JPH06186340A - Radiation dose rate mapping unit - Google Patents
Radiation dose rate mapping unitInfo
- Publication number
- JPH06186340A JPH06186340A JP33579392A JP33579392A JPH06186340A JP H06186340 A JPH06186340 A JP H06186340A JP 33579392 A JP33579392 A JP 33579392A JP 33579392 A JP33579392 A JP 33579392A JP H06186340 A JPH06186340 A JP H06186340A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- dose rate
- distribution
- radiation source
- radiation dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は放射線作業空間の線量率
マップ作成装置に係り、特に、少ない放射線測定値数か
ら作業全空間の線量率分布を高精度に求めることができ
る放射線線量率マップ作成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation work space dose rate map creation apparatus, and more particularly, to a radiation dose rate map creation method capable of highly accurately obtaining a dose rate distribution in the entire work space from a small number of measured radiation values. Regarding the device.
【0002】[0002]
【従来の技術】原子力発電所等の放射線の存在する環境
下での作業に際しては、作業に従事する作業者の放射線
による外部被曝線量を出来るだけ低く抑える必要があ
る。したがって、作業計画を立案するに際しては、実際
の作業空間の放射線線量率を把握しておかなければなら
ない。2. Description of the Related Art When working in an environment where radiation is present, such as in a nuclear power plant, it is necessary to keep the external exposure dose of radiation of workers engaged in the work as low as possible. Therefore, the radiation dose rate in the actual work space must be known when planning a work plan.
【0003】従来、放射線線量率の測定は、(1)作業
空間の複数位置で直接線量率を測定する方法、(2)線
源分布を測定してこれに基づいて線量率を間接的に評価
する方法、の2種類の方法を実施していた。(1)に関
しては、携帯型放射線測定器を用いた人手による方法
と、特開昭59−122989号記載の様に放射線検出器を機械
的に走査する方法がある。(2)に関しては、特開昭56
−30664号や特開昭61 −139305号記載の様に指向性を有
した放射線検出器で測定した放射線測定値から作業空間
内の線源強度を評価し、この線源強度情報に基づいて作
業空間内の放射線線量率分布を間接的に測定する方法が
ある。Conventionally, the radiation dose rate is measured by (1) a method of directly measuring the dose rate at a plurality of positions in the work space, (2) measuring the radiation source distribution and indirectly evaluating the dose rate based on this. The two methods, i.e. Regarding (1), there are a method of manually using a portable radiation measuring instrument and a method of mechanically scanning a radiation detector as described in JP-A-59-122989. Regarding (2), JP-A-56
-30664 and Japanese Patent Laid-Open No. 61-139305, the radiation source intensity in the work space is evaluated from the radiation measurement values measured by the radiation detector having directivity, and work is performed based on this radiation source intensity information. There is a method of indirectly measuring the radiation dose rate distribution in space.
【0004】[0004]
【発明が解決しようとする課題】上記(1)に示した従
来技術の場合、線量率測定値がそのまま線量率分布に反
映するので、きめ細かな線量率分布を得るためには多数
の位置での放射線線量率測定が必要になる。原子力発電
所で通常に実施している定期検査の場合には作業空間が
広範囲に及ぶので測定ポイントは膨大になり、人手で測
定する場合には測定者の放射線被曝の問題を別に検討し
なければならない。また、放射線検出器を機械的に走査
する場合では、走査装置に多大な投資をしなければなら
ない。In the case of the prior art shown in the above (1), the measured dose rate is reflected in the dose rate distribution as it is. Therefore, in order to obtain a fine dose rate distribution, it is necessary to obtain the dose rate distribution at many positions. Radiation dose rate measurement is required. In the case of regular inspections that are normally performed at nuclear power plants, the work space is large, so the number of measurement points becomes enormous, and in the case of manual measurement, the issue of radiation exposure of the measurer must be considered separately. I won't. Moreover, when mechanically scanning the radiation detector, a large investment must be made in the scanning device.
【0005】上記(2)に示した従来技術の場合、線源
分布の推定精度が線量率分布の評価精度に反映するの
で、線源分布を出来るだけきめ細かく推定しなければな
らない。線源分布は放射能の存在する機器や配管等を仮
想的に小領域に分割し、この小領域内の線源強度として
求める。したがって、線源分布を高い精度で求めるに
は、放射能の存在する領域を出来るだけ小さな単位で領
域分割する必要がある。原子力発電所の場合、放射能の
存在する配管は長く、かつ、複雑に錯綜しているので、
小領域の数は膨大なものになる。線源分布を得るために
は、この分割した小領域数以上の空間的に独立な位置で
の放射線測定値が必要になる。このため、放射線測定に
係わる時間と費用が大きくなってしまう。In the case of the prior art described in (2) above, since the estimation accuracy of the radiation source distribution is reflected in the evaluation accuracy of the dose rate distribution, it is necessary to estimate the radiation source distribution as finely as possible. The radiation source distribution is calculated as the radiation source intensity within this small region by virtually dividing the equipment, pipes, etc. having radioactivity into small regions. Therefore, in order to obtain the radiation source distribution with high accuracy, it is necessary to divide the region where radioactivity is present into the smallest possible units. In the case of a nuclear power plant, the piping where radioactivity is present is long and complicated, so
The number of small areas becomes enormous. In order to obtain the radiation source distribution, radiation measurement values at spatially independent positions of the number of divided small regions or more are required. As a result, the time and cost involved in radiation measurement increase.
【0006】本発明の目的は、上記(2)の従来技術の
問題点に鑑み、線源分布の単位である小領域の数よりも
少ない数の放射線測定値から精度良く線源分布を推定
し、作業空間の放射線線量率分布を簡便にかつ高精度に
評価できる放射線線量率マップ作成方法および装置を提
供することにある。In view of the above-mentioned problem of the prior art of (2), the object of the present invention is to accurately estimate the radiation source distribution from the number of radiation measurement values smaller than the number of small regions which are units of the radiation source distribution. The object of the present invention is to provide a method and apparatus for creating a radiation dose rate map capable of easily and accurately evaluating the radiation dose rate distribution in the work space.
【0007】[0007]
【課題を解決するための手段】上記目的は、線源分布を
放射線測定値から一義的に求めるのではなく、線源分布
に関して予めわかっている情報を積極的に利用して線源
分布を近似的に求めることによって達成できる。The above-described object is not to uniquely obtain the radiation source distribution from the radiation measurement value, but to positively utilize the information known in advance regarding the radiation source distribution to approximate the radiation source distribution. Can be achieved by asking for it.
【0008】[0008]
【作用】作業空間内の線量率分布は、この空間を仮想的
に複数のメッシュに分割して評価することができ、一種
類の核種が空間線量率に寄与していることを仮定すれば
数1で表すことができる。[Function] The dose rate distribution in the work space can be evaluated by virtually dividing this space into multiple meshes, and if one type of nuclide contributes to the air dose rate, It can be represented by 1.
【0009】[0009]
【数1】 [Equation 1]
【0010】数1において、yは線量率分布のベクトル
(要素yi )、Aは応答マトリクス(要素aij)、xは
線源分布のベクトル(要素xj )であり、iとjはそれ
ぞれ線量率と線源に関するメッシュ番号である。作業空
間内の構造物・配管・機器等の配置は予め知ることがで
きるので、応答マトリクスAは、それら遮蔽物での減衰
・散乱を考慮した遮蔽計算コードで計算できる。したが
って、線源分布xを全て知ることができれば作業空間内
の線量率分布を評価できる。In equation 1, y is a vector of dose rate distribution (element y i ), A is a response matrix (element a ij ), x is a vector of source distribution (element x j ), and i and j are respectively It is a mesh number related to the dose rate and the radiation source. Since the arrangement of structures, pipes, devices, etc. in the work space can be known in advance, the response matrix A can be calculated by a shielding calculation code that takes into account attenuation / scattering at these shieldings. Therefore, if all of the radiation source distribution x can be known, the dose rate distribution in the work space can be evaluated.
【0011】原子力発電所の場合を例にとると、線源の
存在する場所は炉水に接する配管や機器であると特定で
きるので、数1において線源の存在するメッシュ番号は
既知情報として扱えるが、そのメッシュ番号内の線源強
度(線源分布)は一般に未知である。したがって作業全
空間の線量率分布yを得るためには、先ず線源分布xを
求めなければならない。数1から線源分布xを厳密に得
るためには、線源分布のメッシュ数(未知数)以上の空
間的に独立な線量率測定値が必要である。この場合、一
つの測定値は少なくとも一つの線源の存在するメッシュ
からの放射線の寄与を有するものでなければならない。
求めようとする線量率分布の精度は、線源分布の推定精
度に直接に依存するので、線源分布は小さな小領域単位
で求めることが必要である。したがって、実際問題とし
ては測定ポイント数がかなり多くなってしまう。Taking the case of a nuclear power plant as an example, the location where the radiation source exists can be specified as a pipe or equipment that is in contact with the reactor water, and therefore the mesh number where the radiation source exists can be treated as known information in equation (1). However, the source intensity (source distribution) within the mesh number is generally unknown. Therefore, in order to obtain the dose rate distribution y in the entire work space, the source distribution x must first be obtained. In order to obtain the radiation source distribution x exactly from the equation 1, spatially independent dose rate measurement values equal to or larger than the mesh number (unknown number) of the radiation source distribution are required. In this case, one measurement must have the radiation contribution from the mesh in which at least one source is present.
Since the accuracy of the dose rate distribution to be obtained directly depends on the estimation accuracy of the radiation source distribution, it is necessary to obtain the radiation source distribution in small small area units. Therefore, as a practical matter, the number of measurement points becomes considerably large.
【0012】未知数の数よりも少ない数の測定データか
ら未知数を求めようとする試みは、エミッションCTの
分野で実施している。これは、未知数を厳密に求めるの
ではなく、繰り返し演算によって未知数を近似的に求め
ようとするものである。この繰り返し演算の手法の一つ
として、最尤法に基づくEMアルゴリズムがある。Attempts to obtain an unknown number from a smaller number of measurement data than the unknown number are carried out in the field of emission CT. This is an attempt to obtain an unknown number approximately by an iterative operation, not to obtain the unknown number exactly. An EM algorithm based on the maximum likelihood method is one of the methods of this repetitive calculation.
【0013】EMアルゴリズムの演算手順は参考文献
(1):アイイーイーイートランザクション オン ニュ
クリア サイエンス(IEEE Transactions on Nuclear Sc
ience,Vol.35,No.1,p.611−614(1988))に示すよう
なものであり、これを線源分布測定へ適用した場合の手
順を数2に示す。The calculation procedure of the EM algorithm is described in Reference (1): IEEE Transactions on Nuclear Sc
ience, Vol. 35, No. 1, p. 611-614 (1988)), and the procedure when this is applied to the radiation source distribution measurement is shown in Equation 2.
【0014】[0014]
【数2】 [Equation 2]
【0015】数2において、上付きの ̄は推定値、下付
きのmは測定値、kは繰り返し演算回数である。In Equation 2, the superscript  ̄ is the estimated value, the subscript m is the measured value, and k is the number of repeated calculations.
【0016】さらに、原子力発電所では、複数系統の配
管が錯綜している場合がある。このような場合、同一系
統の炉水に接する配管を考えると、配管内面に付着した
放射能濃度の炉水経路方向の変化は緩やかであると考え
ることができる。この線源分布に関する既知情報は、数
3に示すスムージング処理として表現可能である。Further, in a nuclear power plant, there are cases where piping of a plurality of systems is complicated. In such a case, considering a pipe in contact with reactor water of the same system, it can be considered that the change in the radioactivity concentration adhering to the inner surface of the pipe in the reactor water route direction is gradual. The known information about the source distribution can be expressed as the smoothing process shown in Formula 3.
【0017】[0017]
【数3】 [Equation 3]
【0018】したがって、数2の演算手順に数3の処理
を加えることにより、線源分布の推定精度を飛躍的に高
めることができる。数3において、sは同一流路内にあ
るメッシュを炉水の流れに沿って順番に並べたメッシュ
番号、pはその総数、rは座標である。αとβは、近接
する2つのメッシュの座標と線源強度推定値から最小二
乗法によって求める。Therefore, by adding the processing of the equation 3 to the calculation procedure of the equation 2, the estimation accuracy of the radiation source distribution can be dramatically improved. In Expression 3, s is a mesh number in which meshes in the same flow channel are arranged in order along the flow of the reactor water, p is the total number thereof, and r is a coordinate. α and β are obtained by the method of least squares from the coordinates of two adjacent meshes and the radiation source intensity estimated value.
【0019】線源分布の推定値を知ることができれば、
作業空間内の線量率分布の評価値は数4で求めることが
できる。If the estimated value of the source distribution can be known,
The evaluation value of the dose rate distribution in the work space can be obtained by the equation 4.
【0020】[0020]
【数4】 [Equation 4]
【0021】以上の説明では一種類の核種のみが空間線
量率に寄与していることを仮定したが、実際には複数の
核種が空間線量率に寄与している。しかし、複数の核種
の放射能の比率が既知情報として利用できれば、一種類
の核種の場合と数学的には同じになる。線源は配管や機
器の内面の炉水に接している場所であるので、複数の核
種が存在する場合、それらの放射能比率は場所にあまり
依存しないと考えることができる。したがって、それら
の比率は別の測定で評価可能である。In the above description, it was assumed that only one type of nuclide contributes to the air dose rate, but in reality, a plurality of nuclides contributes to the air dose rate. However, if the radioactivity ratios of multiple nuclides can be used as known information, it will be mathematically the same as the case of one type of nuclide. Since the source of radiation is a place in contact with the reactor water on the inner surface of pipes and equipment, when multiple nuclides are present, their radioactivity ratio can be considered to be less dependent on the place. Therefore, their ratios can be evaluated by another measure.
【0022】[0022]
【実施例】以下、本発明の一実施例を図面を用いて説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0023】図1は、本発明の構成図を示したものであ
る。放射線測定値としては線量率を選んだ場合である。
単なる計数率を選んだ場合には、エネルギーを考慮した
係数を掛けることにより線量率へ変換することができ
る。線量率は、人力で測定しても、あるいは固定式の放
射線検出器や機械走査式の放射線測定器でも測定可能で
ある。この線量率測定値1は、線量率測定値入力装置か
ら、その測定位置(空間座標)の情報2とともに線源分
布推定装置に入力する。この入力方法は、マニュアルあ
るいはインターフェースを介した自動入力である。検出
器に指向性がある場合には、その指向性能と検出器の空
間的な向きを位置情報と共に入力する。検出器にコリメ
ータ等を線源分布推定装置では、線量率測定値の情報に
基づいて作業空間内の線源分布3を求め、これを線量率
分布生成装置に出力する。線量率分布生成装置では、任
意の空間位置での線量率を求め、求めた線量率4とその
位置(空間座標)を出力する。出力装置はCRTとハー
ドコピーからなり、線量率分布をCRT上にビジュアル
に表示すると共に、必要に応じて紙等に出力する。FIG. 1 is a block diagram of the present invention. This is the case when the dose rate is selected as the radiation measurement value.
If a simple counting rate is selected, it can be converted into a dose rate by multiplying it by a coefficient that takes energy into consideration. The dose rate can be measured manually, or with a fixed radiation detector or a mechanical scanning radiation meter. The dose rate measurement value 1 is input from the dose rate measurement value input device to the radiation source distribution estimation device together with the information 2 of the measurement position (spatial coordinate). This input method is manual or automatic input via an interface. When the detector has directivity, the directivity performance and the spatial orientation of the detector are input together with the position information. In the radiation source distribution estimation device, which includes a collimator as a detector, the radiation source distribution 3 in the working space is obtained based on the information of the dose rate measurement value, and this is output to the dose rate distribution generation device. The dose rate distribution generation device obtains a dose rate at an arbitrary spatial position, and outputs the obtained dose rate 4 and its position (spatial coordinate). The output device is composed of a CRT and a hard copy, which visually displays the dose rate distribution on the CRT and outputs it on paper or the like as necessary.
【0024】図2は線源分布推定装置の構成を示したも
のである。構造データ記憶装置は、作業空間の放射能の
存在する配管や機器等の配置データと放射能の存在しな
い放射線の遮蔽に寄与する構造材等の配置データを蓄え
たものである。メッシュ生成装置は、構造データ記憶装
置から放射能の存在する配管や機器等の配置データを読
みだし、この領域を任意の大きさの小領域に仮想的に分
割するものである。この場合、小領域の大きさは、最終
的に求めようとする線量率マップの精度を考慮して予め
設定しておく。また、小領域内の線源を一様分布として
扱うかあるいは点状線源として扱うかは、小領域の大き
さの場合と同様に線量率マップの精度を考慮して予め設
定しておく。応答マトリクス生成装置は、メッシュ生成
装置で作成した小領域にある線源が空間の任意の位置に
おける線量率にどの程度寄与するかを演算する装置であ
る。空間の位置は線量率測定位置2として演算する。演
算は、通常遮蔽計算で使用している方法で実施する。演
算に際しては、検出器の指向性を考慮して実施する。FIG. 2 shows the configuration of the radiation source distribution estimating device. The structure data storage device stores arrangement data of pipes and equipment in the work space where radioactivity is present and arrangement data of structural materials and the like that contribute to shielding of radiation where radioactivity is not present. The mesh generation device reads out the arrangement data of the pipes and equipment having radioactivity from the structural data storage device, and virtually divides this region into small regions of arbitrary size. In this case, the size of the small area is set in advance in consideration of the accuracy of the dose rate map to be finally obtained. Further, whether to treat the radiation source in the small region as a uniform distribution or the point radiation source is set in advance in consideration of the accuracy of the dose rate map as in the case of the size of the small region. The response matrix generation device is a device that calculates how much the radiation source in the small region created by the mesh generation device contributes to the dose rate at an arbitrary position in space. The position of the space is calculated as the dose rate measurement position 2. The calculation is performed by the method normally used in the occlusion calculation. In the calculation, the directivity of the detector is taken into consideration.
【0025】線源分布演算装置は、数2と数3に示した
繰り返し演算手法で作業空間内の線源分布を求める。数
1の応答マトリクスは応答マトリクス生成装置の出力
に、数1の線量率測定値は1の測定値に対応している。
また、メッシュ生成装置では線源分布の系統の識別情報
を出力し、応答マトリクス生成装置を介して線源分布演
算装置に線源分布の系統情報が入力される。The radiation source distribution calculation device obtains the radiation source distribution in the work space by the iterative calculation method shown in the equations (2) and (3). The response matrix of equation 1 corresponds to the output of the response matrix generator, and the dose rate measurement value of equation 1 corresponds to the measurement value of 1.
Further, the mesh generation device outputs the identification information of the system of the source distribution, and the system information of the source distribution is input to the source distribution calculation device via the response matrix generation device.
【0026】図3は、線量率分布生成装置の構成を示し
たものである。図2と同じ構造記憶装置とメッシュ生成
装置の出力に基づいて、応答マトリクス生成装置では評
価位置入力装置から入力した線量率評価位置5に対する
応答マトリクスを作成する。その演算手法は、図2に示
した線源分布推定装置の場合と同じである。線量率分布
演算装置では、数4にしたがって、線源分布推定値3を
用いて評価位置での線量率4を求める。FIG. 3 shows the configuration of the dose rate distribution generator. Based on the outputs of the same structure memory device and mesh generation device as in FIG. 2, the response matrix generation device creates a response matrix for the dose rate evaluation position 5 input from the evaluation position input device. The calculation method is the same as in the case of the radiation source distribution estimating apparatus shown in FIG. In the dose rate distribution calculation device, the dose rate 4 at the evaluation position is obtained using the radiation source distribution estimated value 3 according to Equation 4.
【0027】本実施例の効果を図4から図7を用いて説
明する。図4に示す様に作業平面として二次元のメッシ
ュを想定し、計算機シミュレーションを実施した。体系
の大きさは、10×10であり、作業空間内には放射線
を遮る遮蔽物がないことを想定した。図5は、シミュレ
ーションで使用した応答マトリクスの特性である。図6
は、作業空間内の想定した線源分布であり、メッシュ番
号1から10の分割した小領域の中央にのみ点線源があ
るとした。図7は、メッシュ番号1,4,7,10の中
心で線量率を測定した場合の線量率評価値を示したもの
である。線量率は指向性のない検出器で測定した場合で
ある。図7の結果は、未知数である線源の小領域数が1
0であるのに対して、4個の線量率測定値からでも線量
率を約5%以内の高精度で推定できることを示してい
る。The effects of this embodiment will be described with reference to FIGS. As shown in FIG. 4, a computer simulation was performed assuming a two-dimensional mesh as a work plane. The size of the system is 10 × 10, and it is assumed that there is no shield that blocks radiation in the work space. FIG. 5 shows the characteristics of the response matrix used in the simulation. Figure 6
Is the assumed radiation source distribution in the work space, and it is assumed that the point radiation source is located only in the center of the divided small areas of mesh numbers 1 to 10. FIG. 7 shows the dose rate evaluation value when the dose rate is measured at the centers of mesh numbers 1, 4, 7, and 10. Dose rate is when measured with a non-directional detector. The result of FIG. 7 shows that the number of small regions of the radiation source which is an unknown number is 1
While it is 0, it shows that the dose rate can be estimated with high accuracy within about 5% even from the four dose rate measurement values.
【0028】[0028]
【発明の効果】本発明によれば、少ない放射線測定値か
らでも詳細な線源分布を得ることができるので、作業空
間内の線量率分布を高い精度で求めることができる。し
たがって、線量率マップを作成する際の放射線測定に係
わる費用を大幅に削減でき、少なくとも半分以下にする
ことができる。According to the present invention, a detailed radiation source distribution can be obtained even from a small amount of radiation measurement values, so that the dose rate distribution in the working space can be obtained with high accuracy. Therefore, the cost related to radiation measurement when creating the dose rate map can be significantly reduced, and can be reduced to at least half or less.
【図1】本発明の一実施例を示したブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.
【図2】線源分布推定装置のブロック図。FIG. 2 is a block diagram of a radiation source distribution estimation device.
【図3】線量率分布生成装置のブロック図。FIG. 3 is a block diagram of a dose rate distribution generation device.
【図4】計算機シミュレーションの作業空間のメッシュ
分割の説明図。FIG. 4 is an explanatory diagram of mesh division of a computer simulation work space.
【図5】計算機シミュレーションで用いた応答マトリク
スの特性図。FIG. 5 is a characteristic diagram of a response matrix used in computer simulation.
【図6】計算機シミュレーションで用いた線源分布図。FIG. 6 is a radiation source distribution map used in computer simulation.
【図7】計算機シミュレーションの線量率評価結果の説
明図。FIG. 7 is an explanatory diagram of a dose rate evaluation result of computer simulation.
1…線量率測定値、2…測定位置の情報、3…線源分布
推定値、4…線量率評価値、5…線量率評価位置の情
報。1 ... Dose rate measurement value, 2 ... Measurement position information, 3 ... Source distribution estimated value, 4 ... Dose rate evaluation value, 5 ... Dose rate evaluation position information.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮井 裕史 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 (72)発明者 佐藤 克利 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Miyai 72-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Energy Research Laboratory (72) Inventor Katsutoshi Sato 7-2, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Hitachi Energy Research Laboratory
Claims (4)
マップを作成する装置において、放射線測定値の入力装
置と、作業空間内の構造物や機器等のうちで放射能の存
在が予め既知である領域を複数の小領域に仮想的に分割
し、分割した小領域の総数よりも少ない数の放射線測定
値から分割した全ての小領域内の線源強度を求める線源
分布測定装置と、前記線源分布測定装置からの出力に基
づいて任意の作業空間の線量率分布を求める線量率分布
生成装置と、その出力装置とを備えたことを特徴とする
放射線線量率マップ作成装置。1. An apparatus for creating a dose rate map of a radiation work space from radiation measurement values, wherein the presence of radioactivity is known in advance in the radiation measurement value input device and in the structures and devices in the work space. A certain area is virtually divided into a plurality of small areas, a radiation source distribution measuring device for obtaining the radiation source intensity in all the small areas divided from the radiation measurement value of the number smaller than the total number of the divided small areas, A radiation dose rate map creation device comprising: a dose rate distribution generation device that obtains a dose rate distribution of an arbitrary work space based on an output from a radiation source distribution measurement device; and an output device thereof.
の放射線測定位置と測定値を入力することのできる請求
項1に記載の放射線線量率マップ作成装置。2. The radiation dose rate map creating device according to claim 1, wherein the radiation measurement value input device is capable of inputting a radiation measurement position and a measurement value in a work space.
射能の存在する構造物と放射能の無い遮蔽物等の構造物
の配置データを蓄えた記憶装置と、放射能の存在する構
造物を任意の大きさの小領域に仮想的に分割するメッシ
ュ生成装置と、分割した小領域の線源が任意の空間位置
へ与える放射線の影響を求める応答マトリクス生成装置
と、線源分布を求める演算装置とからなる請求項1に記
載の放射線線量率マップ作成装置。3. The radiation source distribution estimating device includes a storage device for storing arrangement data of a structure in the work space in which a radioactivity exists and a structure such as a shield having no radioactivity, and a radioactivity. A mesh generator that virtually divides a structure into small areas of arbitrary size, a response matrix generator that obtains the effect of radiation on the spatial position of the divided small area source, and a source distribution The radiation dose rate map creation device according to claim 1, comprising a calculation device for obtaining the radiation dose rate map.
き空間の位置を入力する評価位置入力装置と、作業空間
内の放射能の存在する構造物と放射能の無い遮蔽物等の
構造物の配置データを蓄えた記憶装置と、放射能の存在
する構造物を任意の大きさの小領域に仮想的に分割する
メッシュ生成装置と、分割した小領域の線源が任意の空
間位置へ与える放射線の影響を求める応答マトリクス生
成装置と、線量率を求める演算装置とからなる請求項1
に記載の放射線線量率マップ作成装置。4. The dose rate generating device includes an evaluation position input device for inputting a position of a space in which a dose rate is to be evaluated, a structure in the work space where radioactivity exists, a shield having no radioactivity, and the like. A storage device that stores the arrangement data of the structure, a mesh generator that virtually divides the structure containing radioactivity into small areas of arbitrary size, and the radiation source of the divided small areas is the arbitrary spatial position. 2. A response matrix generation device for determining the influence of radiation on the radiation and a calculation device for determining the dose rate.
The radiation dose rate map creation device described in.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33579392A JPH06186340A (en) | 1992-12-16 | 1992-12-16 | Radiation dose rate mapping unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33579392A JPH06186340A (en) | 1992-12-16 | 1992-12-16 | Radiation dose rate mapping unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06186340A true JPH06186340A (en) | 1994-07-08 |
Family
ID=18292499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33579392A Pending JPH06186340A (en) | 1992-12-16 | 1992-12-16 | Radiation dose rate mapping unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06186340A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013113594A (en) * | 2011-11-25 | 2013-06-10 | Hitachi-Ge Nuclear Energy Ltd | Apparatus and method for evaluating spatial dose |
JP2013113610A (en) * | 2011-11-25 | 2013-06-10 | Hitachi-Ge Nuclear Energy Ltd | Method and apparatus for measuring radiation |
JP2013195274A (en) * | 2012-03-21 | 2013-09-30 | Shimizu Corp | Three-dimensional dose evaluation mapping system and method therefor |
JP2014126429A (en) * | 2012-12-26 | 2014-07-07 | Chubu Electric Power Co Inc | Radiation display method and radiation display device |
KR101536950B1 (en) * | 2014-03-20 | 2015-07-17 | 한국원자력연구원 | An apparatus and method for simulation of measuring exposure dose |
JP2016090545A (en) * | 2014-11-11 | 2016-05-23 | 日立Geニュークリア・エナジー株式会社 | Radiation source mapping system and radiation source mapping processing method |
JP2016223876A (en) * | 2015-05-29 | 2016-12-28 | 東京電力ホールディングス株式会社 | Radiation dose predicting device, radiation dose predicting method, and radiation dose predicting program |
WO2017014359A1 (en) * | 2015-07-20 | 2017-01-26 | 한국원자력연구원 | Apparatus and method for simulation of dismantling operation of nuclear facility |
KR101875120B1 (en) * | 2016-10-31 | 2018-07-06 | 한국수력원자력 주식회사 | Apparatus and method for 2 dimension radiation map |
JP2019105502A (en) * | 2017-12-12 | 2019-06-27 | 株式会社東芝 | Learning model manufacturing method and contamination density calculation method and contamination density calculation device |
JP2021120670A (en) * | 2020-01-31 | 2021-08-19 | 大成建設株式会社 | Radioactivity estimation device and program thereof |
JP2021196179A (en) * | 2020-06-09 | 2021-12-27 | 三菱重工業株式会社 | Dose estimation device, method for estimating dose, and dose estimation program |
-
1992
- 1992-12-16 JP JP33579392A patent/JPH06186340A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013113594A (en) * | 2011-11-25 | 2013-06-10 | Hitachi-Ge Nuclear Energy Ltd | Apparatus and method for evaluating spatial dose |
JP2013113610A (en) * | 2011-11-25 | 2013-06-10 | Hitachi-Ge Nuclear Energy Ltd | Method and apparatus for measuring radiation |
JP2013195274A (en) * | 2012-03-21 | 2013-09-30 | Shimizu Corp | Three-dimensional dose evaluation mapping system and method therefor |
JP2014126429A (en) * | 2012-12-26 | 2014-07-07 | Chubu Electric Power Co Inc | Radiation display method and radiation display device |
KR101536950B1 (en) * | 2014-03-20 | 2015-07-17 | 한국원자력연구원 | An apparatus and method for simulation of measuring exposure dose |
JP2016090545A (en) * | 2014-11-11 | 2016-05-23 | 日立Geニュークリア・エナジー株式会社 | Radiation source mapping system and radiation source mapping processing method |
JP2016223876A (en) * | 2015-05-29 | 2016-12-28 | 東京電力ホールディングス株式会社 | Radiation dose predicting device, radiation dose predicting method, and radiation dose predicting program |
WO2017014359A1 (en) * | 2015-07-20 | 2017-01-26 | 한국원자력연구원 | Apparatus and method for simulation of dismantling operation of nuclear facility |
US10303824B2 (en) | 2015-07-20 | 2019-05-28 | Korea Atomic Energy Research Institute | Apparatus and method for simulation of dismantling operation of nuclear facility |
KR101875120B1 (en) * | 2016-10-31 | 2018-07-06 | 한국수력원자력 주식회사 | Apparatus and method for 2 dimension radiation map |
JP2019105502A (en) * | 2017-12-12 | 2019-06-27 | 株式会社東芝 | Learning model manufacturing method and contamination density calculation method and contamination density calculation device |
JP2021120670A (en) * | 2020-01-31 | 2021-08-19 | 大成建設株式会社 | Radioactivity estimation device and program thereof |
JP2021196179A (en) * | 2020-06-09 | 2021-12-27 | 三菱重工業株式会社 | Dose estimation device, method for estimating dose, and dose estimation program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8405786B2 (en) | Radiation measurement | |
US6163589A (en) | Monte Carlo scatter correction method for computed tomography of general object geometries | |
US7262417B2 (en) | Method and system for improved image reconstruction and data collection for compton cameras | |
JP5289542B2 (en) | Air dose evaluation apparatus and method | |
JPH06186340A (en) | Radiation dose rate mapping unit | |
JP2010508522A (en) | Statistical tomographic reconstruction method by charged particle measurement | |
Thepaut et al. | Variational inversion of simulated TOVS radiances using the adjoint technique | |
JP6582558B2 (en) | Dose prediction apparatus, dose prediction method, and dose prediction program | |
Huo et al. | Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations | |
Krah et al. | Polynomial modelling of proton trajectories in homogeneous media for fast most likely path estimation and trajectory simulation | |
Frey et al. | Spatial properties of the scatter response function in SPECT | |
Wright et al. | An evaluation of the single orientation method for texture determination in materials of moderate texture strength | |
JP2004150901A (en) | Positioning error simulation system, positioning error evaluation method, program for positioning error simulation, and storage medium for storing the program | |
KR102374327B1 (en) | A 3D System for Estimating Radioactivity of Equipment Elements and Representing Radiation Maps in Nuclear Power Plants | |
Andronopoulos et al. | RODOS-DIPCOT model description and evaluation | |
Bruggeman et al. | Solidang, a computer code for the computation of the effective solid angle and correction factors for gamma spectroscopy-based waste assay | |
Tabary et al. | Coupling photon Monte Carlo simulation and CAD software. Application to x-ray nondestructive evaluation | |
Likhachov et al. | Three-dimensional tomography with finite aperture beams | |
CN114201918A (en) | Equipment disassembly and assembly sequence planning method for nuclear decommissioning | |
Boag et al. | Analysis of three‐dimensional acoustic scattering from doubly periodic structures using a source model | |
Chizhov et al. | The development and application of a method for assessing radionuclide surface contamination density based on measurements of ambient dose equivalent rate | |
Qureshi et al. | Determination of optimal number of projections and parametric sensitivity analysis of operators for parallel‐ray transmission tomography using hybrid continuous genetic algorithm | |
EP0981765A1 (en) | Improvements in and relating to monitoring | |
JP7399031B2 (en) | Dose estimation device, dose estimation method, and dose estimation program | |
Royle et al. | Compton scatter imaging of a nuclear industry site |