[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06191957A - Ceramic sintered compact with metal as skeleton - Google Patents

Ceramic sintered compact with metal as skeleton

Info

Publication number
JPH06191957A
JPH06191957A JP34800992A JP34800992A JPH06191957A JP H06191957 A JPH06191957 A JP H06191957A JP 34800992 A JP34800992 A JP 34800992A JP 34800992 A JP34800992 A JP 34800992A JP H06191957 A JPH06191957 A JP H06191957A
Authority
JP
Japan
Prior art keywords
metal
ceramic
composition
linear
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34800992A
Other languages
Japanese (ja)
Other versions
JP3202376B2 (en
Inventor
Hideo Igami
英雄 居上
Chisato Ota
千里 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADO CERAMICS KENKYUSHO KK
Original Assignee
ADO CERAMICS KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADO CERAMICS KENKYUSHO KK filed Critical ADO CERAMICS KENKYUSHO KK
Priority to JP34800992A priority Critical patent/JP3202376B2/en
Priority to PCT/JP1993/000185 priority patent/WO1994014728A1/en
Priority to CN 93103459 priority patent/CN1088898A/en
Publication of JPH06191957A publication Critical patent/JPH06191957A/en
Application granted granted Critical
Publication of JP3202376B2 publication Critical patent/JP3202376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a ceramic sintered compact improved in fracture strength by embedding a linear, rodlike or netty metallic material in a specified skeletal location of a specific ceramic composition, followed by monolithic molding and then sintering. CONSTITUTION:Firstly, a linear, rodlike or netty metallic material is coated with an organic pasty material prepared by a adding water to a mixture of a specified proportion of starch and charcoal powder followed by heating to form a coating film of >=0.05mm thickness. Second, mixture composed of 20-95wt.% of the main stock which become vitreous through melting at elevated temperatures and has a chemical composition of 0.6-1.5 in the molar ratio of (CaO+MgO+Al2O3)/SiO2, 3-20wt.% based on the stock, of a molding auxiliary composed of hydraulic cement and a metal salt and, where appropriate, a nonshrinkable material is calcined to continue its linear expansion with temperature rise while keeping its linear expansion coefficient at >=80X10<-7>/ deg.C, and a ceramic composition whose sintering shrinkage at >=1000 deg.C is >=0.5% is obtained. Then, this composition is molded, and the paste- coated metallic material is embedded in a specified skeletal location of the resultant form, followed by monolithic molding and then sintering at 1000-1250 deg.C, thus obtaining the objective ceramic sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は金属を骨格とした陶磁
器質焼結体に関するものである。さらに詳しくは、この
発明は、建築構造材料あるいは下水道管などの土木材料
等として、高い破壊強度が必要な材料分野に利用される
陶磁器質焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sinter having a metal skeleton. More specifically, the present invention relates to a ceramic sinter that is used in the field of materials that require high fracture strength, such as building construction materials or civil engineering materials such as sewer pipes.

【0002】[0002]

【従来の技術とその課題】鉄筋で補強された窯業系材料
は鉄筋コンクリート、A.L.Cなど、広く建築や土木
分野において使用されているが、いずれもセメント質材
料に限られている。また、ガラス材料の分野では、板ガ
ラスの内部に金網を入れて一体化成形した「網入りガラ
ス」が知られており、破損し易いガラス材料を金属で補
強したものとして広く使用されている。この板ガラス
は、セラミックスとしては熱膨張率が高く、金属に近い
材料であること、および線径の細い金網を使用し、ガラ
スの凝固温度である600〜700℃からの冷却過程に
おいて、熱膨張率の差により内部に発生する潜在応力が
比較的小さいことがこのような製品を可能としている。
2. Description of the Related Art Ceramic materials reinforced with reinforcing bars are reinforced concrete, A. L. It is widely used in the fields of construction and civil engineering such as C, but all are limited to cementitious materials. In the field of glass materials, "net-cored glass" is known, in which a wire net is placed inside a plate glass and integrally molded, and is widely used as a glass material that is easily broken and is reinforced with metal. This plate glass has a high coefficient of thermal expansion as ceramics and is close to a metal, and uses a wire mesh with a small wire diameter, and the coefficient of thermal expansion in the cooling process from 600 to 700 ° C. which is the solidification temperature of glass. The relatively small latent stress generated inside due to the difference of the above enables such a product.

【0003】このように、セメント質材料および板ガラ
スについては、鉄筋や金属網で補強したものが知られて
いるが、いずれも極めて限られた材料分野での応用であ
って、「脆くてこわれ易い」欠点を有する陶磁器質材料
については、いまだ金属材料による補強は実用的に完成
されていないのが実情である。このような状況におい
て、この発明の発明者によって、「金属複合セラミック
ス焼結体」が提案されているが、この焼結体は繊維状ま
たは切片状の金属を分散させて補強したものであって、
部方的な補強効果は発揮されるが、製品としての骨格を
有しない為、構造材料としての信頼度が低く、使用分野
が制約されていた。
As described above, the cementitious material and the plate glass are known to be reinforced with a reinforcing bar or a metal net, but all of them are applications in a very limited material field and are "brittle and easily broken". With regard to ceramic materials having drawbacks, reinforcement with metallic materials has not yet been practically completed. In such a situation, the inventor of the present invention has proposed a “metal composite ceramics sintered body”, which is obtained by dispersing and reinforcing a fibrous or piece-shaped metal. ,
Although a partial reinforcing effect is exerted, since it does not have a skeleton as a product, its reliability as a structural material is low and its field of use is restricted.

【0004】このため、陶磁器質焼結体に、骨格となる
金属材料を一体化した製品の実現が求められていたが、
このことは、以下の理由によって極めて困難な課題であ
ると考えられていた。 (1)金属は一般にセラミックスの約2倍に近い熱膨張
率を持ち、焼結時に内部に封入されると金属の膨張によ
り組織が破壊される。 (2)鉄筋など金属は500℃を越えると急激に表面か
ら酸化して酸化層を形成して容積をさらに拡大すると共
に、長時間の高温度加熱により酸化層が広がり、鉄筋が
段々と細くなって補強効果が著しく低下する。
Therefore, there has been a demand for the realization of a product in which a ceramic material is integrated with a metal material serving as a skeleton.
This was considered to be an extremely difficult task for the following reasons. (1) Metals generally have a coefficient of thermal expansion nearly twice that of ceramics, and if encapsulated inside during sintering, the structure will be destroyed by the expansion of the metal. (2) When the temperature of metal such as rebar exceeds 500 ° C, it rapidly oxidizes from the surface to form an oxide layer, which further expands the volume, and the high temperature heating for a long time causes the oxide layer to spread and the rebar gradually becomes thinner. The reinforcing effect is significantly reduced.

【0005】従って、金属を骨格として一体化焼結した
陶磁器質材料は従来技術によっては実現不可能であっ
た。この発明は、以上の通りの事情に鑑みてなされたも
のであり、従来技術の限界を克服し、製品強度として最
も信頼度の高い金属材料を骨格として、焼結体内部へ、
安定状態でこれを埋設した金属を骨格とする陶磁器質焼
結体を提供することを目的としている。
Therefore, a ceramic material in which metal is used as a skeleton and integrally sintered has not been realized by the conventional technique. The present invention has been made in view of the circumstances as described above, overcomes the limitations of the prior art, and uses the most reliable metal material as the product strength as the skeleton, inside the sintered body,
It is an object of the present invention to provide a ceramic sinter having a metal skeleton in which it is embedded in a stable state.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、陶磁器質焼結体であって、この
焼結体には、線状、棒状または金網状の金属材料が所定
の骨格配置で埋設一体化されていることを特徴とする金
属を骨格とする陶磁器質焼結体を提供する。また、さら
に詳しくは、この発明は、焼成、加熱の過程において、
昇温とともに80×10-7/℃以上の線熱膨張率を保ち
ながら、ほぼ直線的に膨張を続け、1000℃以上の温
度において0.5%以上の焼結収縮を起こすことなく焼
結した後冷却して製品となる陶磁器質組成物が、所定の
骨格位置で線状、棒状または金網状の金属材料を埋設一
体化成形した後、1000℃以上、1250℃以下の温
度で焼結されてなる焼結体をその態様としてもいる。
In order to solve the above-mentioned problems, the present invention is a ceramic sinter, in which a linear, rod-shaped or wire-mesh-shaped metal material is prescribed. A ceramic sinter having a metal skeleton, which is embedded and integrated in the skeleton arrangement. In addition, more specifically, the present invention, in the process of firing, heating,
While maintaining a linear thermal expansion coefficient of 80 × 10 −7 / ° C. or more as the temperature rises, it continues to expand almost linearly and is sintered at a temperature of 1000 ° C. or more without causing 0.5% or more of sintering shrinkage. After being cooled, the ceramic composition to be a product is embedded and integrally molded with a linear, rod-shaped or wire-mesh-shaped metal material at a predetermined skeleton position, and then sintered at a temperature of 1000 ° C. or higher and 1250 ° C. or lower. The sintered body is

【0007】すなわち、この発明における前記の組成物
は、80×10-7/℃以上の熱膨張率をほぼ直線的に示
すものとし、1000℃以上の焼結温度においても、焼
結による収縮は0.5%を越えない収縮の少ない組成物
であることを好ましい要件としている。一般の陶磁器組
成物は、焼成昇温過程においては、石英はその変態によ
って大きな膨張を示し、570〜600℃を越えるとそ
の昇温膨張は80×10-7/℃以上になるが、一方で、
600℃以下の温度では、粘土成分の収縮などにより昇
温膨張は50〜60×10-7/℃程度の低いレベルにと
どまり、1000℃以上の焼結温度においては5〜10
%の大きい焼結収縮を示す。
That is, the above-mentioned composition of the present invention exhibits a coefficient of thermal expansion of 80 × 10 −7 / ° C. or more almost linearly, and the shrinkage due to sintering does not occur even at a sintering temperature of 1000 ° C. or more. A preferable requirement is that the composition has a small shrinkage not exceeding 0.5%. In a general ceramic composition, quartz shows a large expansion due to its transformation in the temperature rising process of firing, and when it exceeds 570 to 600 ° C., the temperature rising expansion becomes 80 × 10 −7 / ° C. or more. ,
At a temperature of 600 ° C. or lower, the temperature rise expansion remains at a low level of about 50 to 60 × 10 −7 / ° C. due to the shrinkage of the clay component, etc.
% Shows a large sinter shrinkage.

【0008】このため、従来一般の陶磁器組成物の場合
には、たとえば図1(A)に示したように、膨張、収縮
について大きな変曲点を示し、たとえば120〜150
×10-7/℃の熱膨張によって直線的に膨張する金属材
料(図1(B))との膨張相似性を持ち得ないため、焼
結においては、この金属材料の膨張による破壊から逃れ
られない。
Therefore, in the case of the conventional general ceramic composition, for example, as shown in FIG. 1 (A), a large inflection point for expansion and contraction is exhibited, for example, 120 to 150.
Since it cannot have expansion similarity with a metal material that linearly expands due to thermal expansion of × 10 -7 / ° C (Fig. 1 (B)), it escapes from destruction due to expansion of this metal material during sintering. Absent.

【0009】だが、この発明においては、図1(C)の
ように、金属材料との相似性を維持して直線的に膨張し
ていく。このため、組成物と金属材料との焼結体として
の一体化が可能となる。好適にこの発明の金属を骨格と
した陶磁器質焼結体を実現するための陶磁器質組成物と
しては、(CaO+MgO+Al2 3 )/SiO2
比が0.6〜1.5の範囲の化学組成を有し、かつ、高
温度で溶融させて、ガラス質として産出されたものが主
原料として20〜95重量%の範囲内で含まれ、金属塩
及び水硬性セメント類からなる成形助剤の1種以上が原
料の3〜20重量%配合され、さらに必要に応じて非収
縮性原料が配合されてなり、収縮が0.5%以内で焼結
される組成物が示される。ガラス状態で産出される原料
は、高炉水滓などが代表的なものであり、ガラス質水滓
は、加熱過程において850℃〜950℃の温度範囲
で、発熱反応を起こしながら結晶化し、わずかに膨張を
示しながら反応焼結する特性を有している。このガラス
質物が主原料として20%以上含有された組成物は、1
000℃以上の焼結温度において、焼結収縮率が0.5
%以下の範囲に調整される。配合率が大きくなる程焼結
体は膨張性を示す焼結体製品の寸法安定性の点からは、
配合割合は20〜95%とするのが好ましい。
However, in the present invention, as shown in FIG. 1C, the linear expansion is performed while maintaining the similarity with the metal material. Therefore, the composition and the metal material can be integrated as a sintered body. A porcelain composition suitable for realizing a porcelain sinter having a metal skeleton of the present invention is preferably a chemical composition having a (CaO + MgO + Al 2 O 3 ) / SiO 2 ratio of 0.6 to 1.5. A molding aid which has a composition and is produced as a glassy material by melting at a high temperature within a range of 20 to 95% by weight as a main raw material, and which comprises a metal salt and a hydraulic cement. A composition is shown in which one or more kinds are blended in an amount of 3 to 20% by weight of the raw material, and a non-shrinkable raw material is further blended as necessary, and the shrinkage is sintered within 0.5%. The raw material produced in a glass state is typically a blast furnace slag, and the glassy slag crystallizes in the temperature range of 850 ° C to 950 ° C in the heating process while causing an exothermic reaction, and slightly. It has the property of reacting and sintering while exhibiting expansion. The composition containing 20% or more of this glassy material as a main raw material is 1
At a sintering temperature of 000 ° C or higher, the sintering shrinkage is 0.5
It is adjusted to the range below%. The greater the blending ratio, the more the sintered body shows expansiveness. From the viewpoint of dimensional stability of the sintered body product,
The blending ratio is preferably 20 to 95%.

【0010】成形助材として珪酸ソーダ、珪酸カリなど
の金属塩を用いる場合には、3%〜10%の範囲が適当
であり、3%以下の場合は充分な成形強度が得られず、
10%を越えると経済性の面で問題がある。ポルトラン
ドセメント、高炉セメントなど水硬性セメント類を使用
する場合には、10%〜20%の範囲で調整する。これ
らの成形助剤は、単独もしくは混合して使用される。ま
た、組成物は目的とする製品の要求される物性や製品の
大きさなどにより、予め高温度で焼成されて収縮しない
ものとした陶磁器や煉瓦等を粉砕したシャモット類や、
フライアッシュあるいは軽量化の目的の場合にはパーラ
イト等を配合することができる。
When a metal salt such as sodium silicate or potassium silicate is used as a molding aid, the range of 3% to 10% is appropriate, and when it is 3% or less, sufficient molding strength cannot be obtained.
If it exceeds 10%, there is a problem in terms of economy. When using hydraulic cements such as Portland cement and blast furnace cement, the range is 10% to 20%. These molding aids are used alone or as a mixture. Further, the composition is a chamotte crushed ceramics or bricks, etc., which is preliminarily fired at a high temperature so as not to shrink depending on the required physical properties of the intended product or the size of the product,
For the purpose of fly ash or weight reduction, perlite or the like may be added.

【0011】さらにまた、この発明において焼結体内部
に埋設される金属材料としては、鉄筋としての鉄線、そ
の他の丸棒もしくは角棒、金網等が使用される。この場
合、鉄材に限られることなく、熱膨張が鉄材に近似した
各種の金属材料が好ましく使用されることは言うまでも
ない。これらの金属材料は、一般的に上記の組成物と比
べて熱膨張の程度が大きいが、この差を吸収するため
に、金属材料表面には澱粉、ポリビニールアルコール、
C.M.Cなどの有機質糊材料の塗膜を付与しておくこ
とが有効でもある。この有機質糊材料は組成物内部の酸
素の少ない状態では容易に消失することはなく、約35
0℃から炭化が始まり1200℃においても、炭素とし
て鉄筋の表面層に残留する。そして、この炭素が残留す
る限り、鉄筋の酸化は容易に進行することなく、焼成完
了後切開して鉄筋表面の状態を観察すると、滲炭層のよ
うに鉄筋表面は光沢のある状態を示す。有機質糊層の厚
さは実験の結果からは鉄筋直径の0.5%で良いが、表
面層に残る残留炭素量および鉄筋の長手方向の伸縮によ
り応力の吸収を考慮すると、直径の1.0%以上とする
のが望ましい。また、塗膜の厚さが0.05mm以上必
要である場合には、木炭粉、紙粉などを混合するのも有
効である。
Further, in the present invention, as the metal material to be embedded inside the sintered body, an iron wire as a reinforcing bar, other round bar or square bar, wire mesh and the like are used. In this case, needless to say, not only iron materials but also various metal materials whose thermal expansion is close to that of iron materials are preferably used. These metal materials generally have a higher degree of thermal expansion than the above composition, but in order to absorb this difference, starch, polyvinyl alcohol,
C. M. It is also effective to apply a coating film of an organic paste material such as C. This organic paste material does not easily disappear when the composition contains little oxygen.
Carbonization begins at 0 ° C and remains at the surface layer of the reinforcing bar as carbon even at 1200 ° C. Then, as long as this carbon remains, the oxidation of the reinforcing bar does not easily proceed, and when the state of the reinforcing bar surface is observed by cutting after completion of firing, the reinforcing bar surface shows a glossy state like a carburized layer. From the experimental results, the thickness of the organic glue layer may be 0.5% of the diameter of the reinforcing bar, but considering the amount of residual carbon remaining in the surface layer and the absorption of stress due to the expansion and contraction of the reinforcing bar in the longitudinal direction, the diameter of 1.0 It is desirable to set it to be at least%. When the thickness of the coating film is required to be 0.05 mm or more, it is also effective to mix charcoal powder, paper powder and the like.

【0012】有機糊材が熱焼を開始し、炭化して容積を
減少し始める約350℃までの鉄筋と組成物の熱膨張率
の差はわずかに0.1%以内であり、組成物に及ぼす鉄
筋の膨張応力は充分弾性吸収できることが確認されてい
る。以下、実施例を示し、さらに詳しくこの発明につい
て説明する。
The difference in the coefficient of thermal expansion between the reinforcing bar and the composition up to about 350 ° C. at which the organic paste material starts to be heated and carbonizes to decrease the volume is only 0.1% or less. It has been confirmed that the rebar expansion stress exerted can be sufficiently elastically absorbed. Hereinafter, the present invention will be described in more detail with reference to examples.

【0013】[0013]

【実施例】以下の条件でサイズ300mm×600mm
×20mmの陶磁器質成形体の内部に、直径5mm径の
鉄筋を埋設成形し、ローラーハースキルンを用いて、昇
温速度20℃/分で1200℃まで上昇させ、約20分
間保持した後30℃/分の速度で冷却して焼結製品を得
た。 (1)鉄筋の表面処理 澱粉と木炭粉を1:1の重量比で混合し、10〜12倍
の水を加えて加温して糊を調整した後、鉄筋表面に膜厚
約0.2mm程度に塗布し乾燥した。 (2)鉄筋の配列と結着 図2に示すように組成物成形体(1)のほぼ中心部に鉄
筋(2)を埋設した。鉄筋(2)の交叉部分は1.0m
m径の針金でルーズに結着した。 (3)陶磁器質組成物の配合 次の表1の通りの配合比(重量比)とした。
[Example] Size 300 mm x 600 mm under the following conditions
A reinforcing bar having a diameter of 5 mm was embedded and molded inside a ceramic body of 20 mm in diameter, and the roller hearth kiln was used to raise the temperature to 1200 ° C. at a heating rate of 20 ° C./min, and after holding for about 20 minutes, 30 ° C. A sintered product was obtained by cooling at a rate of / min. (1) Reinforcing bar surface treatment After mixing starch and charcoal powder in a weight ratio of 1: 1 and adding 10 to 12 times water to heat and adjust the paste, the thickness of the reinforcing bar surface is about 0.2 mm. It was applied to a certain degree and dried. (2) Arrangement and Binding of Reinforcing Bars As shown in FIG. 2, reinforcing bars (2) were embedded in the center of the molded composition (1). The crossing part of the rebar (2) is 1.0m
Loosely bound with a wire of m diameter. (3) Blending of ceramic composition The blending ratio (weight ratio) is shown in Table 1 below.

【0014】[0014]

【表1】 [Table 1]

【0015】(4)成形方法 NO.1、NO.2は粉末加圧成形方法で150kg/cm
2 の圧力で成形し、NO.3は水分30〜50%を加えて
セメントモルタルとして混練し、金型間へ振動充填成形
し、60℃の水蒸気雰囲気中で24時間養生硬化させ
た。 (5)焼結後の製品の外観および内部切開になる鉄筋周
辺の亀裂観察 以下の結果が観察された。
(4) Molding method NO. 1, NO. 2 is powder pressure molding method 150kg / cm
Molded at a pressure of 2 , press NO. In the case of No. 3, 30 to 50% of water was added and kneaded as cement mortar, and vibration filling molding was performed between molds, followed by curing and curing for 24 hours in a steam atmosphere at 60 ° C. (5) Appearance of the product after sintering and observation of cracks around the reinforcing bars that become internal incisions The following results were observed.

【0016】 NO.1 外観及び内部に全く亀裂部分発生なし NO.2 外観及び内部に全く亀裂部分発生なし NO.3 外観及び内部に全く亀裂部分発生なし (6)焼結製品の物性 表2の物性値が確認された。NO.1 Appearance and no internal cracks at all NO.2 Appearance and no internal cracks at all NO.3 Appearance and internal cracks at all (6) Physical properties of sintered products The physical property values were confirmed.

【0017】[0017]

【表2】 [Table 2]

【0018】なお、上記表2の焼結収縮欄の+は膨張
を、−は収縮を示している。また、曲げ強度は、スパン
200mmで中央に荷重をかけながら表面を観察し、組
成物に亀裂が発見された時点の強度値を示している。ま
た、NO.1、NO.2、NO.3いずれもが、1000kg
/cm2 の荷重下においても鉄筋と組成物は分離するこ
とがなかった。
In Table 2, "+" indicates expansion and "-" indicates contraction in the sintering shrinkage column. The bending strength indicates the strength value at the time when a crack was found in the composition by observing the surface while applying a load to the center with a span of 200 mm. In addition, NO. 1, NO. 2, NO. 1000kg for all 3
Even under a load of / cm 2, the reinforcing bar and the composition were not separated.

【0019】[0019]

【発明の効果】従来、常識では不可能とされていた鉄筋
等の金属骨格が埋設一体化された陶磁器質焼結体が提供
される。強度信頼性の高い鉄骨等の金属材料と耐候性の
高いセラミックスの特徴を生かした建築用構造材料とし
ての新しい素材が提供される。
EFFECT OF THE INVENTION A ceramic sinter is provided in which a metal skeleton such as a reinforcing bar, which has been conventionally impossible, is embedded and integrated. Provided is a new material as a structural material for construction that takes advantage of the characteristics of metal materials such as steel frames having high strength and reliability and ceramics having high weather resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係わる鉄筋および組成物の熱膨張性
を、従来の陶磁器組成物と比較して示した温度相関図で
ある。
FIG. 1 is a temperature correlation diagram showing the thermal expansion properties of a reinforcing bar and a composition according to the present invention in comparison with a conventional ceramic composition.

【図2】実施例としてのこの発明の焼結体を示した平断
面図および正断面図である。
2A and 2B are a plan sectional view and a front sectional view showing a sintered body of the present invention as an example.

【符号の説明】[Explanation of symbols]

1 成形体 2 鉄筋 1 molded body 2 rebar

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陶磁器質焼結体であって、この焼結体に
は線状、棒状または金網状の金属材料が所定の骨格配置
で埋設一体化されていることを特徴とする金属を骨格と
した陶磁器質焼結体。
1. A ceramic skeletal body, wherein a linear, rod-shaped, or wire mesh-shaped metallic material is embedded and integrated in a predetermined skeleton arrangement in the sintered body. And ceramic sinter.
【請求項2】 焼成、加熱の過程において、昇温ととも
に80×10-7/℃以上の線熱膨張率を保ちながら、ほ
ぼ直線的に膨張を続け1000℃以上の温度をおいて
0.5%以上の焼結収縮を起こすことなく焼結した後冷
却して製品となる陶磁器質組成物が、所定の骨格位置で
線状、棒状または金網状の金属材料を埋設一体化成形し
た後、1000℃以上、1250℃以下の温度で焼結さ
れてなることを特徴とする請求項1の金属を骨格とした
陶磁器質焼結体。
2. In the process of firing and heating, while maintaining a linear thermal expansion coefficient of 80 × 10 −7 / ° C. or more as the temperature rises, expansion continues almost linearly and a temperature of 1000 ° C. or more is applied to 0.5. %, The ceramic composition to be a product after being sintered without causing a sintering shrinkage of not less than 100% is embedded and integrally molded with a linear, rod-shaped or wire mesh-shaped metal material at a predetermined skeleton position. The ceramic sinter having a metal skeleton according to claim 1, which is obtained by sintering at a temperature of not less than 1 ° C and not more than 1250 ° C.
【請求項3】 陶磁器質焼結体は、(CaO+MgO+
Al2 3 )/SiO2 の比が0.6〜1.5の範囲の
化学組成を有し、かつ高温度で溶融されて、ガラス質と
して産出されたものが主原料として20〜95重量%の
範囲で含まれ、金属塩及び水硬性セメント類からなる成
形助剤の1種以上が原料の3〜20重量%配合され、さ
らに必要に応じて非収縮性原料が配合されてなる組成物
の焼結体である請求項1または2の金属を骨格とした陶
磁器質焼結体。
3. A ceramic sinter is (CaO + MgO +).
Al 2 O 3 ) / SiO 2 ratio has a chemical composition in the range of 0.6 to 1.5, and it is melted at high temperature and produced as vitreous material as main raw material 20 to 95 weight % Composition, one or more molding aids consisting of metal salts and hydraulic cements are blended in an amount of 3 to 20% by weight of the raw material, and a non-shrinkable raw material is further blended as necessary. A ceramic sinter having the metal skeleton according to claim 1 or 2, which is the sinter.
【請求項4】 埋設一体化成形される金属材料の表面層
には、有機質糊により金属材料の直径の1%以上の厚さ
に塗膜を形成させてなる請求項2または3の金属を骨格
とした陶磁器質焼結体。
4. The metal skeleton according to claim 2 or 3, wherein a coating film is formed on the surface layer of the metal material to be integrally molded by embedding to a thickness of 1% or more of the diameter of the metal material with organic glue. And ceramic sinter.
JP34800992A 1992-12-28 1992-12-28 Ceramic sintered body with metal skeleton Expired - Fee Related JP3202376B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP34800992A JP3202376B2 (en) 1992-12-28 1992-12-28 Ceramic sintered body with metal skeleton
PCT/JP1993/000185 WO1994014728A1 (en) 1992-12-28 1993-02-12 Ceramic sintered body having metallic skeleton
CN 93103459 CN1088898A (en) 1992-12-28 1993-03-01 Ceramic sintered products with metallic bones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34800992A JP3202376B2 (en) 1992-12-28 1992-12-28 Ceramic sintered body with metal skeleton

Publications (2)

Publication Number Publication Date
JPH06191957A true JPH06191957A (en) 1994-07-12
JP3202376B2 JP3202376B2 (en) 2001-08-27

Family

ID=18394125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34800992A Expired - Fee Related JP3202376B2 (en) 1992-12-28 1992-12-28 Ceramic sintered body with metal skeleton

Country Status (3)

Country Link
JP (1) JP3202376B2 (en)
CN (1) CN1088898A (en)
WO (1) WO1994014728A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474312B (en) * 2013-09-09 2016-08-10 电子科技大学 A kind of travelling-wave tube supporting rod and preparation method thereof
CN106045472B (en) * 2016-05-27 2018-10-30 江西萍乡龙发实业股份有限公司 A kind of preparation method of composite material ecological ceramic water-permeable brick
CN106321626A (en) * 2016-10-17 2017-01-11 北京动力机械研究所 High-temperature-resisting knuckle bearing for actuator
CN106851871A (en) * 2017-01-13 2017-06-13 杭州格拉思康科技有限公司 Ceramic layered heating
CN109574638A (en) * 2018-12-29 2019-04-05 山东天汇研磨耐磨技术开发有限公司 A kind of high-bond ceramics section and its manufacturing method applying metal-rubber
CN110614483B (en) * 2019-10-22 2021-04-06 苏师大半导体材料与设备研究院(邳州)有限公司 Production process of ceramic stirrer
CN112142484A (en) * 2020-09-18 2020-12-29 株洲三达电子制造有限公司 Preparation method of ceramic for ceramic sensor
CN112723856B (en) * 2020-12-25 2022-08-23 唐山北方瓷都陶瓷集团卫生陶瓷有限责任公司 Low-deformation ceramic biscuit and preparation process thereof
CN116283322A (en) * 2023-04-10 2023-06-23 广东丰鑫智能科技有限公司 Large-scale structural ceramic formula

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843354B2 (en) * 1980-12-29 1983-09-26 太平洋セメント株式会社 Manufacturing method of fireproof bricks with built-in reinforcing bars
FR2637208B1 (en) * 1988-09-30 1990-12-14 Vesuvius France Sa CONTAINER FOR MOLTEN METALS, MATERIAL FOR THE CONTAINER, AND METHOD FOR MANUFACTURING THE MATERIAL

Also Published As

Publication number Publication date
CN1088898A (en) 1994-07-06
WO1994014728A1 (en) 1994-07-07
JP3202376B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
EP0809613B1 (en) Fly ash cementitious material
US4343989A (en) Magnesium oxide based heat storage device
JPH06191957A (en) Ceramic sintered compact with metal as skeleton
JPH0225876B2 (en)
US4533644A (en) Mortar
US5228914A (en) Pumice containing composition
JP2756934B2 (en) Sinter from coal ash as raw material and method for producing the same
JP2002519302A (en) Molding material for producing refractory lining and fired molded member, lining, and method for producing molded member
JPH10167800A (en) Pottery utilizing waste matter
JP2007261901A (en) Ceramic formed by using waste as main material, and its manufacturing method
JP3464043B2 (en) Method for producing porous sintered body
JPH01172263A (en) Production of pottery article
JPH049747B2 (en)
KR100857510B1 (en) Artificial aggregate composition for enhancing fire-resistance of high-strength concretes, method for producing the same and concrete compositions using the same
JP3498841B2 (en) Low-temperature firing solidification method of kaolin powder
US3752684A (en) Insulating refractory and a method for manufacturing same
JP3090085B2 (en) Manufacturing method of cement ceramic products
JPH05279097A (en) Heat-resistant cement composition
JPH0280363A (en) Ceramics product which prevents efflorescence and its production
SU1004323A1 (en) Laminate structural and heat insulating member
JP2867652B2 (en) Method for manufacturing ceramic molded body
JPH08217564A (en) Light-weight calcium silicate material and its production
SU973505A1 (en) Raw mix for making heat insulating products
JP3143731B2 (en) Lightweight fireproof castable
JPH0656517A (en) Calcium silicate sintered compact and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees