[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06216408A - Glass light-emitting device - Google Patents

Glass light-emitting device

Info

Publication number
JPH06216408A
JPH06216408A JP2077193A JP2077193A JPH06216408A JP H06216408 A JPH06216408 A JP H06216408A JP 2077193 A JP2077193 A JP 2077193A JP 2077193 A JP2077193 A JP 2077193A JP H06216408 A JPH06216408 A JP H06216408A
Authority
JP
Japan
Prior art keywords
light
glass
emitting
light emitting
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2077193A
Other languages
Japanese (ja)
Other versions
JP3091342B2 (en
Inventor
Yukio Noda
行雄 野田
Hidenori Mimura
榮紀 三村
Tetsuya Nakai
哲哉 中井
Osamu Niihori
理 新堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP2077193A priority Critical patent/JP3091342B2/en
Publication of JPH06216408A publication Critical patent/JPH06216408A/en
Application granted granted Critical
Publication of JP3091342B2 publication Critical patent/JP3091342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To utilize all of emission from light-emitting parent material glass, and to obtain wide rays in a light-emitting wavelength region by mounting a light source for optical pumping, which is optically coupled and emits rays optically pumping a light-emitting medium, on one of the optical guide terminal surfaces of light-emitting parent material glass and adding a means inhibiting laser oscillation by the emitted rays of the light-emitting medium. CONSTITUTION:Waveguide structure is formed by a core 1, to which a kind of a light-emitting medium is added, and a clad 2, to which the light-emitting medium is not added, a semiconductor laser 3 is used as a light source for optical pumping, and an antireflection film to emitted rays from the light-emitting medium is attached on an optical guide terminal surface. The shape of the light-emitting parent material glass of a glass light-emitting device is formed in a columnar fiber, and a waveguide means is formed by the core 1 consisting of fluoride glass, to which the Er of a rare earth element is added as the light-emitting medium, and the clad 2 composed of fluoride glass having a refractive index lower than the core 1. The output rays 5 of the semiconductor laser 3 as the light source for optical pumping are optically coupled with the terminal surface 4 of light-emitting parent material glass, an optical film 7 is attached onto a terminal surface 6, and laser oscillation in light-emitting parent material glass is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光励起によって増幅さ
れた増幅自然放出光,スーパールミネッセント光の如き
自然放出光を出射するガラス発光素子に関わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass light emitting device which emits spontaneous emission light such as amplified spontaneous emission light and superluminescent light amplified by photoexcitation.

【0002】[0002]

【従来の技術】高輝度・高集光性光源として、固体レー
ザがあり種々多様な産業分野で利用されている。
2. Description of the Related Art A solid-state laser is used as a high-intensity, high-concentration light source and is used in various industrial fields.

【0003】[0003]

【発明が解決しようとする課題】固体レーザの特性とし
て可干渉性・発振波長の単色性を上げることができる。
しかし、光応用機器の中には例えば分光分析装置のよう
に、可干渉性を重要視せず単色性よりもむしろ発光波長
領域の広い光となる高輝度・高集光性光源を必要とする
ものがある。このような場合には、固体レーザを適用す
ることは困難であった。
It is possible to improve coherence and monochromaticity of the oscillation wavelength as the characteristics of the solid-state laser.
However, some optical application devices, such as a spectroscopic analysis device, require a high-intensity, high-concentration light source that emits light with a wider emission wavelength range rather than monochromaticity, such as a spectroscopic analyzer. is there. In such a case, it was difficult to apply the solid-state laser.

【0004】本発明の目的は、従来の固体レーザのこの
欠点に鑑みなされたもので、高輝度でかつ高集光性で発
光波長領域の広い光を得ることができるガラス発光素子
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a glass light emitting device which has been made in view of this drawback of the conventional solid-state laser, and which is capable of obtaining light having a wide emission wavelength range with high brightness and high condensing property. .

【0005】[0005]

【課題を解決するための手段】本願第1の発明によるガ
ラス発光素子は、光による励起で光を放出する発光媒質
を一種類含み光を導波する発光母材ガラスと、該発光母
材ガラスでの該発光媒質の放出光によるレーザ発振を抑
圧する手段と、該発光母材ガラスの光導波終端面の一つ
に光結合し該発光媒質を励起する光を発する励起光源と
を備えた構成を有する。本願第2の発明によるガラス発
光素子は、光による励起で光を放出する発光媒質を少な
くとも二種類含み光を導波する発光母材ガラスと、該発
光母材ガラスでの該発光媒質の放出光によるレーザ発振
を抑圧する手段と、該発光母材ガラスの光導波終端面の
一つに光結合し該発光媒質を励起する光を発する励起光
源とを備えた構成を有する。本願第3の発明によるガラ
ス発光素子は、光による励起で光を放出する発光媒質を
少なくとも一種類含み光を導波する発光母材ガラスの少
なくとも2種類よりなる発光母材ガラス群と、該発光母
材ガラスのそれぞれの発光媒質から放出されるそれぞれ
の光を合波する手段と、該発光母材ガラス群からのそれ
ぞれの該発光媒質からの放出光によるレーザ発振を抑圧
する手段と、該発光母材ガラス群からのそれぞれの光導
波終端面の一つに光結合し該発光媒質それぞれを励起す
る光を発する励起光源とを備えた構成を有する。
A glass light emitting device according to the first invention of the present application includes a light emitting base material glass which contains one kind of light emitting medium which emits light when excited by light, and which guides light, and the light emitting base material glass. And a pumping light source that emits light that excites the light-emitting medium by optically coupling to one of the optical waveguide termination surfaces of the light-emitting base material glass. Have. The glass light emitting device according to the second invention of the present application includes a light emitting base material glass that guides light by including at least two kinds of light emitting mediums that emit light when excited by light, and light emitted from the light emitting medium in the light emitting base material glass. And a pumping light source that emits light that pumps the light-emitting medium by optically coupling with one of the optical waveguide terminal surfaces of the light-emitting base material glass. A glass light emitting device according to the third invention of the present application includes a light emitting base material glass group including at least two kinds of light emitting base material glasses that include at least one type of light emitting medium that emits light when excited by light and that guides light. Means for combining the respective lights emitted from the respective light emitting media of the base glass, means for suppressing laser oscillation due to the light emitted from the respective light emitting media from the light emitting base glass group, and the light emission And a pumping light source that emits light that is optically coupled to one of the optical waveguide termination surfaces from the matrix glass group and that excites each of the light emitting media.

【0006】[0006]

【作用】本願の請求項1に記載のガラス発光素子は、レ
ーザ発振を抑圧した手段を付加していることにより、発
光母材ガラスが持つ発光を全て利用することが出来て、
発光波長領域の広い光を得ることができる。本願の請求
項2に記載のガラス発光素子は、発光媒質を複数として
いることにより、個々の発光媒質が有する発光帯を重畳
して用いることになるので、より広い発光波長領域の光
を得ることができる。本願の請求項3に記載のガラス発
光素子は、発光母材ガラス群を用いることにより、励起
光源と発光媒質の選択がより柔軟になり、求める発光帯
の発光波長領域の広い光を容易に得ることが出来る。
The glass light emitting device according to claim 1 of the present application can utilize all the light emission of the light emitting base material glass by adding the means for suppressing the laser oscillation.
It is possible to obtain light with a wide emission wavelength range. Since the glass light-emitting element according to claim 2 of the present application uses a plurality of light-emitting media, the light-emitting bands of the individual light-emitting media are used in a superimposed manner, so that light in a wider emission wavelength range can be obtained. You can In the glass light emitting device according to claim 3 of the present application, by using the light emitting base material glass group, the selection of the excitation light source and the light emitting medium becomes more flexible, and light with a wide emission wavelength region of the desired emission band can be easily obtained. You can

【0007】ガラス発光素子の実施例を以下に記載す
る。
Examples of the glass light emitting device will be described below.

【0008】[0008]

【実施例1】図1に、発光母材ガラスの形状が円柱状で
あり、一種類の発光媒質を添加したコアと添加しないク
ラッドで導波構造を形成し、励起光源を半導体レーザと
し、光導波終端面に発光媒質からの放出光に対する反射
防止膜を付着し、中心波長 2.7μm で発光するガラス発
光素子の一つの例を示す。 ガラス発光素子の発光母材
ガラスの形状は円柱状のファイバであり、希土類元素の
Er を発光媒質として添加したフッ化物ガラスからなる
コア1とコア1より低屈折率のフッ化物ガラスからなる
クラッド2で導波手段を形成している。フッ化物ガラス
を発光母材ガラスとする場合、発光媒質 Er を中心波長
2.7μm で発光させるためには発光媒質を波長 790 nm
の光で励起すればよい。励起光源である発振波長 790 n
m の半導体レーザ3の出力光5を発光母材ガラスの終端
面4に光結合するように配置する。この実施例では直接
結合させているが、レンズあるいは光ファイバ等の光学
部品を介して光結合させることもできる。終端面6には
スーパールミネッセント光に対しては反射防止効果のあ
る光学膜7を付着させ、発光母材ガラス内でのレーザ発
振を抑圧した手段としている。
Example 1 In FIG. 1, the shape of the light-emitting base material glass is cylindrical, and a waveguide structure is formed by a core to which one kind of light-emitting medium is added and a clad not added, and a semiconductor laser is used as an excitation light source. An example of a glass light-emitting device that emits light with a central wavelength of 2.7 μm by attaching an antireflection film to the light emitted from the light-emitting medium on the wave termination surface is shown below. The shape of the light-emitting base material glass of the glass light-emitting element is a cylindrical fiber,
A waveguide 1 is formed by a core 1 made of fluoride glass to which Er is added as a light emitting medium and a clad 2 made of fluoride glass having a refractive index lower than that of the core 1. When fluoride glass is used as the luminescent matrix glass, the luminescent medium Er is the center wavelength.
In order to emit light at 2.7 μm, the emission medium has a wavelength of 790 nm.
It can be excited by the light. Oscillation wavelength of excitation light source 790 n
The output light 5 of the m semiconductor laser 3 is arranged so as to be optically coupled to the end surface 4 of the light emitting base material glass. In this embodiment, direct coupling is performed, but optical coupling can also be performed via an optical component such as a lens or an optical fiber. An optical film 7 having an antireflection effect against superluminescent light is attached to the terminal surface 6 to serve as means for suppressing laser oscillation in the light emitting base material glass.

【0009】平行平板の多重反射理論によれば、屈折率
n2 の物質上に屈折率 n1 、膜厚dの均一な膜がコート
されている場合、空気の屈折率を n0 として、空気側か
らあるいは物質側から波長λの光が垂直入射した場合の
エネルギー反射率Rは次式のようになる。
According to the multiple reflection theory of parallel plates, the refractive index
When a uniform film with a refractive index n 1 and a film thickness d is coated on a substance of n 2 , and when the refractive index of air is n 0 and light of wavelength λ is vertically incident from the air side or the substance side. The energy reflectance R of is as follows.

【0010】[0010]

【数1】 [Equation 1]

【0011】光学膜として例えばフッ化カルシウム( n
1 =1.23)を真空蒸着法で厚さ 0.55 μm 付着させる
と、n0= 1 , n2 =1.484 , λ= 2.7μm であるから、
R =9.3 ×10-5となり、膜をつけないときの反射率値
3.8×10-2に対し三桁低減でき、レーザ発振が効果的に
抑制される。この反射防止効果をさらに高める必要があ
れば、いま記載した単層膜の代わりに多層膜を付着すれ
ばよい。また、終端面4にもスーパールミネッセント光
に対しては反射防止効果のある光学膜を付着させれば、
発光母材ガラス内でのレーザ発振をより効果的に抑圧で
きる。さらに、光学膜7に半導体レーザの励起光に対し
て高反射となる特性を付加すれば、終端面6に到達した
時点で吸収されなかった励起光を、終端面6上の光学膜
7の作用でそのほとんどを反射させ、もう一つの終端面
4に向かって進行させることで増幅された自然放出光を
より効果的に発生させることができる。
As an optical film, for example, calcium fluoride (n
1 = 1.23) deposited by vacuum evaporation to a thickness of 0.55 μm, n 0 = 1, n 2 = 1.484, λ = 2.7 μm,
R = 9.3 × 10 -5 , the reflectance value without a film
It can be reduced by 3 orders of magnitude compared to 3.8 × 10 -2 , and laser oscillation is effectively suppressed. If it is necessary to further enhance the antireflection effect, a multilayer film may be attached instead of the single layer film described above. Further, if an optical film having an antireflection effect on the super luminescent light is attached to the terminal surface 4,
It is possible to more effectively suppress laser oscillation in the light emitting base material glass. Furthermore, if the optical film 7 is provided with a characteristic of highly reflecting the excitation light of the semiconductor laser, the excitation light that is not absorbed when reaching the end surface 6 acts on the end surface 6 by the optical film 7. Then, most of the reflected light is reflected, and the amplified spontaneous emission light can be more effectively generated by advancing toward the other end surface 4.

【0012】終端面4に励起光源である半導体レーザ3
から発振される波長 790 nm のレーザ光を結合させる
と、発光母材ガラスファイバのコア1中に波長 790 nm
の励起光の導波モードが励振される。この励起光が終端
面6に進行する際にコア1に添加された発光媒質である
Er 元素が励起光を吸収し中心波長 2.7の自然放出光を
放出する。この自然放出光の中で終端面6の向きに放出
されコア1内を導波するものは、励起光を吸収し励起状
態にある Er 元素によって導波の際に増幅され、増幅さ
れた自然放出光となる。このようにして生成された増幅
自然放出光は、終端面6に到達し終端面6上の反射防止
効果を持つ光学膜7の作用でそのほとんどが終端面6を
透過し出射する。以上の結果、中心波長 2.7μm で 2.6
5 μm から 2.77 μm の波長範囲にわたる連続スペクト
ルをもつ増幅自然放出光を出射するガラス発光素子とす
ることができる。
A semiconductor laser 3 serving as an excitation light source is provided on the terminal surface 4.
When a laser beam with a wavelength of 790 nm emitted from is coupled, the wavelength of 790 nm is generated in the core 1 of the glass fiber of the light emitting base material.
The guided mode of the excitation light of is excited. It is a luminescent medium added to the core 1 when the excitation light travels to the terminal surface 6.
The Er element absorbs the excitation light and emits spontaneous emission light with a central wavelength of 2.7. Of the spontaneous emission light, which is emitted in the direction of the terminal surface 6 and is guided in the core 1, it is amplified by the Er element in the excited state which absorbs the excitation light and is excited, and the amplified spontaneous emission. Become light. Most of the amplified spontaneous emission light thus generated reaches the end surface 6 and is transmitted through the end surface 6 and emitted by the action of the optical film 7 having an antireflection effect on the end surface 6. As a result, 2.6 at the center wavelength of 2.7 μm
It can be a glass light emitting device that emits amplified spontaneous emission light having a continuous spectrum over a wavelength range of 5 μm to 2.77 μm.

【0013】[0013]

【実施例2】図2に、発光母材ガラスの形状が円柱状で
あり、三種類の発光媒質を同時に添加したコアと添加し
ないクラッドで導波構造を形成し、励起光源を半導体レ
ーザアレイとし、光導波終端面に三種類の発光媒質から
の放出光に対する反射防止膜を塗布し、中心波長 2.3μ
m, 2.7μm, 2.9μm で発光するガラス発光素子の一つの
例を示す。ガラス発光素子の発光母材ガラスの形状は円
柱状のファイバであり、希土類元素の Tm, Er, Ho を発
光媒質として添加したフッ化物ガラスからなるコア8と
コア8より低屈折率のフッ化物ガラスからなるクラッド
2で導波構造を形成している。フッ化物ガラスを発光母
材ガラスとする場合、発光媒質 Tm, Er, Ho を中心波長
2.3μm, 2.7μm, 2.9μm で発光させるためには発光媒
質をそれぞれ波長 790nm, 790 nm, 640 nm の光で励起
すればよい。従って、励起光源の波長は 640nmと 790 n
m の2波長でよい。励起用半導体レーザアレイ9は、通
常の半導体光デバイス作製技術の範囲内で、発振波長が
640 nm と790 nmの異なる2個の半導体レーザチップを
近接して設置するか、もしくはモノリシックに集積する
事で作製できる。
[Embodiment 2] In FIG. 2, a light emitting base material glass has a cylindrical shape, a waveguide structure is formed by a core to which three kinds of light emitting media are added at the same time and a clad not added, and a semiconductor laser array is used as an excitation light source. , The optical waveguide termination surface is coated with an antireflection film against the light emitted from the three types of light-emitting media, and the center wavelength is 2.3 μm.
An example of a glass light emitting device that emits light at m, 2.7 μm, and 2.9 μm is shown. The shape of the light-emitting base material glass of the glass light-emitting element is a cylindrical fiber, and the core 8 made of fluoride glass to which Tm, Er, and Ho of rare earth elements are added as a light-emitting medium, and the fluoride glass having a lower refractive index than the core 8 A waveguide structure is formed by the clad 2 made of. When fluoride glass is used as the luminescent matrix glass, the luminescent media Tm, Er, and Ho are center wavelengths.
In order to emit light at 2.3 μm, 2.7 μm, and 2.9 μm, it is sufficient to excite the luminescent medium with light having wavelengths of 790 nm, 790 nm, and 640 nm, respectively. Therefore, the wavelengths of the excitation light source are 640 nm and 790 n.
Two wavelengths of m are sufficient. The excitation semiconductor laser array 9 has an oscillation wavelength within the range of ordinary semiconductor optical device manufacturing technology.
It can be fabricated by placing two semiconductor laser chips with different wavelengths of 640 nm and 790 nm close to each other or by monolithically integrating them.

【0014】励起光源である発振波長 640nm, 790 nmの
半導体レーザアレイ9を発光母材ガラスの終端面4に光
結合するように配置する。この実施例では直接結合させ
ているが、レンズあるいは光ファイバ等の光学部品を介
して光結合させることもできる。終端面6にはスーパー
ルミネッセント光に対しては反射防止効果のある光学膜
7を付着させ、発光母材ガラス内でのレーザ発振を抑圧
した構造としている。このような光学特性をもつ膜とし
ては、多層平行平板の多重反射理論を用いて設計するこ
とができ、通常の薄膜作製技術例えば真空蒸着法、電子
ビーム蒸着法等で作製した例えば多層膜を充てることが
できる。終端面4に励起光源である半導体レーザアレイ
9から発振される波長 640 nmと 790 nm のレーザ光を
結合させる。その結果、実施励1で記載した原理によ
り、中心波長 2.3μm, 2.7μm, 2.9μm でそれぞれ 2.2
5 μm から 2.50 μm, 2.65 μm から 2.77 μm, 2.83
μm から 2.95 μm の波長範囲にわたる連続スペクトル
をもつ3種類のガラス光を重畳した光を出射するガラス
発光素子とすることができる。
A semiconductor laser array 9 having an oscillation wavelength of 640 nm and 790 nm, which is an excitation light source, is arranged so as to be optically coupled to the terminal surface 4 of the light emitting base material glass. In this embodiment, direct coupling is performed, but optical coupling can also be performed via an optical component such as a lens or an optical fiber. An optical film 7 having an antireflection effect on superluminescent light is attached to the terminal surface 6 to suppress laser oscillation in the light emitting base material glass. A film having such optical characteristics can be designed by using the multiple reflection theory of a multilayer parallel plate, and a typical thin film forming technique such as a vacuum evaporation method or an electron beam evaporation method can be used as a film. be able to. Laser light having wavelengths of 640 nm and 790 nm emitted from the semiconductor laser array 9 serving as an excitation light source is coupled to the terminal surface 4. As a result, according to the principle described in Implementation Excitation 1, the center wavelengths of 2.3 μm, 2.7 μm, and 2.9 μm were 2.2.
5 μm to 2.50 μm, 2.65 μm to 2.77 μm, 2.83
It can be a glass light emitting device that emits light in which three types of glass light having a continuous spectrum over a wavelength range of μm to 2.95 μm are emitted.

【0015】[0015]

【実施例3】図3に、3種類の発光母材ガラスからなる
発光母材ガラス群で、それぞれの発光母材ガラスの形状
が円柱状であり、それぞれ一種類の発光媒質を添加した
コアと添加しないクラッドで導波構造を形成し、それぞ
れ励起光源を半導体レーザとし、それぞれの発光母材ガ
ラスのそれぞれの発光媒質から放出されるそれぞれの光
を合波する手段を与えられ、それぞれの光導波終端面に
それぞれの発光媒質からの放出光に対する反射防止膜を
塗布し、三種類の中心波長 2.3μm, 2.7μm, 2.9μm で
発光するガラス発光素子の一つの例を示す。ガラス発光
素子の発光母材ガラス群のそれぞれの発光母材ガラスの
形状は円柱状のファイバ 10, 11, 12 であり、それぞれ
実施例1で示したように希土類元素の Tm, Er, Ho を発
光媒質として添加したフッ化物ガラスからなるコアとコ
アより低屈折率のフッ化物ガラスからなるクラッドで導
波構造を形成している。フッ化物ガラスを発光母材ガラ
スとする場合、発光媒質 Tm, Er, Ho を中心波長2.3μ
m, 2.7μm, 2.9μm で発光させるためには発光媒質をそ
れぞれ波長 790 nm, 790 nm, 640 nm の光で励起すれば
よい。励起光源である発振波長 790 nm, 790 nm, 640 n
m の半導体レーザ 13, 14, 15 を、発光母材ガラス群を
構成する Tm, Er, Ho を含む発光母材ガラスファイバ 1
0, 11, 12 の終端面それぞれに光結合するように配置す
る。この実施例では直接結合させているが、レンズある
いは光ファイバ等の光学部品を介して光結合させること
もできることは言うまでもない。出力ファイバ 18 の終
端面には、それぞれのスーパールミネッセント光に対し
ては反射防止効果のある光学膜7を付着させ、発光母材
ガラス内でのレーザ発振を抑圧した構造としている。こ
のような光学特性をもつ膜としては、多層平行平板の多
重反射理論を用いて設計でき、通常の薄膜作製技術例え
ば真空蒸着法、電子ビーム蒸着法等で作製した例えば単
層膜か多層膜を充てることができる。これら終端面に、
それぞれ励起用半導体レーザ 13, 14, 15 から発振され
る波長 680nm, 790 nm, 640 nmのレーザ光を結合させ
る。その結果、実施例1で記載した原理により、中心波
長 2.3μm, 2.7μm, 2.9μm でそれぞれ 2.25 μm から
2.50 μm, 2.65 μm から 2.77 μm, 2.83 μm から 2.
95 μm の波長範囲にわたる連続スペクトルをもつ3種
類の増幅された自然放出光を発生しファイバカップラー
16, 17 を経て出力ファイバ 18 に集められ終端面から
出射するガラス発光素子とすることができる。
[Embodiment 3] FIG. 3 shows a group of light-emitting base glass composed of three types of light-emitting base glass, each light-emitting base glass having a cylindrical shape, and a core to which one type of light-emitting medium is added. A waveguide structure is formed by a cladding not added, each of which is a semiconductor laser as an excitation light source, is provided with a means for combining each light emitted from each light emitting medium of each light emitting base material glass, and each optical waveguide is provided. An example of a glass light-emitting device that emits light with three types of center wavelengths of 2.3 μm, 2.7 μm, and 2.9 μm by applying an antireflection film to the light emitted from each light-emitting medium on the terminal surface is shown. The shape of each light-emitting base material glass of the light-emitting base-material glass group of the glass light-emitting element is a cylindrical fiber 10, 11, 12 and emits Tm, Er, Ho of rare earth elements as shown in Example 1, respectively. A waveguide structure is formed by a core made of fluoride glass added as a medium and a clad made of fluoride glass having a lower refractive index than the core. When fluoride glass is used as the luminescent matrix glass, the luminescent media Tm, Er, and Ho are center wavelength 2.3 μm.
In order to emit light at m, 2.7 μm, and 2.9 μm, the light emitting medium may be excited by light having wavelengths of 790 nm, 790 nm, and 640 nm, respectively. Oscillation wavelength of excitation light source 790 nm, 790 nm, 640 n
m laser diodes 13, 14 and 15 are used as the luminescent matrix glass fiber containing Tm, Er, and Ho, which constitute the luminescent matrix glass group 1
It is arranged so that it is optically coupled to each of the 0, 11, and 12 end surfaces. In this embodiment, they are directly coupled, but it goes without saying that they can be optically coupled via an optical component such as a lens or an optical fiber. An optical film 7 having an antireflection effect for each superluminescent light is attached to the end surface of the output fiber 18 to suppress the laser oscillation in the light emitting base material glass. A film having such optical characteristics can be designed by using the multiple reflection theory of a multi-layer parallel plate, and a single film or a multi-layer film prepared by a usual thin film manufacturing technique such as a vacuum evaporation method or an electron beam evaporation method can be used. Can be devoted. On these end faces,
Laser lights with wavelengths of 680 nm, 790 nm, and 640 nm emitted from the pumping semiconductor lasers 13, 14, and 15 are coupled. As a result, according to the principle described in Example 1, from the central wavelengths of 2.3 μm, 2.7 μm, and 2.9 μm, respectively, from 2.25 μm,
2.50 μm, 2.65 μm to 2.77 μm, 2.83 μm to 2.
Fiber coupler for generating three types of amplified spontaneous emission light with a continuous spectrum over the wavelength range of 95 μm
A glass light emitting device can be obtained by passing through 16, 17 and being collected in the output fiber 18 and emitted from the end surface.

【0016】[0016]

【実施例4】図4に、発光母材ガラスの形状薄膜状に
し、一種類の発光媒質を添加したコアと添加しないクラ
ッドで導波構造を形成し、励起光源を半導体レーザと
し、光導波終端面に発光媒質からの放出光に対する反射
防止膜を付着し、中心波長3.5 μm で発光するガラス発
光素子の一つの例を示す。ガラス発光素子の発光母材ガ
ラスの形状は基板 19 上に積層させた多層薄膜であり、
希土類元素の Er を発光媒質として添加したフッ化物ガ
ラスからなるコア層 21 とコア層 21 より低屈折率のフ
ッ化物ガラスからなるクラッド層 20, 22で導波構造を
形成している。フッ化物ガラスを発光母材ガラスとする
場合、発光媒質 Er を中心波長 3.5μm で発光させるた
めには発光媒質をそれぞれ波長 790 nm の光で励起すれ
ばよい。励起光源である発振波長 790 nm の半導体レー
ザ3からの出力光を発光母材ガラスの終端面4に光結合
するように配置する。この実施例では直接結合させてい
るが、レンズあるいは光ファイバ等の光学部品を介して
光結合させることもできることは言うまでもない。終端
面6にはスーパールミネッセント光に対しては反射防止
効果のある光学膜7を付着させ、発光母材ガラス内での
レーザ発振を抑圧した構造としている。終端面4に励起
光源である半導体レーザ3から発振される波長 790 nm
のレーザ光を結合させる。その結果、実施例1で記載し
た原理により、中心波長 3.5μm で 3.2μm から 3.8μ
m の波長範囲にわたる連続スペクトルをもつスーパール
ミネッセント光を出射するガラス発光素子とすることが
できる。
[Embodiment 4] In FIG. 4, a light-emitting base material glass is formed into a thin film shape, a waveguide structure is formed with a core to which one kind of light-emitting medium is added and a clad not to be added, and a semiconductor laser is used as an excitation light source, and an optical waveguide is terminated. An example of a glass light-emitting element that emits light with a center wavelength of 3.5 μm by attaching an antireflection film to the light emitted from the light-emitting medium on the surface is shown below. The shape of the light-emitting base material glass of the glass light-emitting element is a multilayer thin film laminated on the substrate 19,
A waveguide structure is formed by a core layer 21 made of fluoride glass to which Er of rare earth element is added as a light emitting medium and clad layers 20, 22 made of fluoride glass having a lower refractive index than the core layer 21. When fluoride glass is used as the luminescent matrix glass, in order to cause the luminescent medium Er to emit light with a center wavelength of 3.5 μm, the luminescent medium may be excited with light having a wavelength of 790 nm. The output light from the semiconductor laser 3 having an oscillation wavelength of 790 nm, which is an excitation light source, is arranged so as to be optically coupled to the terminal surface 4 of the light emitting base material glass. In this embodiment, they are directly coupled, but it goes without saying that they can be optically coupled via an optical component such as a lens or an optical fiber. An optical film 7 having an antireflection effect on superluminescent light is attached to the terminal surface 6 to suppress laser oscillation in the light emitting base material glass. A wavelength of 790 nm emitted from the semiconductor laser 3 which is the excitation light source on the termination surface 4.
Combine the laser light. As a result, according to the principle described in the first embodiment, the center wavelength is 3.5 μm and the center wavelength is 3.2 μm to 3.8 μm.
It can be a glass light emitting element that emits superluminescent light having a continuous spectrum over a wavelength range of m 2.

【0017】[0017]

【実施例5】図5に、励起光源を半導体レーザとし、薄
膜状のガラス多層膜をモノリシックに集積した励起光源
集積ガラス発光素子の一つの例を示す。ガラス発光素子
の形状は、半導体レーザの一部をエッチングで除去した
半導体基板 19 上に積層させた多層膜であり、希土類元
素の Er を発光媒質として添加したフッ化物ガラスから
なるコア層 21 とコア層 21 より低屈折率のフッ化物ガ
ラスからなるクラッド層 20, 22 で導波構造を形成して
いる。フッ化物ガラスを発光母材ガラスとする場合、発
光媒質 Er を中心波長 3.5μm で発光させるためには発
光媒質をそれぞれ波長 790 nm の光で励起すればよい。
励起光源部は、発振波長 790 nm の半導体レーザであ
り、その発光層 25 をガラス発光部の発光媒質を添加し
たコア層 21 に直接結合させている。このため、結合効
率が向上するとともに、モノリシック集積であるため結
合安定化が達成されている。ガラス発光部の終端面6に
はスーパールミネッセント光に対しては反射防止効果の
ある光学膜7を付着させ、発光母材ガラス内でのレーザ
発振を抑圧した構造としている。励起光源部の終端面 2
7 には励起光に対する高反射膜 26を付着させ励起光を
ガラス発光部に高効率で供給させている。励起光源部
は、電極 23, 24 を介して電気エネルギーを供給するこ
とにより駆動することができる。ガラス発光部の終端面
4に励起光源部から発振される波長 790 nm のレーザ光
を結合させる。その結果、実施例1で記載した原理によ
り、中心波長 3.5μm で3.2μm から 3.8μm の波長範
囲にわたる連続スペクトルをもつスーパールミネッセン
ト光を出射する励起光源集積ガラス発光素子とすること
ができる。
[Embodiment 5] FIG. 5 shows an example of an excitation light source integrated glass light emitting device in which a semiconductor laser is used as an excitation light source and a thin glass multilayer film is monolithically integrated. The shape of the glass light emitting element is a multilayer film laminated on a semiconductor substrate 19 in which a part of a semiconductor laser is removed by etching, and a core layer 21 and a core made of fluoride glass to which Er of a rare earth element is added as a light emitting medium. The waveguide structure is formed by the cladding layers 20, 22 made of fluoride glass having a lower refractive index than the layer 21. When fluoride glass is used as the luminescent matrix glass, in order to cause the luminescent medium Er to emit light with a center wavelength of 3.5 μm, the luminescent medium may be excited with light having a wavelength of 790 nm.
The excitation light source section is a semiconductor laser with an oscillation wavelength of 790 nm, and its light emitting layer 25 is directly bonded to the core layer 21 to which the light emitting medium of the glass light emitting section is added. Therefore, the coupling efficiency is improved, and the stabilization of the coupling is achieved due to the monolithic integration. An optical film 7 having an antireflection effect on superluminescent light is attached to the end surface 6 of the glass light emitting portion to suppress the laser oscillation in the light emitting base material glass. Excitation light source end face 2
A highly reflective film 26 for excitation light is attached to 7 to supply the excitation light to the glass light emitting portion with high efficiency. The excitation light source unit can be driven by supplying electric energy via the electrodes 23 and 24. Laser light with a wavelength of 790 nm emitted from the excitation light source is coupled to the end surface 4 of the glass light emitting portion. As a result, according to the principle described in Example 1, it is possible to obtain an excitation light source integrated glass light emitting device that emits superluminescent light having a continuous spectrum with a center wavelength of 3.5 μm over a wavelength range of 3.2 μm to 3.8 μm.

【0018】上記実施例1から3では、発光媒質 Tm, E
r, Ho を励起する励起用半導体レーザの波長をそれぞれ
790 nm, 790 nm, 640 nm として説明したが発光媒質で
ある Tm, Er, Ho の中心波長 2.3μm, 2.7μm, 2.9μm
の発光を励起するものであればこれに限らない。
In Examples 1 to 3 above, the luminescent medium Tm, E
The wavelengths of the pumping semiconductor lasers that pump r and Ho are respectively
Although described as 790 nm, 790 nm, and 640 nm, the center wavelengths of Tm, Er, and Ho, which are light emitting media, are 2.3 μm, 2.7 μm, and 2.9 μm.
It is not limited to this as long as it excites the light emission of.

【0019】発光母材ガラスとしてフッ化物ガラスを例
にとって説明したが、フッ化物ガラスに限ることなく発
効媒質の放出光に対して透過率の高い物質で導波構造を
設けられる物質、例えば酸化物ガラス(石英ガラス・ケ
イ酸ガラス・リン酸ガラス・フツリン酸ガラス)・ハラ
イドガラス・カルコゲナイドガラス等のガラス類や、酸
化物結晶・ハライド結晶等の結晶類であればよい。
Fluoride glass has been described as an example of the light emitting base material glass, but it is not limited to fluoride glass, but a substance having a high transmittance for the emitted light of the effective medium and having a waveguide structure, for example, an oxide. Any glass such as glass (quartz glass, silicate glass, phosphate glass, fluorophosphate glass), halide glass, chalcogenide glass, and crystals such as oxide crystals and halide crystals may be used.

【0020】また、ガラス発光素子の発光母材ガラスが
含む発光媒質として希土類元素である Tm, Er, Ho を例
に取って説明したが、 Tm, Er, Ho に限ることなくこれ
ら以外の希土類元素である Pr, Nd, Tb, Dy, Yb, Sm,
それのみならず希土類元素以外の元素であって発光特性
を有する例えば Ti, V, Cr, Co, Ni, Ca, Mg, U 等の元
素であれば発光中心波長と発光波長範囲及び励起用半導
体レーザの励起波長を異とするのみで本発明の目的にか
なったガラス発光素子を実現することができる。さら
に、発光媒質の条件としては発光特性を有する物質であ
れば良いのであり、元素物質に限らない。例えば、Al
1-v-w Inv Gaw P1-x-yAsx Sby (0≦v,w,x,y ≦1,v+
w ≦1,x+y ≦1), あるいは Pb1-qSnq Se1-r Te
r (0≦q,r ≦1)で表される化合物半導体物質も発光
媒質の条件を満足するものである。
Although the rare earth element Tm, Er, Ho, which is a rare earth element, has been described as an example of the light emitting medium contained in the light emitting base material glass of the glass light emitting device, the rare earth element other than these is not limited to Tm, Er, Ho. Pr, Nd, Tb, Dy, Yb, Sm,
Not only that, but elements other than rare earth elements, such as Ti, V, Cr, Co, Ni, Ca, Mg, and U, which have emission characteristics, have an emission center wavelength, an emission wavelength range, and a semiconductor laser for excitation. It is possible to realize a glass light-emitting device that meets the object of the present invention only by changing the excitation wavelength of the. Furthermore, the condition of the light emitting medium is not limited to the elemental substance, as long as the substance has a light emitting property. For example, Al
1-vw In v Ga w P 1-xy As x Sb y (0 ≦ v, w, x, y ≦ 1, v +
w ≤ 1, x + y ≤ 1), or Pb 1-q Sn q Se 1-r Te
The compound semiconductor material represented by r (0≤q, r≤1) also satisfies the condition of the light emitting medium.

【0021】ガラス発光素子の発光母材ガラスの形状を
円柱状に限って記載したが、円柱形状は発光母材ガラス
に与える導波構造の一つの例でありこれに限ることはな
い。
Although the shape of the light-emitting base material glass of the glass light-emitting element is limited to the cylindrical shape, the cylindrical shape is an example of the waveguide structure given to the light-emitting base material glass, and the shape is not limited to this.

【0022】[0022]

【発明の効果】本発明によるガラス発光素子は、高輝度
でかつ高集光性で発光波長領域の広い光を発生するとい
った特有の効果を有し、分光機器・光計測機器・光情報
処理機器・光通信機等の種々の光応用機器の光源として
利用されうる。請求項1に記載したガラス発光素子は、
レーザ発振を抑圧した手段を付加していることにより、
高い変換効率で増幅された自然放出光を得ることができ
る。本発明の請求項2に記載したガラス発光素子は、発
光媒質を複数としていることにより、より広い発光波長
領域の光を得ることができる。請求項3に記載したガラ
ス発光素子は、励起光源と発光媒質の選択がより柔軟な
ため発光特性の制御が可能となる。請求項4に記載した
発光母材ガラスの形状を円柱状にし発光媒質を添加した
コアと添加しないクラッドで導波構造を形成したガラス
発光素子は、光ファイバとの結合性に優れ結合に伴う損
失を最小限にすることができる。さらに、この場合発光
素子自体が可とう性のあるファイバであるので、そのま
まであるいは光ファイバと結合することで目的とする任
意の地点にファイバ出射端を移動させることができ、か
つまたその地点に於てきわめて狭あいなスペースであっ
てもファイバを挿入できる箇所さえあれば挿入すること
により任意の地点任意のスペースにガラス光を出射する
ことができるという効果を有する。請求項5に記載した
発光母材ガラスの形状を薄膜状にし発光媒質を添加した
コアと添加しないクラッドで導波構造を形成したもの
は、発光母材ガラスの形状を円柱状にしたものに比べ使
用できるガラスの材質に対する制限を緩和できる製造方
法を利用できるため、現在円柱状にできるガラス材質の
赤外透過波長はせいぜい 4 μm であるのに対し、薄膜
状にできるガラス材質はこの数値を上回ることが見込ま
れる。その結果、より長波長の発光素子を提供すること
ができるという効果を有する。請求項6に記載した励起
光源集積ガラス発光素子は、励起光の結合効率が高いか
めガラス発光素子の発光強度を高くすることができる。
また、励起光源をモノリシック集積しているため、励起
光源とガラス発光部との結合が安定で外部からの機械的
振動に対して強く、経時変化も無視できるという特有の
効果を有する。請求項7に記載した発光母材ガラスを赤
外より長波長域を透過するガラスとし発光媒質を希土類
元素とした赤外域で発光するガラス発光素子は、従来の
熱放射光源の持っていた欠点である低輝度・低集光性を
解決し、高輝度・高集光性という効果を有する。請求項
8に記載した発光媒質をたとえば Ti, V, Cr, Co, Ni
といった遷移金属元素としたガラス発光素子は、希土類
元素より波長範囲の広い発光となることからより広いス
ペクトル幅を持つ連続光源になるという効果を有する。
Industrial Applicability The glass light emitting device according to the present invention has a unique effect that it has a high brightness and a high light condensing property and generates light with a wide emission wavelength range. It can be used as a light source for various optical application devices such as communication devices. The glass light emitting device according to claim 1,
By adding a means to suppress laser oscillation,
It is possible to obtain amplified spontaneous emission light with high conversion efficiency. In the glass light emitting device according to the second aspect of the present invention, by using a plurality of light emitting media, it is possible to obtain light in a wider emission wavelength region. In the glass light emitting device according to the third aspect, since the selection of the excitation light source and the light emitting medium is more flexible, the emission characteristics can be controlled. The glass light-emitting device according to claim 4, wherein the light-emitting base material glass has a cylindrical shape and a waveguide structure is formed with a core to which a light-emitting medium is added and a clad not to be added, has excellent coupling property with an optical fiber and loss due to coupling. Can be minimized. Further, in this case, since the light emitting element itself is a flexible fiber, the fiber emitting end can be moved to an intended point by itself or by coupling with an optical fiber, and at that point as well. Even if the space is extremely narrow, there is an effect that the glass light can be emitted to an arbitrary point and an arbitrary space by inserting the fiber as long as it can be inserted. The light-emitting base material glass according to claim 5 in which the waveguide structure is formed by forming the light-emitting base material glass into a thin film shape and a core into which a light-emitting medium is added and a clad not added, is Due to the availability of manufacturing methods that can relax the restrictions on the glass materials that can be used, the infrared transmission wavelength of glass materials that can be made into a cylinder at present is at most 4 μm, whereas the glass material that can be made into a thin film exceeds this value. It is expected. As a result, there is an effect that a light emitting element having a longer wavelength can be provided. In the excitation light source integrated glass light emitting element according to the sixth aspect, it is possible to increase the emission intensity of the frosted glass light emitting element having a high coupling efficiency of excitation light.
Further, since the excitation light source is monolithically integrated, it has a unique effect that the coupling between the excitation light source and the glass light emitting portion is stable, it is strong against mechanical vibration from the outside, and its change over time can be ignored. The glass light-emitting device that emits light in the infrared region, in which the light-emitting base glass described in claim 7 is a glass that transmits a wavelength range longer than infrared and the light-emitting medium is a rare earth element, has the drawback that the conventional heat radiation light source has. It solves a certain low brightness and low light condensing property, and has the effect of high brightness and high light condensing property. The light emitting medium according to claim 8 is formed by using, for example, Ti, V, Cr, Co, Ni.
Such a glass light emitting device using a transition metal element has an effect of becoming a continuous light source having a wider spectrum width because it emits light in a wider wavelength range than a rare earth element.

【図面の簡単な説明】[Brief description of drawings]

【図1】1種類の発光媒質を含む1本の発光母材ガラス
ファイバよりなるガラス発光素子の1実施例を示す縦断
面図である。
FIG. 1 is a vertical cross-sectional view showing one example of a glass light emitting device including one light emitting base material glass fiber containing one kind of light emitting medium.

【図2】3種類の発光媒質を含む1本の発光母材ガラス
ファイバよりなるガラス発光素子の1実施例を示す縦断
面図である。
FIG. 2 is a vertical cross-sectional view showing one example of a glass light emitting device including one light emitting base material glass fiber containing three types of light emitting media.

【図3】1種類の発光媒質を含む1本の発光母材ガラス
ファイバを3本集合した発光母材ガラスファイバ群より
なるガラス発光素子の1実施例を示す略図である。
FIG. 3 is a schematic view showing an example of a glass light emitting device including a light emitting base material glass fiber group in which three single light emitting base material glass fibers containing one kind of light emitting medium are assembled.

【図4】薄膜状ガラス発光素子の1実施例を示す断面図
である。
FIG. 4 is a cross-sectional view showing one example of a thin film glass light emitting device.

【図5】励起光源を一体化した薄膜状ガラス発光素子の
1実施例を示す断面図である。
FIG. 5 is a cross-sectional view showing one example of a thin-film glass light-emitting element integrated with an excitation light source.

【符号の説明】[Explanation of symbols]

1 希土類元素の Er を発光媒質として添加したフッ化
物ガラスからなるコア 2 コアより低屈折率のフッ化物ガラスからなるクラッ
ド 3 励起光源である発振波長 790 nm の半導体レーザ 4,6 発光母材ガラスの終端面 5 半導体レーザからの励起光 7 スーパールミネッセント光に対して反射防止効果を
持つ光学膜 8 希土類元素の Tm, Er, Ho を発光媒質として添加し
たフッ化物ガラスからなるコア 9 640nm と 790 nm の2波長で発振する励起用半導体
レーザアレイ 10 希土類元素の Tm を発光媒質として添加したフッ化
物ガラスからなるコア 11 希土類元素の Er を発光媒質として添加したフッ化
物ガラスからなるコア 12 希土類元素の Ho を発光媒質として添加したフッ化
物ガラスからなるコア 13 励起光源である発振波長 790 nm の半導体レーザ 14 励起光源である発振波長 790 nm の半導体レーザ 15 励起光源である発振波長 640 nm の半導体レーザ 16,17 ファイバカップラー 18 出力ファイバ 19 基板 20,22 クラッド層 21 コア層 23,24 電極 25 励起光源部発光層 26 励起光に対する高反射膜 27 励起光源部終端面
1 Core made of fluoride glass to which Er of rare earth element is added as a light emitting medium 2 Cladding made of fluoride glass with a lower refractive index than the core 3 Semiconductor laser with an oscillation wavelength of 790 nm that is an excitation light source 4,6 Termination surface 5 Excitation light from semiconductor laser 7 Optical film having antireflection effect against superluminescent light 8 Core made of fluoride glass to which Tm, Er, Ho of rare earth elements are added as a light emitting medium 9 640nm and 790 Laser diode array for excitation that oscillates at two wavelengths of nm 10 Core made of fluoride glass with Tm of rare earth element added as emission medium 11 Core of fluoride glass with addition of Er of rare earth element as emission medium 12 A core 13 made of fluoride glass doped with Ho as a light emitting medium. A semiconductor laser with an oscillation wavelength of 790 nm that is a pumping light source. Semiconductor laser with an oscillation wavelength of 790 nm 15 Semiconductor laser with an oscillation wavelength of 640 nm that is the excitation light source 16,17 Fiber coupler 18 Output fiber 19 Substrate 20,22 Cladding layer 21 Core layer 23,24 Electrode 25 Excitation light source layer Emission layer 26 Excitation light Highly reflective film against

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新堀 理 東京都新宿区西新宿二丁目3番2号 国際 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Shinbori 2-32 Nishishinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光による励起で光を放出する発光媒質を
一種類含み光を導波する発光母材ガラスと、該発光母材
ガラスでの該発光媒質の放出光によるレーザ発振を抑圧
する手段と、該発光母材ガラスの光導波終端面の一つに
光結合し該発光媒質を励起する光を発する励起光源とを
備えたガラス発光素子。
1. A light-emitting base material glass that guides light by including one type of light-emitting medium that emits light when excited by light, and means for suppressing laser oscillation due to light emitted from the light-emitting medium in the light-emitting base material glass. And a pumping light source that emits light that is optically coupled to one of the optical waveguide termination surfaces of the light-emitting base material glass to excite the light-emitting medium.
【請求項2】 光による励起で光を放出する発光媒質を
少なくとも二種類含み光を導波する発光母材ガラスと、
該発光母材ガラスでの該発光媒質の放出光によるレーザ
発振を抑圧する手段と、該発光母材ガラスの光導波終端
面の一つに光結合し該発光媒質を励起する光を発する励
起光源とを備えたガラス発光素子。
2. A light emitting base material glass which contains at least two kinds of light emitting mediums which emit light when excited by light and which guides light.
Means for suppressing laser oscillation in the light emitting base material glass due to light emitted from the light emitting medium, and an excitation light source for emitting light for exciting the light emitting medium by optically coupling to one of the optical waveguide termination surfaces of the light emitting base material glass. And a glass light emitting device.
【請求項3】 光による励起で光を放出する発光媒質を
少なくとも一種類含み光を導波する発光母材ガラスの少
なくとも2種類よりなる発光母材ガラス群と、該発光母
材ガラスのそれぞれの発光媒質から放出されるそれぞれ
の光を合波する手段と、該発光母材ガラス群からのそれ
ぞれの該発光媒質からの放出光によるレーザ発振を抑圧
する手段と、該発光母材ガラス群からのそれぞれの光導
波終端面の一つに光結合し該発光媒質それぞれを励起す
る光を発する励起光源とを備えたガラス発光素子。
3. A luminescent matrix glass group comprising at least two luminescent matrix glasses that include at least one luminescent medium that emits light when excited by light and that guides light, and each of the luminescent matrix glasses. Means for combining the respective lights emitted from the light emitting medium, means for suppressing laser oscillation due to the light emitted from the respective light emitting mediums from the light emitting base material glass group, and means for suppressing the laser oscillation from the light emitting base material glass group A glass light emitting device, comprising: an excitation light source that optically couples to one of the optical waveguide termination surfaces and emits light that excites each of the light emitting media.
【請求項4】 該発光母材ガラスの形状が円柱状であ
り、該発光媒質を添加したコアと添加しないクラッドで
導波手段を形成したことを特徴とする請求項1または2
または3に記載のガラス発光素子。
4. The light-emitting base material glass has a cylindrical shape, and a waveguiding means is formed by a core containing the light-emitting medium and a cladding not containing the light-emitting medium.
Alternatively, the glass light emitting device according to the item 3.
【請求項5】 該発光母材ガラスの形状を薄膜状にし、
該発光媒質を添加したコアと添加しないクラッドで導波
手段としたことを特徴とする請求項1または2または3
に記載のガラス発光素子。
5. The light emitting base material glass is formed into a thin film,
4. A waveguide including a core added with the light emitting medium and a clad not added with the light emitting medium as a waveguide means.
The glass light-emitting device according to.
【請求項6】 前記導波手段が、前記励起光源である半
導体発光部材と一体化されていることを特徴とする請求
項1,2または3に記載のガラス発光素子。
6. The glass light emitting device according to claim 1, wherein the wave guiding means is integrated with a semiconductor light emitting member which is the excitation light source.
【請求項7】 該発光母材ガラスを赤外より長波長域を
透過するガラスとし、該発光媒質を希土類元素としたこ
とを特徴とする請求項1または2または3に記載のガラ
ス発光素子。
7. The glass light-emitting element according to claim 1, wherein the light-emitting base glass is a glass that transmits a wavelength range longer than infrared and the light-emitting medium is a rare earth element.
【請求項8】 該発光母材ガラスを赤外より長波長域を
透過するガラスとし、該発光媒質を遷移金属元素とした
ことを特徴とする請求項1または2または3に記載のガ
ラス発光素子。
8. The glass light-emitting device according to claim 1, wherein the light-emitting base glass is glass that transmits a wavelength range longer than infrared and the light-emitting medium is a transition metal element. .
JP2077193A 1993-01-14 1993-01-14 Glass light emitting device Expired - Fee Related JP3091342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077193A JP3091342B2 (en) 1993-01-14 1993-01-14 Glass light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077193A JP3091342B2 (en) 1993-01-14 1993-01-14 Glass light emitting device

Publications (2)

Publication Number Publication Date
JPH06216408A true JPH06216408A (en) 1994-08-05
JP3091342B2 JP3091342B2 (en) 2000-09-25

Family

ID=12036435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077193A Expired - Fee Related JP3091342B2 (en) 1993-01-14 1993-01-14 Glass light emitting device

Country Status (1)

Country Link
JP (1) JP3091342B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665004A3 (en) * 1994-01-29 1996-08-21 Lucky Ltd An antimicrobial cosmetic pigment, its production process, and a cosmetic containing it.
JP2007232722A (en) * 2006-02-27 2007-09-13 Honeywell Internatl Inc Navigation grade gyroscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428972A (en) * 1987-07-24 1989-01-31 Nec Corp Manufacture of edge light-emitting diode
JPH02222186A (en) * 1989-02-22 1990-09-04 Hitachi Cable Ltd Glass waveguide laser array
JPH0342880A (en) * 1989-05-13 1991-02-25 Forschungszentrum Juelich Gmbh Photoelectric element
JPH04253035A (en) * 1991-01-29 1992-09-08 Fujikura Ltd Functional optical fiber
JPH04263229A (en) * 1991-02-19 1992-09-18 Sumitomo Electric Ind Ltd Glass for optical amplification, optical fiber, optical waveguide and optical amplifier
JPH0521875A (en) * 1991-07-16 1993-01-29 Toshiba Corp Optical amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428972A (en) * 1987-07-24 1989-01-31 Nec Corp Manufacture of edge light-emitting diode
JPH02222186A (en) * 1989-02-22 1990-09-04 Hitachi Cable Ltd Glass waveguide laser array
JPH0342880A (en) * 1989-05-13 1991-02-25 Forschungszentrum Juelich Gmbh Photoelectric element
JPH04253035A (en) * 1991-01-29 1992-09-08 Fujikura Ltd Functional optical fiber
JPH04263229A (en) * 1991-02-19 1992-09-18 Sumitomo Electric Ind Ltd Glass for optical amplification, optical fiber, optical waveguide and optical amplifier
JPH0521875A (en) * 1991-07-16 1993-01-29 Toshiba Corp Optical amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665004A3 (en) * 1994-01-29 1996-08-21 Lucky Ltd An antimicrobial cosmetic pigment, its production process, and a cosmetic containing it.
JP2007232722A (en) * 2006-02-27 2007-09-13 Honeywell Internatl Inc Navigation grade gyroscope

Also Published As

Publication number Publication date
JP3091342B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
TWI446012B (en) Broadband laser lamp with reduced speckle
US7826702B2 (en) Optically coupling into highly uniform waveguides
JP4299826B2 (en) White light emitting device using fluorescent fiber
US5436919A (en) Multiwavelength upconversion waveguide laser
JP3434726B2 (en) Light emitting device
JPH09283847A (en) Semiconductor laser module
US6438304B1 (en) Optical waveguide with dissimilar core and cladding materials, and light emitting device employing the same
US11868023B2 (en) Light-emitting device and optical fiber
CA2127614A1 (en) Absorption resonant rare earth-doped micro-cavities
WO2006109730A1 (en) Laser light source and optical device
JP2011508413A (en) VECSEL pumping type semiconductor laser
KR20070056918A (en) Multiple wavelength laser light source using fluorescent fiber
JP2007511100A (en) Clad pumped quasi-three-level fiber laser / amplifier
KR20080078880A (en) Optically pumped waveguide laser with a tapered waveguide section
US20040233512A1 (en) Light wavelength converter and method of manufacturing the same
US20050169339A1 (en) Monolithic wafer-scale waveguide-laser
US20110134953A1 (en) Waveguide laser
JP3091342B2 (en) Glass light emitting device
US10808893B2 (en) Optoelectronic semiconductor light source and Bragg mirror
JP2007258466A (en) Illuminating device, and light-emitting device
WO2023226610A1 (en) Coherent array laser structure and preparation method
WO2011065148A1 (en) Laser beam source apparatus
JPH11121836A (en) Laser device
US6014389A (en) Fiber-based continuous wave blue laser source
EP1487071A2 (en) Optical fiber laser and laser light emitting method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees