JPH06181159A - Projection aligner - Google Patents
Projection alignerInfo
- Publication number
- JPH06181159A JPH06181159A JP4332733A JP33273392A JPH06181159A JP H06181159 A JPH06181159 A JP H06181159A JP 4332733 A JP4332733 A JP 4332733A JP 33273392 A JP33273392 A JP 33273392A JP H06181159 A JPH06181159 A JP H06181159A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- pupil
- optical system
- light source
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70308—Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Projection-Type Copiers In General (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体集積回路の製造
に要する微細レジストパターンを形成するための投影露
光装置に係わり、特に瞳フィルタの選択により光学系の
最適化をはかる投影露光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for forming a fine resist pattern required for manufacturing a semiconductor integrated circuit, and more particularly to a projection exposure apparatus for optimizing an optical system by selecting a pupil filter.
【0002】[0002]
【従来の技術】近年、光リソグラフィ技術の進歩は目覚
ましく、g線(436nm)やi線(365nm)の投
影露光装置では、0.5μmルールも実現できる可能性
が出てきた。これは、投影露光装置の高性能化、特にレ
ンズのNA化が進んだことによる。しかし、次世代の
0.3μmルールも今までの延長で達成できるかは疑問
である。レンズの高NA化や露光光の短波長化により解
像度は向上するが、焦点深度は低下するため実用解像度
はあまり向上しない。従って、焦点深度の向上技術の開
発が望まれている。2. Description of the Related Art In recent years, the progress of photolithography technology has been remarkable, and there is a possibility that a 0.5 μm rule can be realized in a g-line (436 nm) or i-line (365 nm) projection exposure apparatus. This is because the projection exposure apparatus has been improved in performance, and in particular, the NA of the lens has been advanced. However, it is doubtful whether the next-generation 0.3 μm rule can be achieved with the extension so far. The resolution is improved by increasing the NA of the lens and shortening the wavelength of the exposure light, but the depth of focus is reduced, so the practical resolution is not improved so much. Therefore, development of a technique for improving the depth of focus is desired.
【0003】図6に、従来一般的に用いられている投影
露光装置の概略構成を示す。この図において、1は水銀
灯からなるランプ、2は楕円反射鏡、3は楕円反射鏡2
の第2焦点、4はインプットレンズ、5はオプチカルイ
ンテグレータ(はえの目レンズ)、6はアウトプットレ
ンズ、7はコリメーションレンズ、8はレチクル(マス
ク)、9は均一絞りとしての開口絞り、10は光学系が
収差補正されている波長の光だけを通すためのフィル
タ、11,12は光路を曲げて装置の高さを低くするコ
ールドミラー、13はランプハウス、14はレンズ,ミ
ラー或いはその組み合わせによりレチクル8上のパター
ンの像をウエハ上に投影する投影光学系、15はウエ
ハ、16は開口数を決定する絞りである。FIG. 6 shows a schematic structure of a projection exposure apparatus which is generally used in the past. In this figure, 1 is a mercury lamp, 2 is an elliptical reflecting mirror, 3 is an elliptical reflecting mirror 2.
2nd focal point, 4 is an input lens, 5 is an optical integrator (fly-eye lens), 6 is an output lens, 7 is a collimation lens, 8 is a reticle (mask), 9 is an aperture stop as a uniform stop, 10 is A filter for passing only light of a wavelength whose optical system is corrected for aberration, 11 and 12 are cold mirrors that bend the optical path to lower the height of the device, 13 is a lamp house, 14 is a lens, a mirror or a combination thereof. A projection optical system for projecting an image of the pattern on the reticle 8 onto a wafer, 15 a wafer, and 16 an aperture for determining the numerical aperture.
【0004】従来の投影露光装置の基本構成は、図6に
示した以外にも多数あるが、模式的には図7(a)に示
すように、光源1,第1集光光学系18,均一化光学系
19,第2集光光学系20,レチクル8,投影光学系1
4,ウエハ15の順に配列されている。第1集光光学系
18は、図6の例で楕円反射鏡2及びインプットレンズ
4に相当する部分であり、楕円鏡のほか球面鏡,平面
鏡,レンズ等を適当に配置し、光源から出る光束をでき
るだけ効率良く均一化光学系19に入れる役目を持つ。
また、均一化光学系19は図6のオプチカルインテグレ
ータ5に相当する部分であり、その他として光ファイバ
や多面体プリズム等が使用されることもある。Although there are many basic structures of the conventional projection exposure apparatus other than those shown in FIG. 6, as shown schematically in FIG. 7A, the light source 1, the first condensing optical system 18, Uniformizing optical system 19, second condensing optical system 20, reticle 8, projection optical system 1
4, the wafer 15 is arranged in this order. The first condensing optical system 18 is a portion corresponding to the elliptical reflecting mirror 2 and the input lens 4 in the example of FIG. 6, and in addition to the elliptic mirror, a spherical mirror, a plane mirror, a lens, etc. are appropriately arranged, and the luminous flux emitted from the light source It has a role of putting it into the homogenizing optical system 19 as efficiently as possible.
The homogenizing optical system 19 is a portion corresponding to the optical integrator 5 in FIG. 6, and an optical fiber, a polyhedral prism, or the like may be used as the other components.
【0005】第2集光光学系20は、図6のアウトプッ
トレンズ6及びコリメーションレンズ7に相当する部分
であり、均一化光学系19の出射光を重畳させ、さらに
像面テレセントリック性を確保する。この他、光束が光
軸平行に近い個所に図6のフィルタ10に相当するフィ
ルタが挿入され、またコールドミラー11,12に相当
する反射鏡も、場所は一義的でないが挿入される。The second condensing optical system 20, which corresponds to the output lens 6 and the collimation lens 7 in FIG. 6, superimposes the light emitted from the homogenizing optical system 19 and further secures the image plane telecentricity. In addition to this, a filter corresponding to the filter 10 of FIG. 6 is inserted at a position where the light beam is parallel to the optical axis, and reflecting mirrors corresponding to the cold mirrors 11 and 12 are also inserted although the positions are not unique.
【0006】このように構成された装置においてレチク
ル8から光が来る側を見た場合、光の性質は、第2集光
光学系20を通して均一化光学系19から出てくる光の
性質となり、均一化光学系19の出射側が見掛け上の光
源に見える。このため、上記のような構成の場合、一般
に均一化光学系19の出射側24を2次光源と称してい
る。レチクル8がウエハ15上に投影されるとき、投影
露光パターンの形成特性、即ち解像度や焦点深度等は、
投影光学系14の開口数及びレチクル8を照射する光の
性状、即ち2次光源24の性状によって決まる。When the side of light coming from the reticle 8 is viewed in the apparatus constructed as described above, the nature of the light becomes the nature of the light coming out from the homogenizing optical system 19 through the second condensing optical system 20, The emission side of the homogenizing optical system 19 looks like an apparent light source. For this reason, in the case of the above configuration, the emission side 24 of the homogenizing optical system 19 is generally called a secondary light source. When the reticle 8 is projected onto the wafer 15, the formation characteristics of the projection exposure pattern, that is, the resolution and the depth of focus are
It depends on the numerical aperture of the projection optical system 14 and the property of the light that illuminates the reticle 8, that is, the property of the secondary light source 24.
【0007】図7(b)は同図(a)に示した投影露光
装置におけるレチクル照明光線,結像光線に関する説明
図である。図7(b)において、投影光学系14は通常
内部に開口絞り16を有しており、レチクル8を通った
光が通過し得る角度θaを規制すると共に、ウエハ15
上に落射する光線の角度θを決めている。FIG. 7B is an explanatory diagram relating to the reticle illumination light beam and the image formation light beam in the projection exposure apparatus shown in FIG. In FIG. 7B, the projection optical system 14 usually has an aperture stop 16 inside to regulate the angle θa at which the light passing through the reticle 8 can pass, and at the same time, the wafer 15
The angle θ of the light ray incident on the top is determined.
【0008】一般に、投影光学系の開口数NAと称して
いるのは、NA=sinθで定義される角度であり、投
影倍率を1/mとすると、sinθa=sinθ/mの
関係にある。また、この種の装置においては「像面テレ
セントリック」、即ち像面に落ちる主光線が像面に垂直
に構成されるのが普通であり、この「像面テレセントリ
ック」の条件を満たすため、図7(a)の均一化光学系
19の出射面、即ち2次光源24の光源面の実像が開口
絞り16の位置に結像される。Generally, what is called the numerical aperture NA of the projection optical system is an angle defined by NA = sin θ, and when the projection magnification is 1 / m, there is a relationship of sin θa = sin θ / m. Further, in this kind of apparatus, it is usual that the "image plane telecentric", that is, the principal ray falling on the image plane is constituted perpendicularly to the image plane, and the condition of "image plane telecentric" is satisfied. A real image of the exit surface of the homogenizing optical system 19 in (a), that is, the light source surface of the secondary light source 24 is formed at the position of the aperture stop 16.
【0009】このような条件下でレチクル8から第2集
光光学系20を通して2次光源面を見た時の立体角をレ
チクル8に入射する光の範囲してとらえ、その半角をφ
とし照明光のコヒーレンシイσをσ=sinφ/sin
θaで定義した場合、パターン形成特性はNAとσで決
定せられるものと考えていた。Under these conditions, the solid angle when the secondary light source surface is viewed from the reticle 8 through the second condensing optical system 20 is regarded as the range of the light incident on the reticle 8, and its half angle is φ.
Let coherency σ of illumination light be σ = sin φ / sin
When it was defined by θa, it was considered that the pattern formation characteristics could be determined by NA and σ.
【0010】次に、NA及びσとパターン形成特性との
関連について詳細に説明する。NAが大きい程解像度は
上がるが、焦点深度が浅くなり、また投影光学系14の
収差のため広露光領域の確保が難しくなる。ある程度の
露光領域と焦点深度(例えば10mm角、±1μm)がな
いと実際のLSI製造等の用途に使えないため、従来の
装置ではNA=0.35程度が限界となっている。一
方、σ値は主としてパターン断面形状,焦点深度に関係
し、断面形状と相関を持って解像度に関与する。σ値が
小さくなるとパターンの淵が強調されるため、断面形状
は側壁が垂直に近づいて良好なパターン形状となるが、
細かいパターンでの解像性が悪くなり解像し得る焦点範
囲が狭くなる。逆に、σ値が大きいと細かいパターンで
の解像性,解像し得る焦点範囲が若干良くなるが、パタ
ーン断面の側壁傾斜がゆるく、厚いレジストの場合、断
面形状は台形ないし三角形となる。このため、従来の投
影露光装置では、比較的バランスのとれたσ値として、
σ=0.5〜0.7に固定設定されており、実験的にσ
=0.3等の条件が試みられているにすぎない。σ値を
設定するには2次光源24の光源面の大きさを決めれば
良いため、一般に2次光源24の光源面の直後にσ値設
定用の円形開口絞り9を置いている。Next, the relationship between NA and σ and the pattern formation characteristics will be described in detail. The larger the NA, the higher the resolution, but the shallower the depth of focus, and the aberration of the projection optical system 14 makes it difficult to secure a wide exposure area. Since there is no exposure area and depth of focus (for example, 10 mm square, ± 1 μm) to some extent, it cannot be used in actual applications such as LSI manufacturing, so that the conventional apparatus has a limit of NA = 0.35. On the other hand, the σ value mainly relates to the pattern cross-sectional shape and the depth of focus, and has a correlation with the cross-sectional shape and contributes to the resolution. Since the edge of the pattern is emphasized when the σ value becomes small, the cross-sectional shape becomes a good pattern shape with the side walls approaching the vertical,
The resolution in a fine pattern becomes poor, and the focus range that can be resolved becomes narrow. On the contrary, when the σ value is large, the resolution in a fine pattern and the focus range in which it can be resolved are slightly better, but the side wall inclination of the pattern cross section is gentle, and in the case of a thick resist, the cross-sectional shape is trapezoidal or triangular. Therefore, in the conventional projection exposure apparatus, as a relatively balanced σ value,
σ = 0.5 to 0.7 is fixedly set, and experimentally σ
= 0.3 and so on are only tried. Since the size of the light source surface of the secondary light source 24 may be determined in order to set the σ value, the circular aperture stop 9 for setting the σ value is generally placed immediately after the light source surface of the secondary light source 24.
【0011】このような一般的な投影露光装置の焦点深
度を向上させる1つの方法として、投影露光装置の2次
光源の強度分布を周辺部強度が中央部強度より大とせし
める特殊絞りを挿入する輪帯照明露光法がある(特開昭
61−91662号公報)。即ち、図6のσ値設定用円
形開口絞り9の代わりに図8に示すフィルタを挿入す
る。図8(a)に示すフィルタによって得られる焦点深
度向上効果をシミュレーションによって評価した。図9
はマスクパターンサイズに対する焦点深度を示してお
り、輪帯照明フィルタの中心遮蔽率ε依存性を示してい
る。中心遮蔽率とは、図9(a)(d)の輪帯フィルタ
の外周円半径r1 と内周円半径r2 により、ε=r2 /
r1 で示される。露光装置のNAは0.54,コヒーレ
ンスファクタは0.5,露光波長は436nm(g線)で
ある。εが大きいほど限界解像度及び焦点深度の向上効
果が大きいことが判る。As one method for improving the depth of focus of such a general projection exposure apparatus, a special diaphragm for inserting the intensity distribution of the secondary light source of the projection exposure apparatus so that the peripheral intensity is larger than the central intensity is inserted. There is an annular illumination exposure method (Japanese Patent Laid-Open No. 61-91662). That is, the filter shown in FIG. 8 is inserted in place of the circular aperture stop 9 for setting the σ value in FIG. The effect of improving the depth of focus obtained by the filter shown in FIG. 8A was evaluated by simulation. Figure 9
Shows the depth of focus with respect to the mask pattern size, and shows the dependence of the central blocking ratio ε of the annular illumination filter. The central shielding rate is defined as ε = r 2 / by the outer circumferential circle radius r 1 and the inner circumferential circle radius r 2 of the ring filter shown in FIGS.
It is represented by r 1 . The exposure apparatus has an NA of 0.54, a coherence factor of 0.5, and an exposure wavelength of 436 nm (g line). It can be seen that the larger the ε, the greater the effect of improving the limit resolution and the depth of focus.
【0012】また、投影露光装置の焦点深度を向上させ
る他の方法として、投影露光装置の瞳に空間周波数フィ
ルタを挿入するスーパーフレックス法がある(第38回
応用物理学関係連合講演会講演予稿集,29a−ZC−
8)。これによると、光軸方向の異なる位置z=±βに
結像し、各々位相の±Δφずれた2つの像の振幅を合成
すると、(1) 多重結像(FLEX)効果による焦点深度
増大と、(2) パターンエッジにおける位相の打ち消し合
いによる疑似位相シフト効果、が同時に得られる。横
(x)方向及び光軸(z)方向の振幅分布をU(x,
z)とすると、このような合成振幅は、 U′(x,z)=[exp(iΔφ)U(x,z−β)
+exp(−iΔφ)U(x,z+β)]/2As another method for improving the depth of focus of the projection exposure apparatus, there is a superflex method in which a spatial frequency filter is inserted in the pupil of the projection exposure apparatus (Proceedings of the 38th Joint Lecture on Applied Physics). , 29a-ZC-
8). According to this, when the images are formed at different positions z = ± β in the optical axis direction and the amplitudes of the two images whose phases are shifted by ± Δφ are combined, (1) the depth of focus increases due to the multiple imaging (FLEX) effect. , (2) A quasi phase shift effect due to phase cancellation at the pattern edge can be obtained at the same time. The amplitude distributions in the lateral (x) direction and the optical axis (z) direction are U (x,
z), such a composite amplitude is U ′ (x, z) = [exp (iΔφ) U (x, z−β)
+ Exp (-iΔφ) U (x, z + β)] / 2
【0013】で与えられる。この振幅は、投影レンズ瞳
(開口)に、次式で表される複素振幅透過率の半径方向
分布を持つ空間フィルタを設けることにより得られるも
のに等しい。 t(r)=cos(2πβr2 −θ/2)、 (但し、θ=2Δφ−8πβ/NA2 ) βとθを適当に選択すると、2つの像の間の結像面間距
離と干渉効果(又は空間周波数伝達特性)を任意に制御
することができる。Is given by This amplitude is equal to that obtained by providing the projection lens pupil (aperture) with a spatial filter having a radial distribution of the complex amplitude transmittance represented by the following equation. t (r) = cos (2πβr 2 −θ / 2), (where θ = 2Δφ−8πβ / NA 2 ) By appropriately selecting β and θ, it is possible to arbitrarily control the distance between the image planes between the two images and the interference effect (or the spatial frequency transfer characteristic).
【0014】また、投影露光装置の焦点深度を向上させ
るため、投影露光装置の瞳に空間周波数フィルタを装着
するもう一つの手法として、PCL露光法(Phase Cont
rastLithograpy )がある(第39回応用物理学会関係
連合講演会講演予稿集,30p-NA-4)。これによると、露
光装置の能力を最大限に発揮させるため、部分コヒーレ
ント光学系における結像理論に立ち返り、結像に関与す
るパラメータ(有効光源強度分布,マスクの振幅透過率
分布,瞳関数)を最適化することによって、焦点深度及
び限界解像力を最大とする手法が提案されている。最適
化の手法としては、Simulated Annealing と呼ばれるモ
ンテカルロ法的アルゴリズムに基づいている。適当なコ
スト関数が与えられたときにその大局的最小(大)点を
見付けるために用いられ、これによって逐次的に最適解
を求める。In order to improve the depth of focus of the projection exposure apparatus, as another method of mounting a spatial frequency filter on the pupil of the projection exposure apparatus, the PCL exposure method (Phase Cont
rastLithograpy) (Proceedings of the 39th Joint Lecture Meeting of the Japan Society of Applied Physics, 30p-NA-4). According to this, in order to maximize the capability of the exposure apparatus, it is necessary to go back to the imaging theory in the partially coherent optical system and determine the parameters (effective light source intensity distribution, mask amplitude transmittance distribution, pupil function) involved in imaging. A method of maximizing the depth of focus and the limiting resolution by optimizing has been proposed. The optimization method is based on a Monte Carlo algorithm called Simulated Annealing. It is used to find the global minimum (large) point when given an appropriate cost function, which sequentially finds the optimal solution.
【0015】一例として、通常のマスクのL/S=0.
743(λ/NAでの規格化寸法)での焦点深度が最大
となるように、有効光源径方向強度分布と瞳関数動径方
向位相分布を最適化した場合のL/Sパターンサイズに
対するDOF(レジストコントラスト60%)を図3に
示す。また、そのときの有効光源径方向強度分布と瞳関
数動径方向位相分布を図2に示す。通常露光に比べ、L
/S≧0.743では焦点深度が約2倍になっているこ
とが分かる。解像力及び焦点深度向上のためには、上記
の2つの技術(スーパーフレックス法,PCL露光法)
が必須となってきている。As an example, L / S = 0.
The DOF (L / S pattern size) when the effective light source radial intensity distribution and the pupil function radial radial phase distribution are optimized so that the depth of focus at 743 (normalized dimension in λ / NA) is maximized. The resist contrast is 60%) is shown in FIG. Further, FIG. 2 shows the effective light source radial direction intensity distribution and the pupil function radial direction phase distribution at that time. L compared to normal exposure
It can be seen that the depth of focus is approximately doubled when /S≧0.743. In order to improve resolution and depth of focus, the above two technologies (super flex method, PCL exposure method)
Is becoming essential.
【0016】[0016]
【発明が解決しようとする課題】このように、空間周波
数フィルタを露光装置に適用する場合、次のような問題
があった。即ち、投影光学系の瞳にて用いる空間周波数
フィルタ(瞳フィルタ;透過率及び位相を変化させるフ
ィルタ)を装着した投影露光装置においては、形成しよ
うとする注目パターン(パターン種及びパターンサイ
ズ)によってそれぞれ最適となる有効光源径方向強度分
布及び瞳関数動径方向位相分布,透過率分布に違いがあ
るため、常にマスクパターンに応じた最適な分布を得る
ことはできない。As described above, when the spatial frequency filter is applied to the exposure apparatus, there are the following problems. That is, in a projection exposure apparatus equipped with a spatial frequency filter (pupil filter; a filter that changes the transmittance and the phase) used in the pupil of the projection optical system, the target pattern (pattern type and pattern size) to be formed respectively Since there are differences in the optimum effective light source radial direction intensity distribution, pupil function radial direction phase distribution, and transmittance distribution, it is not possible to always obtain the optimum distribution according to the mask pattern.
【0017】本発明は、上記の事情を考慮してなされた
もので、その目的とするところは、マスクパターンに応
じて最適な特性の瞳フィルタを用いることができ、解像
力が高くかつ焦点深度が深い状態で露光を行うことがで
き、露光精度の向上をはかり得る投影露光装置を提供す
ることにある。The present invention has been made in consideration of the above circumstances, and an object thereof is to use a pupil filter having an optimum characteristic according to a mask pattern, which has a high resolution and a depth of focus. An object of the present invention is to provide a projection exposure apparatus that can perform exposure in a deep state and can improve exposure accuracy.
【0018】[0018]
【課題を解決するための手段】上記目的を達成するため
に本発明では、次のような構成を採用している。In order to achieve the above object, the present invention adopts the following configuration.
【0019】即ち本発明は、マスクのパターンを投影光
学系を介してウエハ上に投影露光する投影露光装置にお
いて、投影光学系の瞳位置に配置され、該瞳面の一部を
通過する露光光と他の部位を通過する露光光とで、複素
振幅のうち振幅又は位相の少なくとも1つに差異を生じ
させる瞳フィルタと、この瞳フィルタの特性の異なるも
の複数個を保持するホルダと、パターン露光に供される
マスクに応じてホルダ内の最適な瞳フィルタを選択し、
選択した瞳フィルタを瞳位置の瞳フィルタと交換するフ
ィルタ交換機構とを具備してなることを特徴とする。ま
た、本発明の望ましい実施態様としては、次のものが上
げられる。That is, the present invention is a projection exposure apparatus for projecting and exposing a mask pattern onto a wafer via a projection optical system, wherein the exposure light is arranged at a pupil position of the projection optical system and passes through a part of the pupil plane. And the exposure light passing through another portion, a pupil filter that causes a difference in at least one of amplitude or phase among complex amplitudes, a holder that holds a plurality of those having different characteristics of the pupil filter, and a pattern exposure Select the optimal pupil filter in the holder according to the mask used for
A filter exchanging mechanism for exchanging the selected pupil filter with a pupil filter at a pupil position. Moreover, the following are mentioned as a desirable embodiment of this invention.
【0020】(1) 瞳フィルタの交換と連動して、光源変
調フィルタ(マスクを照明する2次光源位置に配置さ
れ、該光源の出射面内強度分布を変化させる)を交換す
ること。 (2) マスクにバーコード等の識別マークを形成してお
き、マスクを交換する毎に識別マークを認識して瞳フィ
ルタの交換を自動化すること。(1) Interchanging the light source modulation filter (arranged at the position of the secondary light source that illuminates the mask and changing the intensity distribution in the emission surface of the light source) in conjunction with the exchange of the pupil filter. (2) An identification mark such as a bar code is formed on the mask, and each time the mask is replaced, the identification mark is recognized to automatically replace the pupil filter.
【0021】[0021]
【作用】本発明によれば、投影露光装置の投影光学系の
瞳位置に、前述したように所望のマスクパターンに対し
て好適となる瞳フィルタを装着可能とした構造とするこ
とによって、瞳変調技術によって得られる焦点深度,解
像力向上効果を最大限に発揮させることができる。ま
た、マスク交換と連動してマスクパターンに対して好適
な露光特性を与えるフィルタと交換可能な構造を有する
ことによって、露光精度の向上をはかるのみでなく、ス
ループットの向上をも可能とする。According to the present invention, a pupil filter suitable for a desired mask pattern can be attached to the pupil position of the projection optical system of the projection exposure apparatus, so that the pupil modulation can be performed. It is possible to maximize the effect of improving the depth of focus and resolution obtained by the technology. Further, by having a structure that can be replaced with a filter that provides suitable exposure characteristics to the mask pattern in conjunction with the mask replacement, not only the exposure accuracy can be improved, but also the throughput can be improved.
【0022】[0022]
【実施例】以下、本発明の詳細を図示の実施例によって
説明する。The details of the present invention will be described below with reference to the illustrated embodiments.
【0023】図1は、本発明の一実施例に係わる投影露
光装置の概略構成を示す斜視図である。図1において、
1はランプ(光源)、2は楕円反射鏡であり、ランプ1
より出射された光はコールドミラー11により反射され
る。そして、インプットレンズ4を通り、さらにオプチ
カルインテグレータ(はえの目レンズ)5を通り、光源
変調フィルタ9に照射される。光源変調フィルタ9はレ
ボルバー式ホルダ21に複数枚セットされており、ホル
ダ21の回転により所定のフィルタ9が選択されるもの
となっている。FIG. 1 is a perspective view showing the schematic arrangement of a projection exposure apparatus according to an embodiment of the present invention. In FIG.
1 is a lamp (light source), 2 is an elliptical reflecting mirror,
The emitted light is reflected by the cold mirror 11. Then, the light passes through the input lens 4, and further through the optical integrator (fly-eye lens) 5, and is irradiated onto the light source modulation filter 9. A plurality of light source modulation filters 9 are set in the revolver holder 21, and a predetermined filter 9 is selected by rotating the holder 21.
【0024】フィルタ9を通った光は、アウトプットレ
ンズ6を通り、コールドミラー12で反射され、コリメ
ーションレンズ7を通り、レチクル(マスク)8に照射
される。レチクル8を通った光は、投影光学系レンズ1
4を通りウエハ15に照射される。ここで、投影光学系
14は複数に分離して構成されており、これらの間に
(投影光学系14の瞳位置に)空間周波数フィルタ(瞳
フィルタ)23が配置される。瞳フィルタ23はレボル
バー式ホルダ27に複数枚セットされており、ホルダ2
7の回転により所定のフィルタ23が選択されるものと
なっている。The light passing through the filter 9 passes through the output lens 6, is reflected by the cold mirror 12, passes through the collimation lens 7, and is applied to the reticle (mask) 8. The light passing through the reticle 8 is projected by the projection optical system lens 1
The wafer 15 is irradiated with the laser beam passing through 4. Here, the projection optical system 14 is divided into a plurality of parts, and a spatial frequency filter (pupil filter) 23 is arranged between them (at the pupil position of the projection optical system 14). A plurality of pupil filters 23 are set in the revolver type holder 27.
The predetermined filter 23 is selected by the rotation of 7.
【0025】なお、ホルダ27にセットする瞳フィルタ
23の種類は、本装置で露光すべき複数のマスクパター
ンにそれぞれ最適するものを予め選択しておけばよい。
同様に、ホルダ21にセットする光源変調フィルタ9の
種類も、露光すべき複数のマスクパターンにそれぞれ最
適するものを予め選択しておけばよい。The type of the pupil filter 23 set in the holder 27 may be selected in advance so as to be optimal for each of a plurality of mask patterns to be exposed by this apparatus.
Similarly, the type of the light source modulation filter 9 set in the holder 21 may be selected in advance so as to be optimal for each of the plurality of mask patterns to be exposed.
【0026】レチクル8には、これを転写するのに最適
な光源変調フィルタ9と瞳フィルタ23の情報(例えば
バーコード情報28)が刻まれており、このバーコード
情報28は読取り部17で読取られる。読取り部17で
読み取られた情報は、フィルタ選択演算部26に供給さ
れる。この演算部26の演算結果は、各ホルダ21,2
7の駆動部24,25にそれぞれ供給される。これによ
り、レチクル8の転写に最適するフィルタ9,23がそ
れぞれ選択されるものとなっている。The reticle 8 is engraved with information (for example, bar code information 28) on the light source modulation filter 9 and the pupil filter 23, which are optimal for transferring the reticle 8, and the bar code information 28 is read by the reading section 17. To be The information read by the reading unit 17 is supplied to the filter selection calculation unit 26. The calculation result of the calculation unit 26 is obtained by each holder 21, 2.
7 are supplied to the drive units 24 and 25, respectively. As a result, the filters 9 and 23 that are most suitable for the transfer of the reticle 8 are selected.
【0027】この装置の特徴は投影光学系にあり、投影
光学系の瞳面22を投影レンズ群14の外部に設ける構
成とし、この瞳面22に瞳フィルタ23を装着可能とし
たところにある。例えば、本レチクルで必要となる解像
力,焦点深度が、L/S=0.743(λ/NAでの規
格化寸法)で焦点深度を最大にしたい場合であれば、図
2で示すような、2次光源強度分布及び瞳位相分布を形
成するようなフィルタを装着すればよい。しかし、レチ
クルによって、L/S=0.5(λ/NAでの規格化寸
法)まで解像力が必要である場合には、図3より、光源
変調フィルタ9及び瞳フィルタ23を通常照明及び通常
NA開口絞りに変更する必要が生じる。又は、所望のパ
ターンサイズ、パターン種において最適化した光源変調
フィルタに交換するのが望ましい。そのような場合、フ
ィルタ選択演算部26を操作することによって、レボル
バー式ホルダ21,27を通常露光状態又はレチクル毎
に最適化された光源変調フィルタ及び瞳フィルタに設定
する。The characteristic of this apparatus is the projection optical system, in which the pupil surface 22 of the projection optical system is provided outside the projection lens group 14, and the pupil filter 23 can be attached to this pupil surface 22. For example, if it is desired to maximize the depth of focus with the resolving power and the depth of focus required for this reticle at L / S = 0.743 (normalized dimension in λ / NA), as shown in FIG. A filter that forms the secondary light source intensity distribution and the pupil phase distribution may be attached. However, when resolving power is required up to L / S = 0.5 (normalized dimension in λ / NA) depending on the reticle, from FIG. 3, the light source modulation filter 9 and the pupil filter 23 are set to normal illumination and normal NA. It will be necessary to change to an aperture stop. Alternatively, it is desirable to replace with a light source modulation filter optimized for a desired pattern size and pattern type. In such a case, by operating the filter selection calculation unit 26, the revolver holders 21 and 27 are set to the normal exposure state or the light source modulation filter and the pupil filter optimized for each reticle.
【0028】ここで、予めレチクル8にどのフィルタで
露光するのが好適であるかの情報をバーコード情報28
などで記録しておき、レチクル交換と同時に自動的に最
適フィルタに交換されるようにしておけばスループット
も向上され、より一層の効果が期待できる。また、好適
フィルタの選択手段はバーコード方式のみに限定され
ず、その他の識別方法に関して適用される。Here, the bar code information 28 is used to obtain information about which filter is preferable for exposing the reticle 8 in advance.
If it is recorded in such a manner that the reticle is exchanged and the optimum filter is automatically exchanged at the same time, the throughput can be improved and a further effect can be expected. Further, the selection means of the suitable filter is not limited to the bar code method, but is applied to other identification methods.
【0029】また、上記実施例においては、フィルタ交
換手段としてレボルバー式について示したが、図4,図
5など、その他各種の交換手段に関しても適用できる。
図4では、瞳フィルタ23を保持するホルダ27をスラ
イド式としている。図5では、瞳フィルタ23を保持す
るホルダ27を上下に移動するマガジン式とし、駆動部
25として瞳フィルタ23を1枚ずつ搬送する搬送アー
ムを用いている。Further, in the above embodiment, the revolver type was shown as the filter exchanging means, but it can be applied to various exchanging means other than those shown in FIGS.
In FIG. 4, the holder 27 that holds the pupil filter 23 is of a slide type. In FIG. 5, the holder 27 that holds the pupil filter 23 is of a magazine type that moves up and down, and a transport arm that transports the pupil filters 23 one by one is used as the drive unit 25.
【0030】このように本実施例によれば、光源変調フ
ィルタ9及び瞳フィルタ23を装着可能とし、しかもリ
ボルバー式ホルダ21,27を用い所望するマスクパタ
ーンにおける最適フィルタと簡易に交換可能としてい
る。このため、PCL露光,スーパーフレックス法等の
光源変調技術及び瞳変調技術によって得られる焦点深
度,解像力向上効果を最大限に発揮することができ、露
光精度の大幅な向上をはかることができる。As described above, according to this embodiment, the light source modulation filter 9 and the pupil filter 23 can be mounted, and the revolver type holders 21 and 27 can be used to easily replace the optimum filter for the desired mask pattern. Therefore, the effects of improving the depth of focus and the resolution obtained by the light source modulation technology and the pupil modulation technology such as the PCL exposure and the super flex method can be maximized, and the exposure accuracy can be greatly improved.
【0031】なお、本発明は上述した実施例に限定され
るものではない。実施例では、光源変調フィルタと瞳フ
ィルタの両方を交換可能に構成したが、瞳フィルタのみ
を交換可能に構成してもよい。また、ホルダにセットす
るフィルタの数は4個に限定されるものではなく、仕様
に応じて適宜変更可能である。さらに、フィルタ交換機
構も、図1,図4,図5の構成に限るものではなく、仕
様に応じて適宜変更可能である。その他、本発明の要旨
を逸脱しない範囲で、種々変形して実施することができ
る。The present invention is not limited to the above embodiment. In the embodiment, both the light source modulation filter and the pupil filter are exchangeable, but only the pupil filter may be exchangeable. Further, the number of filters set in the holder is not limited to four, and can be appropriately changed according to the specifications. Further, the filter exchange mechanism is not limited to the configuration shown in FIGS. 1, 4 and 5, but can be changed as appropriate according to the specifications. In addition, various modifications can be made without departing from the scope of the present invention.
【0032】[0032]
【発明の効果】以上詳述したように本発明によれば、投
影光学系の瞳位置に配置する瞳フィルタを交換可能に構
成し、マスクパターンに応じて最適な特性の瞳フィルタ
を用いることにより、解像力が高くかつ焦点深度が深い
状態で露光を行うことができ、露光精度の向上をはかる
ことが可能となる。As described above in detail, according to the present invention, the pupil filter arranged at the pupil position of the projection optical system is configured to be replaceable, and the pupil filter having the optimum characteristic according to the mask pattern is used. The exposure can be performed in a state where the resolving power is high and the depth of focus is deep, and the exposure accuracy can be improved.
【図1】本発明の一実施例に係わる投影露光装置の概略
構成を示す斜視図。FIG. 1 is a perspective view showing a schematic configuration of a projection exposure apparatus according to an embodiment of the present invention.
【図2】PCL露光法において最適化の結果得られたフ
ィルタ形状を示す図。FIG. 2 is a diagram showing a filter shape obtained as a result of optimization in the PCL exposure method.
【図3】図2のフィルタ装着によるL/Sパターンサイ
ズに対するDOFを示す図。FIG. 3 is a diagram showing DOF with respect to an L / S pattern size when the filter shown in FIG. 2 is attached.
【図4】光源フィルタ及び瞳フィルタの交換機構の他の
例を示す図。FIG. 4 is a view showing another example of a mechanism for exchanging a light source filter and a pupil filter.
【図5】光源フィルタ及び瞳フィルタの交換機構のさら
に別の例を示す図。FIG. 5 is a diagram showing still another example of the replacement mechanism of the light source filter and the pupil filter.
【図6】従来の投影露光装置を示す概略構成図。FIG. 6 is a schematic configuration diagram showing a conventional projection exposure apparatus.
【図7】従来の問題点を説明するための図。FIG. 7 is a diagram for explaining a conventional problem.
【図8】開口絞りの代わりに用いるフィルタの例を示す
図。FIG. 8 is a diagram showing an example of a filter used instead of an aperture stop.
【図9】従来装置におけるパターンサイズと焦点深度と
の関係を示す特性図。FIG. 9 is a characteristic diagram showing a relationship between a pattern size and a depth of focus in a conventional device.
1…光源 4…インプットレンズ 5…オプチカルインテグレータ(はえの目レンズ) 6…アウトプットレンズ 7…コリメーションレンズ 8…レチクル(マスク) 9…通常σ絞り又は光源変調フィルタ 11,12…コールドミラー 14…投影光学系 15…ウエハ 17…フィルタ選択情報読取り部 21…光源変調フィルタを取り付けるホルダ 22…投影光学系の瞳 23…空間周波数フィルタ(瞳フィルタ) 24…光源フィルタ交換のための駆動部 25…瞳フィルタ交換のための駆動部 26…フィルタ選択演算部 27…瞳フィルタを取り付けるホルダ 28…バーコード情報 DESCRIPTION OF SYMBOLS 1 ... Light source 4 ... Input lens 5 ... Optical integrator (fly-eye lens) 6 ... Output lens 7 ... Collimation lens 8 ... Reticle (mask) 9 ... Normal σ diaphragm or light source modulation filter 11, 12 ... Cold mirror 14 ... Projection Optical system 15 ... Wafer 17 ... Filter selection information reading unit 21 ... Holder for attaching light source modulation filter 22 ... Projection optical system pupil 23 ... Spatial frequency filter (pupil filter) 24 ... Driving unit for light source filter replacement 25 ... Pupil filter Drive unit for replacement 26 ... Filter selection calculation unit 27 ... Holder for attaching pupil filter 28 ... Bar code information
Claims (1)
エハ上に投影露光する投影露光装置において、 前記投影光学系の瞳位置に配置され、該瞳面の一部を通
過する露光光と他の部位を通過する露光光とで、複素振
幅のうち振幅又は位相の少なくとも1つに差異を生じさ
せる瞳フィルタと、 この瞳フィルタの特性の異なるもの複数個を保持するホ
ルダと、 パターン露光に供されるマスクに応じて前記ホルダ内の
最適な瞳フィルタを選択し、選択した瞳フィルタを前記
瞳位置の瞳フィルタと交換するフィルタ交換機構とを具
備してなることを特徴とする投影露光装置。1. A projection exposure apparatus for projecting and exposing a mask pattern onto a wafer through a projection optical system, the exposure light being arranged at a pupil position of the projection optical system, and passing through a part of the pupil plane. Of the exposure light that passes through the portion of the above-described region, a pupil filter that causes a difference in at least one of the amplitude or the phase among the complex amplitudes, a holder that holds a plurality of those having different characteristics of the pupil filter, and a pattern exposure. The projection exposure apparatus comprises a filter exchange mechanism for selecting an optimal pupil filter in the holder according to the mask to be exchanged and exchanging the selected pupil filter with the pupil filter at the pupil position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4332733A JPH06181159A (en) | 1992-12-14 | 1992-12-14 | Projection aligner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4332733A JPH06181159A (en) | 1992-12-14 | 1992-12-14 | Projection aligner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06181159A true JPH06181159A (en) | 1994-06-28 |
Family
ID=18258256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4332733A Pending JPH06181159A (en) | 1992-12-14 | 1992-12-14 | Projection aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06181159A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1832350A1 (en) * | 2004-12-27 | 2007-09-12 | Hoya Corporation | Optical lens coating apparatus |
JP2008131044A (en) * | 2006-11-22 | 2008-06-05 | Asml Holding Nv | Enhancement of image contrast of high resolution exposure tool |
-
1992
- 1992-12-14 JP JP4332733A patent/JPH06181159A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1832350A1 (en) * | 2004-12-27 | 2007-09-12 | Hoya Corporation | Optical lens coating apparatus |
EP1832350A4 (en) * | 2004-12-27 | 2011-11-30 | Hoya Corp | Optical lens coating apparatus |
JP2008131044A (en) * | 2006-11-22 | 2008-06-05 | Asml Holding Nv | Enhancement of image contrast of high resolution exposure tool |
US8054449B2 (en) | 2006-11-22 | 2011-11-08 | Asml Holding N.V. | Enhancing the image contrast of a high resolution exposure tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3075381B2 (en) | Projection exposure apparatus and transfer method | |
US8675177B2 (en) | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas | |
JPH07176475A (en) | Projecting exposure apparatus and manufacture of device using the same apparatus | |
JPH06120110A (en) | Projection aligner and exposure method | |
JPH04225357A (en) | Projection type exposure device | |
US7518707B2 (en) | Exposure apparatus | |
JPH05326370A (en) | Projection aligner | |
JP2005116831A (en) | Projection aligner, exposure method, and device manufacturing method | |
JP4591155B2 (en) | Exposure method and apparatus, and device manufacturing method | |
JP3259221B2 (en) | Projection aligner | |
JP3647270B2 (en) | Exposure method and exposure apparatus | |
JP3262074B2 (en) | Exposure method and exposure apparatus | |
JPH06181159A (en) | Projection aligner | |
JP3647271B2 (en) | Exposure method and exposure apparatus | |
JPH05102003A (en) | Projection aligner | |
JP2884848B2 (en) | Projection exposure apparatus and circuit pattern forming method | |
JP3102086B2 (en) | Projection exposure apparatus and method, and circuit element forming method | |
JP3337983B2 (en) | Exposure method and exposure apparatus | |
JP3230264B2 (en) | Projection exposure apparatus and method, and element manufacturing method | |
JP3298585B2 (en) | Projection exposure apparatus and method | |
JP3316761B2 (en) | Scanning exposure apparatus and device manufacturing method using the same | |
JP3278802B2 (en) | Mask and exposure method using the same | |
JP3316695B2 (en) | Scanning exposure method and device manufacturing method using the same, and scanning exposure apparatus and device manufacturing method using the same | |
JP3414392B2 (en) | Projection exposure equipment | |
JP3262073B2 (en) | Exposure method and exposure apparatus |