたものであった。
Example 1 A nonwoven web was prepared by a melt blown method using a mixture of 95% by weight of a polypropylene polymer having a melting point of 160 ° C. and 5% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22. Manufactured. That is, a mixture of both the above polymers is melted, and the mixture is spun at a spinning temperature of
The polymer stream was spun at 40 ° C. with a single hole discharge rate of 0.2 g / min, and the polymer stream melt-spun was pulled and thinned by a high-pressure air stream. At this time, the ratio of the melt flow rate of the polyethylene terephthalate polymer to the melt flow rate of the polypropylene polymer was 3.2. This high-pressure air flow has a temperature of 370 ° C. and a pressure of 1.
2 kg / cm 2 of heated air was used. Following traction / thinning, the polymer stream was cooled and formed into fibers, and then 5 from the die.
A non-woven web was obtained by collecting and depositing it on a wire mesh belt arranged at a position separated by cm and moving at a speed of 6.7 m / min. The spinnability was good. When the cross section of the constituent fibers of the obtained non-woven web was observed with an electron microscope at a magnification of 5000 times, it had a substantially core-sheath structure in which the periphery of the polypropylene polymer was covered with a polyethylene terephthalate polymer in a thin film form. It was confirmed that The properties of the resulting nonwoven web are shown in Table 1. As is apparent from Table 1, the nonwoven web of the present invention had excellent mechanical properties, dimensional stability, flexibility and printability.

【0017】実施例2 融点が160℃のポリプロピレン重合体85重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体15重量%との混合物を用いたこと,
及び高圧空気流の圧力を1.4kg/cm2 としたこと
以外は実施例1と同様にして,不織ウエブを得た。製糸
性は良好であった。得られた不織ウエブの構成繊維断面
を観察したところ,ポリプロピレン重合体の周囲をポリ
エチレンテレフタレート重合体が薄膜状に被覆した略芯
鞘型構造を有したものであることが確認できた。得られ
た不織ウエブの特性を表1に示す。本発明の不織ウエブ
は,表1から明らかなように機械的特性,寸法安定性,
柔軟性,印刷性が優れたものであった。
Example 2 A mixture of 85% by weight of a polypropylene polymer having a melting point of 160 ° C. and 15% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22 was used.
A nonwoven web was obtained in the same manner as in Example 1 except that the pressure of the high pressure air flow was 1.4 kg / cm 2 . The spinnability was good. When the cross section of the constituent fibers of the obtained nonwoven web was observed, it was confirmed that the polypropylene web had a substantially core-sheath structure in which the periphery of the polypropylene polymer was covered with a polyethylene terephthalate polymer in a thin film form. The properties of the resulting nonwoven web are shown in Table 1. The non-woven web of the present invention has mechanical properties, dimensional stability,
It had excellent flexibility and printability.

【0018】実施例3 融点が160℃のポリプロピレン重合体75重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体25重量%との混合物を用いたこと,
及び高圧空気流の圧力を1.5kg/cm2 としたこと
以外は実施例1と同様にして,不織ウエブを得た。製糸
性は良好であった。得られた不織ウエブの構成繊維断面
を観察したところ,ポリプロピレン重合体の周囲をポリ
エチレンテレフタレート重合体が薄膜状に被覆した略芯
鞘型構造を有したものであることが確認できた。得られ
た不織ウエブの特性を表1に示す。本発明の不織ウエブ
は,表1から明らかなように機械的特性,寸法安定性,
柔軟性,印刷性が優れたものであった。
Example 3 A mixture of 75% by weight of a polypropylene polymer having a melting point of 160 ° C. and 25% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22 was used.
A non-woven web was obtained in the same manner as in Example 1 except that the pressure of the high pressure air flow was 1.5 kg / cm 2 . The spinnability was good. When the cross section of the constituent fibers of the obtained nonwoven web was observed, it was confirmed that the polypropylene web had a substantially core-sheath structure in which the periphery of the polypropylene polymer was covered with a polyethylene terephthalate polymer in a thin film form. The properties of the resulting nonwoven web are shown in Table 1. The non-woven web of the present invention has mechanical properties, dimensional stability,
It had excellent flexibility and printability.

【0019】実施例4 融点が160℃のポリプロピレン重合体85重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体15重量%との混合物を用いたこと,
ポリプロピレン重合体の溶融流量に対するポリエチレン
テレフタレート重合体の溶融流量の比を4.0としたこ
と,及び高圧空気流の圧力を1.2kg/cm2 とした
こと以外は実施例1と同様にして,不織ウエブを得た。
製糸性は良好であった。得られた不織ウエブの構成繊維
断面を観察したところ,ポリプロピレン重合体の周囲を
ポリエチレンテレフタレート重合体が薄膜状に被覆した
略芯鞘型構造を有したものであることが確認できた。得
られた不織ウエブの特性を表1に示す。本発明の不織ウ
エブは,表1から明らかなように機械的特性,寸法安定
性,柔軟性,印刷性が優れたものであった。
Example 4 A mixture of 85% by weight of a polypropylene polymer having a melting point of 160 ° C. and 15% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22 was used.
In the same manner as in Example 1 except that the ratio of the melt flow rate of the polyethylene terephthalate polymer to the melt flow rate of the polypropylene polymer was 4.0, and the pressure of the high-pressure air flow was 1.2 kg / cm 2 . A non-woven web was obtained.
The spinnability was good. When the cross section of the constituent fibers of the obtained nonwoven web was observed, it was confirmed that the polypropylene web had a substantially core-sheath structure in which the periphery of the polypropylene polymer was covered with a polyethylene terephthalate polymer in a thin film form. The properties of the resulting nonwoven web are shown in Table 1. As is apparent from Table 1, the nonwoven web of the present invention had excellent mechanical properties, dimensional stability, flexibility and printability.

【0020】比較実施例1 融点が160℃のポリプロピレン重合体50重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体50重量%との混合物を用いたこと,
及び高圧空気流の圧力を0.8kg/cm2 としたこと
以外は実施例1と同様にして,不織ウエブを得た。製糸
性に関しては,溶融紡糸の開始以降,経時的に溶融紡糸
口金面にポリマ玉が発生し不良であった。得られた不織
ウエブの構成繊維断面を観察したところ,ポリプロピレ
ン重合体の周囲をポリエチレンテレフタレート重合体が
薄膜状に被覆した略芯鞘型構造を有したものであるもの
の,一部のポリエチレンテレフタレート重合体がポリプ
ロピレン重合体の中に点在したいわゆる海島型構造をも
併せ有するものであることが確認できた。得られた不織
ウエブの特性を表1に示す。この不織ウエブは,表1か
ら明らかなように寸法安定性と印刷性は優れたものであ
ったが,機械的特性と柔軟性が共に劣り,実用不可のも
のであった。
Comparative Example 1 A mixture of 50% by weight of a polypropylene polymer having a melting point of 160 ° C. and 50% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22 was used.
A nonwoven web was obtained in the same manner as in Example 1 except that the pressure of the high-pressure air flow was 0.8 kg / cm 2 . Regarding the spinnability, polymer balls were generated on the surface of the melt-spinning spinneret after the start of melt-spinning, and it was unsatisfactory. The cross section of the constituent fibers of the obtained non-woven web was observed, and it was found that the polyethylene terephthalate polymer had a substantially core-sheath structure in which the polyethylene terephthalate polymer was coated in a thin film around the polypropylene polymer. It was confirmed that the united body also had a so-called sea-island structure scattered in the polypropylene polymer. The properties of the resulting nonwoven web are shown in Table 1. As is clear from Table 1, this nonwoven web was excellent in dimensional stability and printability, but was inferior in both mechanical properties and flexibility and was not practical.

【0021】比較実施例2 融点が160℃のポリプロピレン重合体85重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体15重量%との混合物を用いたこと,
ポリプロピレン重合体の溶融流量に対するポリエチレン
テレフタレート重合体の溶融流量の比を1.0としたこ
と,及び高圧空気流の圧力を0.6kg/cm2 とした
こと以外は実施例1と同様にして,不織ウエブを得た。
溶融流量の比が小さ過ぎるため糸切れが多発し,製糸性
は極端に低下した。得られた不織ウエブの構成繊維断面
を観察したところ,ポリプロピレン重合体の中にポリエ
チレンテレフタレート重合体が点在したいわゆる海島型
構造を有したものであることが確認できた。得られた不
織ウエブの特性を表1に示す。この不織ウエブは,表1
から明らかなように機械的特性,寸法安定性,柔軟性及
び印刷性共に全て著しく劣るものであった。また,この
不織ウエブに沸水収縮処理を施して得た不織布製品は,
いわゆるシボ立ちが生じ,品位的にも劣ったものであっ
た。
Comparative Example 2 A mixture of 85% by weight of a polypropylene polymer having a melting point of 160 ° C. and 15% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22 was used.
In the same manner as in Example 1 except that the ratio of the melt flow rate of the polyethylene terephthalate polymer to the melt flow rate of the polypropylene polymer was 1.0, and the pressure of the high pressure air flow was 0.6 kg / cm 2 . A non-woven web was obtained.
Since the ratio of the melt flow rate was too small, yarn breakage occurred frequently and the spinnability was extremely deteriorated. By observing the cross section of the constituent fibers of the obtained non-woven web, it was confirmed that the non-woven web had a so-called sea-island structure in which polyethylene terephthalate polymer was scattered in polypropylene polymer. The properties of the resulting nonwoven web are shown in Table 1. This nonwoven web is shown in Table 1.
As is clear from the results, mechanical properties, dimensional stability, flexibility and printability were all extremely inferior. In addition, the non-woven product obtained by subjecting this nonwoven web to boiling water shrinkage treatment is
So-called wrinkling occurred and the quality was inferior.

【0022】比較実施例3 融点が160℃のポリプロピレン重合体85重量%と融
点が259℃で相対粘度が1.22のポリエチレンテレ
フタレート重合体15重量%との混合物を用いたこと,
ポリプロピレン重合体の溶融流量に対するポリエチレン
テレフタレート重合体の溶融流量の比を7.1としたこ
と,及び高圧空気流の圧力を種々変更したこと以外は実
施例1と同様にして,溶融紡出した。溶融流量の比が大
き過ぎるため溶融紡糸口金面でポリマ玉や吐出糸条のね
じれ現象が多発し,不織ウエブを得ることができなかっ
た。少量ながら得られた繊維の断面を電子顕微鏡を用い
5000倍に拡大して観察したところ,ポリプロピレン
重合体の周囲をポリエチレンテレフタレート重合体が薄
膜状に被覆した略芯鞘型構造を有したものであることは
確認できたが,その均整度が劣り,単繊維径にも大きな
バラツキが認められた。
Comparative Example 3 A mixture of 85% by weight of a polypropylene polymer having a melting point of 160 ° C. and 15% by weight of a polyethylene terephthalate polymer having a melting point of 259 ° C. and a relative viscosity of 1.22 was used.
Melt spinning was performed in the same manner as in Example 1 except that the ratio of the melt flow rate of the polyethylene terephthalate polymer to the melt flow rate of the polypropylene polymer was 7.1 and the pressure of the high-pressure air flow was variously changed. Since the ratio of the melt flow rate was too large, the twisting phenomenon of the polymer balls and the discharge yarns frequently occurred on the surface of the melt spinneret, and the nonwoven web could not be obtained. The cross section of the fiber obtained in a small amount was observed with an electron microscope at a magnification of 5000 times. As a result, it was found that the polymer had a substantially core-sheath structure in which a polyethylene terephthalate polymer was coated in a thin film around the polypropylene polymer. Although this was confirmed, the degree of uniformity was inferior and a large variation was found in the single fiber diameter.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明のポリプロピレン系極細繊維不織
ウエブは,結晶質ポリプロピレン系重合体70〜95重
量%と非結晶質ポリエステル系重合体30〜5重量%と
の混合物からなる平均繊維径が0.1〜10.0μmの
極細繊維から構成され,単繊維断面において前記ポリプ
ロピレン系重合体が略芯部分を構成し,前記ポリエステ
ル系重合体が略鞘部分を構成し,かつ沸水収縮率が35
%以下のものであって,機械的特性,寸法安定性,柔軟
性,印刷性が優れ,産業資材用や衣料素材用のポリプロ
ピレン系極細繊維不織布用素材として好適である。ま
た,本発明のポリプロピレン系極細繊維不織ウエブの製
造方法によれば,前記不織ウエブを効率良く製造するこ
とができる。
The polypropylene-based ultrafine fiber non-woven web of the present invention has an average fiber diameter of 70-95% by weight of a crystalline polypropylene-based polymer and 30-5% by weight of an amorphous polyester-based polymer. It is composed of ultrafine fibers of 0.1 to 10.0 μm, and in the single fiber cross section, the polypropylene polymer constitutes a substantially core portion, the polyester polymer constitutes a substantially sheath portion, and the boiling water shrinkage ratio is 35.
% Or less, it has excellent mechanical properties, dimensional stability, flexibility, and printability, and is suitable as a polypropylene-based ultrafine fiber nonwoven material for industrial materials and clothing materials. Further, according to the method for producing a polypropylene-based ultrafine fiber non-woven web of the present invention, the non-woven web can be efficiently produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D04H 3/14 A 7199−3B // D01D 5/34 7199−3B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location D04H 3/14 A 7199-3B // D01D 5/34 7199-3B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶質ポリプロピレン系重合体70〜9
5重量%と非結晶質ポリエステル系重合体30〜5重量
%との混合物からなる平均繊維径が0.1〜10.0μ
mの極細繊維から構成され,単繊維断面において前記ポ
リプロピレン系重合体が略芯部分を構成し,前記ポリエ
ステル系重合体が略鞘部分を構成し,かつ沸水収縮率が
35%以下であることを特徴とするポリプロピレン系極
細繊維不織ウエブ。
1. A crystalline polypropylene polymer 70-9.
The average fiber diameter made of a mixture of 5% by weight and 30 to 5% by weight of the amorphous polyester polymer is 0.1 to 10.0 μm.
that the polypropylene-based polymer constitutes a substantially core portion, the polyester-based polymer constitutes a substantially sheath portion, and the boiling water shrinkage ratio is 35% or less. Characteristic polypropylene-based ultrafine fiber non-woven web.
【請求項2】 メルトブローン法によりポリプロピレン
系極細繊維不織布を製造するに際し,重合体としてポリ
プロピレン系重合体70〜95重量%と相対粘度が1.
20〜1.32のポリエステル系重合体30〜5重量%
との混合物を用い,ポリプロピレン系重合体の溶融流量
に対するポリエステル系重合体の溶融流量の比が1.5
〜6.0となるようにして溶融紡出し,溶融紡出された
ポリマ流を溶融温度より高い温度の高圧空気流により牽
引・細化し,冷却した後,移動する捕集面上に捕集・堆
積させて不織ウエブとすることを特徴とするポリプロピ
レン系極細繊維不織ウエブの製造方法。
2. When producing a polypropylene-based ultrafine fiber non-woven fabric by the melt blown method, the polypropylene-based polymer is 70 to 95% by weight and the relative viscosity is 1.
20 to 1.32 polyester polymer 30 to 5% by weight
And the ratio of the melt flow rate of the polyester polymer to the melt flow rate of the polypropylene polymer is 1.5.
The melt-spun polymer stream is drawn to ˜6.0, and the polymer stream melt-spun is drawn / thinned by a high-pressure air stream having a temperature higher than the melting temperature, cooled, and then collected on a moving collection surface. A method for producing a polypropylene-based ultrafine fiber nonwoven web, which comprises depositing the nonwoven web.
JP5294470A 1992-11-26 1993-10-29 Ultra-fine polypropylene fiber nonwoven web and its production Pending JPH06212550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294470A JPH06212550A (en) 1992-11-26 1993-10-29 Ultra-fine polypropylene fiber nonwoven web and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-341405 1992-11-26
JP34140592 1992-11-26
JP5294470A JPH06212550A (en) 1992-11-26 1993-10-29 Ultra-fine polypropylene fiber nonwoven web and its production

Publications (1)

Publication Number Publication Date
JPH06212550A true JPH06212550A (en) 1994-08-02

Family

ID=26559849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294470A Pending JPH06212550A (en) 1992-11-26 1993-10-29 Ultra-fine polypropylene fiber nonwoven web and its production

Country Status (1)

Country Link
JP (1) JPH06212550A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507994A (en) * 1995-06-06 1999-07-13 フィルトロナ、インターナショナル、リミテッド Bicomponent fiber comprising polyethylene terephthalate sheath / thermoplastic polymer core, method for producing the same and products produced therefrom
WO2004048663A1 (en) * 2002-11-25 2004-06-10 Mitsui Chemicals, Inc. Nonwoven fabric capable of being elongated and composite nonwoven fabric comprising said nonwoven fabric laminated
CN103201416A (en) * 2010-11-09 2013-07-10 埃克森美孚化学专利公司 Bicomponent fibers and methods for making them
WO2019050375A3 (en) * 2016-09-09 2019-05-02 도레이케미칼 주식회사 Compression-molded body and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507994A (en) * 1995-06-06 1999-07-13 フィルトロナ、インターナショナル、リミテッド Bicomponent fiber comprising polyethylene terephthalate sheath / thermoplastic polymer core, method for producing the same and products produced therefrom
JP2008095270A (en) * 1995-06-06 2008-04-24 Filtrona Richmond Inc Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fiber, method of making the same and product formed therefrom
WO2004048663A1 (en) * 2002-11-25 2004-06-10 Mitsui Chemicals, Inc. Nonwoven fabric capable of being elongated and composite nonwoven fabric comprising said nonwoven fabric laminated
JPWO2004048663A1 (en) * 2002-11-25 2006-03-23 三井化学株式会社 Extensible nonwoven fabric and composite nonwoven fabric obtained by laminating the nonwoven fabric
CN103201416A (en) * 2010-11-09 2013-07-10 埃克森美孚化学专利公司 Bicomponent fibers and methods for making them
JP2014502315A (en) * 2010-11-09 2014-01-30 エクソンモービル ケミカル パテンツ インコーポレイテッド Bicomponent fibers and methods for making them
WO2019050375A3 (en) * 2016-09-09 2019-05-02 도레이케미칼 주식회사 Compression-molded body and method for producing same

Similar Documents

Publication Publication Date Title
EP0933459B2 (en) Staple fiber non-woven fabric and process for producing the same
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP3264719B2 (en) Biodegradable composite long-fiber nonwoven fabric
JP3247176B2 (en) Biodegradable latently crimpable composite filament and nonwoven fabric thereof
JPH06192954A (en) Extra fine fiber non-woven fabric and its production
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JPH10331063A (en) Composite nonwoven fabric and its production
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH0673654A (en) Polyamide ultrafine fiber non-woven fabric and its production
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JPH10280262A (en) Nonwoven fabric and its production
JP3070632B2 (en) Flexible nonwoven fabric and method for producing the same
JPH06192953A (en) Polyolefin extra fine fiber non-woven fabric and its production
JP4173072B2 (en) Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP2018100459A (en) Split type composite fiber
JPH08109567A (en) Laminated nonwoven structure and its production
JPH11131349A (en) Polyester continuous nonwoven filament and its production
JPH0673652A (en) Polyamide ultrafine fiber non-woven fabric and its production
JPH10280263A (en) Nonwoven fabric for wipping material and its production
JPH10280258A (en) Nonwoven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production