[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0620931A - Method for electron beam exposure - Google Patents

Method for electron beam exposure

Info

Publication number
JPH0620931A
JPH0620931A JP17652092A JP17652092A JPH0620931A JP H0620931 A JPH0620931 A JP H0620931A JP 17652092 A JP17652092 A JP 17652092A JP 17652092 A JP17652092 A JP 17652092A JP H0620931 A JPH0620931 A JP H0620931A
Authority
JP
Japan
Prior art keywords
oblique
electron beam
rectangles
shots
inscribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17652092A
Other languages
Japanese (ja)
Inventor
Takashi Matsuzaka
尚 松坂
Hiroya Ota
洋也 太田
Katsuhiro Kawasaki
勝浩 河崎
Toshihiko Kono
利彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17652092A priority Critical patent/JPH0620931A/en
Publication of JPH0620931A publication Critical patent/JPH0620931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the number of shots required for lithography and to prevent a.decrease in a throughput by multiple exposing rectangles having different aspect ratios to be inscribed with an oblique part of an oblique figure, and resolving the oblique part by utilizing bulges of a pattern generated by a proximity effect. CONSTITUTION:When wide figures 2-7 are formed in order to reduce the number of shots while suppressing deterioration of resolution of an oblique part of an oblique figure, exposure amounts are always increased as compared with stepwise parts on superposed parts of the two figures on shaded parts. Then, bulges are generated in the stepwise figures by an influence from the part. This is caused by a proximity effect of an electron beam. If a generally oblique figure is resolved by utilizing a deformation by the proximity effect, the number of shots is decreased. Thus, even when the oblique figure is formed, the number of the shots can be reduced, and a decrease in a throughput can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子ビーム描画装置で斜
め図形を描画する場合にも、ショット数を低減させスル
ープットの低下を防止できる露光方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method capable of reducing the number of shots and preventing a decrease in throughput even when an oblique figure is drawn by an electron beam drawing apparatus.

【0002】[0002]

【従来の技術】従来、可変成形方式の電子ビーム描画装
置を用いて斜め図形を描画する場合には、斜め部分を細
い短冊状の矩形に分解して描画していた。これは、矩形
分解の結果生じる階段状の段差がレジストの解像性以下
の大きさであれば、滑らかとなり描画結果には反映しな
いことを利用するものである。しかし、斜め図形描画に
は多数の細い矩形ビームを必要とするためショット数が
増大し、これがスループットを低下させる原因となって
いた。
2. Description of the Related Art Conventionally, when an oblique figure is drawn by using a variable shaping type electron beam drawing apparatus, the oblique part is divided into thin strip-shaped rectangles and drawn. This utilizes the fact that if the step-like step formed as a result of the rectangular decomposition is smaller than the resolution of the resist, it becomes smooth and is not reflected in the drawing result. However, since a large number of thin rectangular beams are required for drawing an oblique figure, the number of shots increases, which causes a decrease in throughput.

【0003】[0003]

【発明が解決しようとする課題】本発明は、図1(a)
に示したように、斜め図形を描画する場合にも多数の短
冊状のビームを必要とせず、ショット数の増大を防止し
て、スループットの低下を防止する電子ビーム露光方法
を提供することにある。
The present invention is based on FIG. 1 (a).
As shown in FIG. 3, there is a need to provide an electron beam exposure method that does not require a large number of strip-shaped beams even when drawing an oblique figure, prevents an increase in the number of shots, and prevents a decrease in throughput. .

【0004】[0004]

【課題を解決するための手段】斜め図形を短冊状に分割
する代わりに、斜め部に内接する縦横比の異なる矩形で
多重露光することにより、近接効果によって生じるパタ
ンのふくらみを利用し斜め部分を解像させ、描画に要す
るショット数を低減させスループットの低下を防止す
る。
[Means for Solving the Problems] Instead of dividing an oblique figure into strips, multiple exposure is performed using rectangles with different aspect ratios that are inscribed in the oblique portions, and the swelling of the pattern generated by the proximity effect is used to remove the oblique portions. The resolution is reduced, the number of shots required for writing is reduced, and the decrease in throughput is prevented.

【0005】[0005]

【作用】電子ビーム描画装置では、試料に照射した電子
ビームがレジストや基板の中で散乱するため描画図形が
所望の形状から変化する近接効果の存在が知られてい
る。これは、電子ビームの基板やレジスト内での散乱の
ため、所望の描画図形の外側にも電子ビームのエネルギ
が蓄積されることが原因で、特にこの領域に同じ露光量
で更に図形を描画すると露光量過多となり、図形にふく
らみを生じる。例えば、図1(b)に示した階段状の図
形を描画する際に、図中の斜線部の露光量を意図的に高
めれば近接効果により段差部になまりを生じさせること
ができ、しかも、この露光量を制御することにより、な
まり具合を制御することができる。このため、図1
(a)に示した短冊ビームによる描画に代用することが
できる。
In the electron beam writing apparatus, it is known that the electron beam irradiated on the sample is scattered in the resist and the substrate, so that a drawing effect changes from a desired shape to the proximity effect. This is because the electron beam is scattered inside the substrate and the resist, so that the energy of the electron beam is accumulated outside the desired drawing figure. Especially when drawing a figure with the same exposure amount in this area. Excessive exposure causes bulging of the figure. For example, when drawing the staircase-shaped figure shown in FIG. 1B, if the exposure amount of the shaded portion in the drawing is intentionally increased, it is possible to cause the step portion to be rounded due to the proximity effect. By controlling this exposure amount, the degree of rounding can be controlled. For this reason,
It is possible to substitute the drawing with the strip beam shown in (a).

【0006】[0006]

【実施例】図2は、本発明の一実施例を示す露光図形で
ある。斜め図形は電子ビーム露光装置により基本的な矩
形部分(図示せず)と残りの三角形の部分1に分割され
る。この時、斜め部の解像性の劣化を最小限に抑制しつ
つ、ショット数を低減させるため、従来法で用いる短冊
状ビーム2′〜12′よりも幅の大きな図形2〜7で描
画するときに、図2(b)の斜線部は必ず二つの図形の
重なり部分では露光量が階段状の部分より大きくなって
いるので、この部分からの電子ビームの散乱の影響で階
段状の図形に図1(b)に示したようなふくらみを生じ
る。これは、電子ビームの近接効果によるものであり、
この近接効果による図形の変形を利用して、概略斜め図
形部を解像すればショット数を低減することが可能とな
り、スループットの低下を防止できる。
FIG. 2 is an exposure pattern showing an embodiment of the present invention. The oblique pattern is divided into a basic rectangular portion (not shown) and the remaining triangular portion 1 by the electron beam exposure apparatus. At this time, in order to reduce the number of shots while suppressing the deterioration of the resolution of the oblique portion to the minimum, the figures 2 to 7 having a width larger than the strip beams 2'to 12 'used in the conventional method are drawn. In the shaded area of FIG. 2 (b), the exposure amount is always larger than that of the stepped portion in the overlapping portion of the two figures, so the stepwise figure is changed due to the influence of the electron beam scattering from this portion. The bulge as shown in FIG. 1B is generated. This is due to the proximity effect of the electron beam,
By utilizing the deformation of the figure due to the proximity effect to resolve the roughly oblique figure portion, the number of shots can be reduced, and the decrease in throughput can be prevented.

【0007】ここで、矩形の分割方法は、横方向に最大
で短冊12′と等価な図形2を求め、次に予め定めてお
いた階段幅で残りの三角形に内接する最大横幅を持った
矩形3を決める。更に、同様の手続で矩形4を定める。
Here, in the method of dividing a rectangle, the figure 2 which is maximum in the horizontal direction and is equivalent to the strip 12 'is obtained, and then the rectangle having the maximum horizontal width inscribed in the remaining triangles with the predetermined stair width. Decide on 3. Further, the rectangle 4 is determined by the same procedure.

【0008】今度は縦方向に上記の手続に準じて矩形
5,6,7を定めていけば、図2(b)に示したような重
複を許した横長と縦長の矩形群2〜7が得られる。ここ
で、これらを露光すると、両者が重畳する図中の斜線部
の露光量がそれ以外の部分の2倍となるので、近接効果
により階段状図形を所望の斜め図形に近付けることがで
きる。また、それぞれの矩形の露光量を基準値に対して
変化させることで仕上がり形状を制御することができ
る。
Next, if rectangles 5, 6 and 7 are defined in the vertical direction according to the above procedure, the horizontally and vertically elongated rectangular groups 2 to 7 as shown in FIG. 2B are allowed. can get. Here, when these are exposed, the exposure amount of the shaded portion in the figure where they are overlapped is twice as large as that of the other portion, so that the step-like figure can be brought closer to the desired diagonal figure by the proximity effect. Further, the finished shape can be controlled by changing the exposure amount of each rectangle with respect to the reference value.

【0009】図2の実施例で、ショット数の低減効果を
見積もると、短冊状ビームの2倍の段差を持つように横
方向と縦方向に長さの異なる矩形ビームで重複を許して
分解した例では、ショット数は従来の短冊状ビームで分
解した時に比べて6/11とおよそ半分に低減できるこ
とがわかる。この低減率は短冊幅に対する階段状図形の
段差幅で決まり、段差幅が大きいほど低減効果は大きい
が、斜め部の解像性が劣化するので許容する寸法精度に
よって最適低減率が決まる。図2(c)は矩形に重なり
が3重以上にならないような矩形群に分割した例であ
る。
In the embodiment shown in FIG. 2, the effect of reducing the number of shots is estimated. In this embodiment, rectangular beams having different lengths in the horizontal direction and the vertical direction so as to have a level difference twice that of the strip-shaped beam are disassembled and allowed to overlap. In the example, it is understood that the number of shots can be reduced to about 6/11, which is about half that of the case where the conventional strip-shaped beam is used for decomposition. This reduction rate is determined by the step width of the stepped figure with respect to the width of the strip. The larger the step width is, the greater the reduction effect is, but the resolution is degraded in the oblique portion, and therefore the optimum reduction rate is determined by the allowable dimensional accuracy. FIG. 2C shows an example in which the rectangles are divided so that the overlapping of the rectangles does not become three or more.

【0010】図3は、本発明の他の実施例を示す露光図
形であり、特に、スルーホールのような孤立した多角形
31を描画する場合である。図3(a)は、従来法では
矩形32′〜36′の5ショットを必要とする例を示し
ている。図3(b)に示したように、多角形に内接する
最大の矩形32,33を求めて、その矩形群32,33
を描画データとして生成し、互いに重複を許して描画す
る。重複する矩形32,33の露光量は、斜め部の形状
精度によって予め決められる。この時のショット数の低
減率は2/5となり、スループットの低下を防止でき
る。図3(c)は図3(b)と同様に矩形34,35を求
めた後、矩形ビーム36を補助的に描画して形状精度を
向上させる場合を示している。この場合のショット数低
減率は3/5となっている。
FIG. 3 is an exposure figure showing another embodiment of the present invention, and in particular, the case of drawing an isolated polygon 31 such as a through hole. FIG. 3A shows an example in which five shots of rectangles 32 'to 36' are required in the conventional method. As shown in FIG. 3B, the maximum rectangles 32 and 33 inscribed in the polygon are obtained, and the rectangle groups 32 and 33 are obtained.
Is generated as drawing data, and drawing is performed with mutual duplication allowed. The exposure amounts of the overlapping rectangles 32 and 33 are determined in advance according to the shape accuracy of the diagonal portion. The reduction rate of the number of shots at this time is 2/5, and it is possible to prevent a decrease in throughput. Similar to FIG. 3B, FIG. 3C shows a case where the rectangles 34 and 35 are obtained and then the rectangular beam 36 is supplementarily drawn to improve the shape accuracy. The shot number reduction rate in this case is 3/5.

【0011】図4は、本発明のさらに他の実施例であ
る。斜め部の形状精度を向上させるため、矩形ビーム4
2,43の描画で生じた描画すべき図形31の未露光部
に、内接する最大の矩形ビーム47,48を求め補助的
に描画するもので、ショット数の低減率は4/5とな
る。本実施例では、ショット数の低減率は実施例に比べ
てて劣るが、形状精度を確保できる利点を有する。
FIG. 4 shows still another embodiment of the present invention. In order to improve the shape accuracy of the diagonal part, the rectangular beam 4
The maximum inscribed rectangular beams 47 and 48 are obtained in the unexposed portion of the figure 31 to be drawn, which is generated by drawing 2, 43, and auxiliary drawing is performed. The reduction rate of the number of shots is 4/5. In this embodiment, the reduction rate of the number of shots is inferior to that in the embodiment, but it has an advantage that shape accuracy can be secured.

【0012】[0012]

【発明の効果】本発明は、斜め図形を描画する際にも、
従来よりショット数を低減できるのでスループットの低
下を防ぐことができる。
According to the present invention, even when an oblique figure is drawn,
Since it is possible to reduce the number of shots as compared with the conventional technique, it is possible to prevent a decrease in throughput.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す説明図。FIG. 1 is an explanatory diagram showing the principle of the present invention.

【図2】本発明の第1の実施例の露光図形の説明図。FIG. 2 is an explanatory diagram of an exposure pattern according to the first embodiment of the present invention.

【図3】本発明の第2の実施例の露光図形の説明図。FIG. 3 is an explanatory diagram of an exposure pattern according to the second embodiment of the present invention.

【図4】本発明の第3の実施例の露光図形の説明図。FIG. 4 is an explanatory diagram of an exposure pattern according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…描画すべき斜め図形、2…短冊状ビーム、2〜7,
33…重複を許して生成した矩形群。
1 ... Oblique figure to be drawn, 2 ... Strip beam, 2-7,
33 ... A group of rectangles generated by allowing duplication.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 利彦 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所武蔵工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Kono 5-20-1 Kamimizuhoncho, Kodaira-shi, Tokyo Hitachi, Ltd. Musashi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】描画される図形を矩形単位に分割する手段
と、分割された前記矩形に対応した断面形状を有する電
子ビームを発生させる手段とを具備する、いわゆる可変
成形方式の電子ビーム描画装置において、斜め図形を矩
形分割した結果生じる三角形を、これに内接し縦横比の
異なる複数の矩形として描画データを生成し、これらを
その一部が重復することを許して描画することを特徴と
する電子ビーム露光方法。
1. A so-called variable shaping type electron beam drawing apparatus comprising means for dividing a drawn figure into rectangular units and means for generating an electron beam having a sectional shape corresponding to the divided rectangles. In (3), drawing data is generated as a plurality of rectangles inscribed in a triangle resulting from dividing an oblique figure into rectangles with different aspect ratios, and these are drawn while allowing a part of them to be duplicated. Electron beam exposure method.
【請求項2】矩形を除く孤立した多角形を描画する際
に、前記多角形に内接する一つ以上の横長の矩形群と、
同じく前記多角形に内接する一つ以上の縦長の前記矩形
群とを描画データとして生成し、これらをその一部が重
復することを許して描画することを特徴とする電子ビー
ム露光方法。
2. A group of one or more horizontally long rectangles inscribed in the polygon when drawing an isolated polygon other than the rectangle,
Similarly, an electron beam exposure method characterized in that one or more vertically elongated rectangular groups inscribed in the polygon are generated as drawing data, and a part of them is allowed to be reproduced.
【請求項3】請求項1または2において、重複を許して
生成した矩形群によって形成される多角形と本来描画す
べき描画図形との重畳しない部分のそれぞれに、内接し
うる最大面積の矩形を生成し、別に定める露光量で描画
する電子ビーム露光方法。
3. The rectangle having the maximum area that can be inscribed in each of the non-overlapping portions of the polygon formed by the group of rectangles that are allowed to overlap and the drawing figure to be originally drawn, according to claim 1 or 2. An electron beam exposure method that generates and draws with a separately determined exposure amount.
JP17652092A 1992-07-03 1992-07-03 Method for electron beam exposure Pending JPH0620931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17652092A JPH0620931A (en) 1992-07-03 1992-07-03 Method for electron beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17652092A JPH0620931A (en) 1992-07-03 1992-07-03 Method for electron beam exposure

Publications (1)

Publication Number Publication Date
JPH0620931A true JPH0620931A (en) 1994-01-28

Family

ID=16015064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17652092A Pending JPH0620931A (en) 1992-07-03 1992-07-03 Method for electron beam exposure

Country Status (1)

Country Link
JP (1) JPH0620931A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187342A (en) * 1994-12-22 1995-07-25 Kawamoto Kogyo Kk Abrasion resistant rotary member
JP2008288360A (en) * 2007-05-17 2008-11-27 Nuflare Technology Inc Charged particle beam plotting apparatus and charged particle beam plotting method
JP2009065036A (en) * 2007-09-07 2009-03-26 Dainippon Printing Co Ltd Figure pattern partitioning method, and lithography apparatus and photomask using same
JP2013503486A (en) * 2009-08-26 2013-01-31 ディー・ツー・エス・インコーポレイテッド Method and apparatus for producing surfaces with variable beam blur using charged particle beam lithography
JP2013508972A (en) * 2009-10-21 2013-03-07 ディー・ツー・エス・インコーポレイテッド Method for fracturing a pattern written by a shaped charged particle beam writing device using lead-in shots
US8828628B2 (en) 2008-09-01 2014-09-09 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
KR20140112439A (en) * 2013-03-13 2014-09-23 디2에스, 인코포레이티드 Method and system for forming a diagonal pattern using charged particle beam lithography
US8900778B2 (en) 2008-09-01 2014-12-02 D2S, Inc. Method for forming circular patterns on a surface
US8916315B2 (en) 2009-08-26 2014-12-23 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9038003B2 (en) 2012-04-18 2015-05-19 D2S, Inc. Method and system for critical dimension uniformity using charged particle beam lithography
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9043734B2 (en) 2008-09-01 2015-05-26 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US9057956B2 (en) 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9091946B2 (en) 2011-04-26 2015-07-28 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9372391B2 (en) 2008-09-01 2016-06-21 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9400857B2 (en) 2011-09-19 2016-07-26 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9859100B2 (en) 2012-04-18 2018-01-02 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187342A (en) * 1994-12-22 1995-07-25 Kawamoto Kogyo Kk Abrasion resistant rotary member
JP2008288360A (en) * 2007-05-17 2008-11-27 Nuflare Technology Inc Charged particle beam plotting apparatus and charged particle beam plotting method
JP2009065036A (en) * 2007-09-07 2009-03-26 Dainippon Printing Co Ltd Figure pattern partitioning method, and lithography apparatus and photomask using same
US9043734B2 (en) 2008-09-01 2015-05-26 D2S, Inc. Method and system for forming high accuracy patterns using charged particle beam lithography
US9268214B2 (en) 2008-09-01 2016-02-23 D2S, Inc. Method for forming circular patterns on a surface
US8828628B2 (en) 2008-09-01 2014-09-09 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US10101648B2 (en) 2008-09-01 2018-10-16 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9715169B2 (en) 2008-09-01 2017-07-25 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US8900778B2 (en) 2008-09-01 2014-12-02 D2S, Inc. Method for forming circular patterns on a surface
US9372391B2 (en) 2008-09-01 2016-06-21 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9625809B2 (en) 2008-09-01 2017-04-18 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9274412B2 (en) 2008-09-01 2016-03-01 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US8916315B2 (en) 2009-08-26 2014-12-23 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
JP2013503486A (en) * 2009-08-26 2013-01-31 ディー・ツー・エス・インコーポレイテッド Method and apparatus for producing surfaces with variable beam blur using charged particle beam lithography
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
JP2013508972A (en) * 2009-10-21 2013-03-07 ディー・ツー・エス・インコーポレイテッド Method for fracturing a pattern written by a shaped charged particle beam writing device using lead-in shots
US9057956B2 (en) 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9091946B2 (en) 2011-04-26 2015-07-28 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9465297B2 (en) 2011-06-25 2016-10-11 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
US9400857B2 (en) 2011-09-19 2016-07-26 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
US10031413B2 (en) 2011-09-19 2018-07-24 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
US9038003B2 (en) 2012-04-18 2015-05-19 D2S, Inc. Method and system for critical dimension uniformity using charged particle beam lithography
US9859100B2 (en) 2012-04-18 2018-01-02 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography
US10431422B2 (en) 2012-04-18 2019-10-01 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography
JP2014195071A (en) * 2013-03-13 2014-10-09 D2S Inc Method and system for fracturing or master data preparation of semiconductor device layout design, and method for forming semiconductor layout pattern on reticle
KR20140112439A (en) * 2013-03-13 2014-09-23 디2에스, 인코포레이티드 Method and system for forming a diagonal pattern using charged particle beam lithography

Similar Documents

Publication Publication Date Title
JPH0620931A (en) Method for electron beam exposure
US4520269A (en) Electron beam lithography proximity correction method
US5051598A (en) Method for correcting proximity effects in electron beam lithography
US6745380B2 (en) Method for optimizing and method for producing a layout for a mask, preferably for use in semiconductor production, and computer program therefor
US6777141B2 (en) Phase shift mask including sub-resolution assist features for isolated spaces
JP2000098584A (en) Correcting method of mask pattern and recording medium recording mask pattern correction program
US5557110A (en) Aperture for use in electron beam system for pattern writing
JP2914264B2 (en) Electron beam writing method
US6811935B2 (en) Phase shift mask layout process for patterns including intersecting line segments
JPH0262941B2 (en)
JP2647000B2 (en) Electron beam exposure method
US7026078B2 (en) Method of manufacturing photomask
US6639232B1 (en) Pattern writing method employing electron beam writing device of variable-shaped vector scan system
US8022376B2 (en) Method for manufacturing semiconductor device or photomask
KR102366045B1 (en) Charged particle beam writing method and charged particle beam writing apparatus
JPH05267139A (en) Electron beam lithography method
JP2998661B2 (en) Photomask and pattern forming method for semiconductor device
US20040153989A1 (en) Pattern writing method capable of preventing or reducing an error between design dimensions and finished dimensions of a pattern
JP3312689B2 (en) Mask, mask manufacturing method and apparatus
JP2606576B2 (en) Charged particle beam exposure method
JPH09292701A (en) Production of mask
JPS6314866B2 (en)
EP0645797A1 (en) Electron beam lithography with background exposure in a neighbouring region
JP3086238B2 (en) Charged particle beam exposure system
JPH0239515A (en) Charged beam exposure method