[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06185301A - Blade of turbine - Google Patents

Blade of turbine

Info

Publication number
JPH06185301A
JPH06185301A JP20228793A JP20228793A JPH06185301A JP H06185301 A JPH06185301 A JP H06185301A JP 20228793 A JP20228793 A JP 20228793A JP 20228793 A JP20228793 A JP 20228793A JP H06185301 A JPH06185301 A JP H06185301A
Authority
JP
Japan
Prior art keywords
blade
cooling
cooling fluid
height direction
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20228793A
Other languages
Japanese (ja)
Other versions
JP2645209B2 (en
Inventor
Yuji Nakada
裕二 中田
Katsuji Iwamoto
勝治 岩本
Yasuo Okamoto
安夫 岡本
Fumio Otomo
文雄 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5202287A priority Critical patent/JP2645209B2/en
Publication of JPH06185301A publication Critical patent/JPH06185301A/en
Application granted granted Critical
Publication of JP2645209B2 publication Critical patent/JP2645209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide a blade of a turbine capable of favourably cooling each part of the blade by way of using a cooling fluid in the amount not to lower output of the turbine. CONSTITUTION:This is furnished with a first cooling passage 11 provided in a blade front edge part and mainly discharging a cooling fluid outside after introducing it in the blade height direction in the inside of a blade main body 1, a second cooling of passage 12 provided in a blade intermediate part independent this first cooling passage 11 and mainly discharging the cooling fluid outside after introducing it along the blade height direction in the inside of the blade main body 1 and returning it twice around the side of the front edge part of the blade main body 1, and a third coiling passage 13 provided in a blade rear edge part independent of these second cooling passage 12 and first cooling passage 11 and mainly discharging the cooling fluid outside from the rear edge of the blade main body 1 after introducing it along the blade height direction in the inside of the blade main body 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タービンの翼に係り、
特に工業用タービン・エンジンの第1段に使用されるよ
うな冷却を必要とするタービンの翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine blade,
In particular, it relates to turbine blades requiring cooling such as those used in the first stage of industrial turbine engines.

【0002】[0002]

【従来の技術】タービン・エンジン等では、一般に、燃
焼するガスによって駆動されるタービン自身が、燃焼器
へ空気を供給する送風機又は圧縮機を駆動する、自力的
駆動方式が採用されている。かかるタービンの出力効率
を高めるために、最も有効な方法は、タービン入口にお
ける燃焼ガス温度を高めることであるが、上記温度はタ
ービンの翼を構成する材料の耐熱応力性あるいは高温酸
化・腐食等に耐える能力により制限される。
2. Description of the Related Art In turbine engines and the like, generally, a self-driven system is adopted in which a turbine itself driven by burning gas drives a blower or a compressor which supplies air to a combustor. In order to increase the output efficiency of such a turbine, the most effective method is to raise the combustion gas temperature at the turbine inlet, but the above temperature may cause heat stress resistance or high temperature oxidation / corrosion of the material forming the blades of the turbine. Limited by your ability to withstand.

【0003】そこで、従来は翼の内部に冷却流体を通流
させる流路を備えた対流式のタービンの翼が用いられて
いる。しかし、この対流式のタービンの翼にあっては、
所定のタービン入口ガス温度に対して、タービン翼の温
度を許容値以内に保つために使用する冷却流体の量が過
大であり、満足できるものではなかった。すなわち、冷
却流体の量が多いと、翼の温度は明らかに低下するが、
逆に、翼の空力損失が増大し、またタービン出力効率も
低下する。このため、少ない冷却流体で翼を良好に冷却
できるものの出現が望まれているのが実状である。
Therefore, conventionally, a blade of a convection type turbine having a passage for allowing a cooling fluid to flow inside the blade has been used. However, in the blade of this convection type turbine,
For a given turbine inlet gas temperature, the amount of cooling fluid used to keep the temperature of the turbine blades within an allowable value is too large, which is not satisfactory. That is, if the amount of cooling fluid is large, the blade temperature will obviously decrease,
On the contrary, the aerodynamic loss of the blade increases and the turbine output efficiency also decreases. Therefore, in reality, it is desired to develop a blade that can cool the blade well with a small amount of cooling fluid.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、ター
ビン出力を低下させることのない量の冷却流体を使って
翼の各部を良好に冷却でき、また比較的安価に製造可能
なタービンの翼を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, the present invention provides a turbine blade that can be satisfactorily cooled with a cooling fluid in an amount that does not reduce the turbine output, and that can be manufactured at a relatively low cost. It is intended to be provided.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、翼根部の基端部に入口を有するとともに
上記入口から翼根部の内部および翼本体の内部を経由し
て翼外に通じる冷却流路を備え、上記入口を冷却流体供
給部に接続するようにしたタービンの翼において、翼前
縁部内に設けられ、主として冷却流体を前記翼根部の内
部および前記翼本体の内部に翼の高さ方向に沿って形成
された経路で導く流路および上記流路に案内された冷却
流体を上記翼本体の外部へ排出させる排出孔を備えてな
る第1の冷却流路と、この第1の冷却流路とは独立して
翼中間部内に設けられ、主として冷却流体を前記翼根部
の内部および前記翼本体の内部に翼の高さ方向に沿って
形成された経路で導いた後に上記翼本体の高さ方向先端
部近傍で上記翼本体の前縁部側回りにリターンさせて上
記翼本体の基端部近傍まで案内し、さらに上記基端部近
傍から上記翼本体の前縁部側回りにリターンさせて上記
翼本体の高さ方向先端部近傍まで案内する屈折流路およ
び上記屈折流路の少なくとも最下流領域に案内された冷
却流体を上記翼本体の外部へ排出させる排出孔を備えて
なる第2の冷却流路と、この第2の冷却流路および前記
第1の冷却流路とは独立に翼後縁部内に設けられ、主と
して冷却流体を前記翼根部の内部および前記翼本体の内
部に翼の高さ方向に沿って形成された経路で導く流路お
よび上記流路に案内された冷却流体を上記翼本体の後縁
から外部へ排出させる流路を備えてなる第3の冷却流路
とを設けたことを特徴としている。
In order to achieve the above object, the present invention has an inlet at the base end portion of a blade root portion and an outside of the blade from the inlet through the inside of the blade root portion and the inside of the blade body. In a blade of a turbine, which is provided with a cooling flow path leading to a cooling fluid supply part, the cooling fluid is mainly provided inside the blade root part and inside the blade main body. A first cooling flow path having a flow path formed by a path formed along the height direction of the blade and a discharge hole for discharging the cooling fluid guided in the flow path to the outside of the blade main body; After being provided in the blade middle part independently of the first cooling flow path, after mainly guiding the cooling fluid through a path formed along the height direction of the blade inside the blade root and inside the blade body. In the vicinity of the height direction tip of the wing body, To the vicinity of the base end portion of the wing body, and then return to the vicinity of the base end portion of the wing body from the vicinity of the base end portion of the wing body to the tip in the height direction of the wing body. A second cooling flow passage having a refraction flow passage for guiding the vicinity of the blade and a discharge hole for discharging the cooling fluid guided at least in the most downstream region of the refraction flow passage to the outside of the blade body; Is provided in the blade trailing edge portion independently of the cooling passage and the first cooling passage, and a cooling fluid is mainly formed inside the blade root portion and inside the blade body along the height direction of the blade. And a third cooling flow path having a flow path for guiding the cooling fluid guided to the flow path to the outside from the trailing edge of the blade body.

【0006】[0006]

【作用】第1,第2,第3つの冷却流路は、翼内におい
て完全に独立している。このため、各冷却流路への冷却
流体供給圧力を一定とした場合、従来の翼のように1つ
あるいは2つの内部流路だけを設けたものに較べて冷却
流体の流速が増加する。この結果、対流による冷却効果
が向上し、結果的に冷却流体の供給圧力を低下でき、冷
却流体の量の減少化が可能となり、空力損失の減少化な
らびに効率の向上化に寄与できる。また、3つの冷却流
路が完全に独立しているので、各冷却流路内の圧力が互
いに干渉することがなく、各冷却通路に設定通りの冷却
流体を通流させることが可能となり、最少の流量で最大
の冷却効果を発揮させることが可能となる。また、第2
の冷却流路では、翼中間部領域内の後縁部から翼中間部
領域内の前縁部に向けて屈折しながら延びる流路構成と
なっているので、翼中間部領域内の後縁部を延びる流路
部分からフイルム冷却用の排出孔を介して翼中間部領域
の後縁部外面に冷却流体を噴出させてフイルム冷却する
ようにすると、翼の形状に起因する特性から翼中間部領
域の後縁部を良好に冷却できる。したがって、第2の冷
却流路を流れる冷却流体が第2の冷却流路の後流域に達
するまでに温度上昇してしまうのを防止でき、この結
果、少ない量の冷却流体で翼中間部領域の前縁部を良好
に冷却することが可能となる。
The first, second, and third cooling channels are completely independent within the blade. For this reason, when the cooling fluid supply pressure to each cooling flow path is constant, the flow velocity of the cooling fluid increases as compared with a conventional blade provided with only one or two internal flow paths. As a result, the cooling effect by convection is improved, the supply pressure of the cooling fluid can be reduced as a result, the amount of the cooling fluid can be reduced, and the aerodynamic loss can be reduced and the efficiency can be improved. Further, since the three cooling channels are completely independent, the pressures in the respective cooling channels do not interfere with each other, and it is possible to allow the cooling fluid to flow through the respective cooling passages as set. It is possible to maximize the cooling effect at the flow rate of. Also, the second
In the cooling flow path of, since the flow path configuration extends while bending from the trailing edge portion in the blade middle area toward the leading edge portion in the blade middle area, the trailing edge portion in the blade middle area is formed. When the cooling fluid is jetted from the flow path portion extending through the exhaust hole for film cooling to the outer surface of the trailing edge portion of the blade intermediate portion area to cool the film. The trailing edge of the can be cooled well. Therefore, it is possible to prevent the temperature of the cooling fluid flowing through the second cooling passage from rising before reaching the wake region of the second cooling passage, and as a result, a small amount of the cooling fluid can be applied to the blade middle region. It is possible to cool the leading edge satisfactorily.

【0007】[0007]

【実施例】図1は本発明をタービンの動翼に適用した一
実施例の外観を示すものである。すなわち、この動翼
は、大きく分けて、翼本体1と、この翼本体1を支持す
る翼根部2と、プラットホーム部3とから構成されてい
る。
FIG. 1 shows the appearance of an embodiment in which the present invention is applied to a turbine rotor blade. That is, the moving blade is roughly divided into a blade body 1, a blade root portion 2 that supports the blade body 1, and a platform portion 3.

【0008】翼本体1,翼根部2およびプラットホーム
部3は、翼本体1の先端壁X(図2参照)だけを残して
精密鋳造によって一体的に形成されたもので、先端壁X
は溶接あるいは拡散接合によって接合されている。
The blade body 1, the blade root portion 2 and the platform portion 3 are integrally formed by precision casting, leaving only the tip wall X (see FIG. 2) of the blade body 1.
Are joined by welding or diffusion bonding.

【0009】翼本体1内と翼根部2内とには、図2およ
び図3に示すように翼本体1の高さ方向に延びる3つの
冷却流体系統11,12,13が仕切壁14,15によ
って形成されており、これら冷却流体系統11,12,
13の翼根部2内に位置する端部は、図示しない回転軸
に設けられた冷却流体供給路に接続されている。
In the blade body 1 and the blade root portion 2, as shown in FIGS. 2 and 3, three cooling fluid systems 11, 12, 13 extending in the height direction of the blade body 1 are provided as partition walls 14, 15. Are formed by these cooling fluid systems 11, 12,
An end portion of the blade 13 located inside the blade root portion 2 is connected to a cooling fluid supply passage provided on a rotating shaft (not shown).

【0010】仕切壁14は、翼本体1の根本部近傍にお
いて2つの分岐壁14a,14bに分岐し、これら分岐
壁14a,14bは前述した先端壁Xの内面近くまで延
びている。そして、分岐壁14a,14b間には、この
分岐壁14a,14bの間にU字形の流路16を構成す
る壁17が設けられている。
The partition wall 14 branches into two branch walls 14a and 14b in the vicinity of the root of the blade main body 1, and these branch walls 14a and 14b extend close to the inner surface of the tip wall X described above. Further, between the branch walls 14a and 14b, a wall 17 that constitutes a U-shaped flow path 16 is provided between the branch walls 14a and 14b.

【0011】前記第1の冷却系統11は、翼根部2から
翼本体1の先端部近傍まで延びるように仕切壁14と前
縁部Fの近傍に設けられた仕切壁18とによって形成さ
れた直線状の流路19と、仕切壁18と前縁部Fの外面
との間に形成された空洞20と、仕切壁18に複数設け
られた小孔21と、空洞20と前縁部Fの外面との間に
存在する壁22に複数設けられたフィルム冷却用の排出
孔23とで構成されている。
The first cooling system 11 is a straight line formed by a partition wall 14 extending from the blade root 2 to the vicinity of the tip of the blade body 1 and a partition wall 18 provided in the vicinity of the front edge F. -Shaped channel 19, a cavity 20 formed between the partition wall 18 and the outer surface of the front edge portion F, a plurality of small holes 21 provided in the partition wall 18, and an outer surface of the cavity 20 and the front edge portion F. And a plurality of discharge holes 23 for cooling the film provided on the wall 22 existing between.

【0012】したがって、この第1の冷却系統11に供
給された冷却流体は、翼根部2から流入し、流路19を
翼高さ方向に流れ、先端壁X付近に達するが、その間
に、仕切壁18に設けられた複数の小孔21から空洞2
0内に噴射流入し、さらに、壁22に設けられた複数の
排出孔23を通過して、翼外部に流出する。なお、図中
24は流路19の翼背側の内面および翼腹側の内面の両
者にそれぞれ突設され、対流冷却効果を増進させるため
の攪拌ストリップを示している。
Therefore, the cooling fluid supplied to the first cooling system 11 flows in from the blade root portion 2, flows in the flow passage 19 in the blade height direction, and reaches the vicinity of the tip wall X. Cavity 2 from a plurality of small holes 21 provided in the wall 18
Injected into 0, further passes through a plurality of discharge holes 23 provided in the wall 22, and flows out to the outside of the blade. In the figure, reference numeral 24 denotes a stirring strip projecting on both the inner surface of the flow passage 19 on the blade back side and the inner surface of the blade ventral side to enhance the convection cooling effect.

【0013】この第1の冷却系統11の冷却性能は、主
に、流路19における対流冷却効果、冷却流体が流路1
9から小孔21を通過し壁22の内面に噴流として衝突
することによるインピンジ冷却効果、排出孔23の内面
の対流冷却効果および上記排出孔23を介して翼外に吹
出した冷却流体が翼外表面、すなわち前縁部Fならびに
この前縁部Fの背側,腹側に沿って流れることによるフ
ィルム冷却効果の相乗効果で与えられる。
The cooling performance of the first cooling system 11 is mainly due to the convection cooling effect in the flow passage 19 and the cooling fluid flowing in the flow passage 1.
9 through the small holes 21 and impinging on the inner surface of the wall 22 as a jet flow, the impingement cooling effect, the convection cooling effect on the inner surface of the discharge hole 23, and the cooling fluid blown out of the blade through the discharge hole 23 It is given by the synergistic effect of the film cooling effect by flowing along the surface, that is, the front edge portion F and the back side and the ventral side of the front edge portion F.

【0014】前記第2の冷却系統12は、仕切壁14と
15との間に形成され翼根部2から翼本体1の先端壁X
の近傍まで延びた後、前記U字形の流路に通じた屈折流
路31と、この屈折流路31を構成する翼本体1の腹側
の壁に複数設けられた排出孔32(図3参照)とを主体
にして構成されている。
The second cooling system 12 is formed between the partition walls 14 and 15 and extends from the blade root portion 2 to the tip wall X of the blade body 1.
, And a plurality of discharge holes 32 provided in the ventral wall of the blade body 1 forming the refraction channel 31 (see FIG. 3). ) And is mainly composed.

【0015】したがって、この第2の冷却系統12に導
かれた冷却流体は、仕切壁14と15との間を翼根部か
ら翼本体1の先端部へ向けて流れた後、前縁部側回りに
180度リターンして分岐壁14bと壁17との間を流
れ、その後、翼本体1の根本部分において再び前縁部側
回りに180度リターンして分岐壁14aと壁17との
間を翼先端部付近まで流れる。この間に、この屈折流路
31を構成する翼本体1の腹側の壁に設けられた排出孔
32から翼外へと流れる。なお、図中33は第1の冷却
系統11と同様に設けられた攪拌ストリップを示し、ま
た34は先端壁Xに設けられた排出孔を示している。
Therefore, the cooling fluid guided to the second cooling system 12 flows between the partition walls 14 and 15 from the blade root portion toward the tip portion of the blade body 1, and then rotates around the leading edge side. 180 degrees to flow between the branch wall 14b and the wall 17, and then return again 180 degrees around the front edge portion at the root portion of the wing body 1 to return the wing between the branch wall 14a and the wall 17. It flows to near the tip. During this time, the air flows out of the blade through the discharge hole 32 provided in the ventral wall of the blade main body 1 forming the refraction channel 31. In the figure, 33 indicates a stirring strip provided similarly to the first cooling system 11, and 34 indicates a discharge hole provided in the tip wall X.

【0016】この第2の冷却系統12の冷却性能は、屈
折流路31での対流冷却効果、排出孔32,34内での
対流冷却効果、排出孔32,34から吹出した冷却流体
が翼の腹側外面および先端部外面に沿って流れることに
よるフィルム冷却効果によって与えられる。
The cooling performance of the second cooling system 12 is such that the convection cooling effect in the refraction channel 31, the convection cooling effect in the discharge holes 32 and 34, and the cooling fluid blown out from the discharge holes 32 and 34 are the blades. It is provided by the film cooling effect by flowing along the ventral outer surface and the tip outer surface.

【0017】なお、屈折流路31は途中の複数個所にお
いて、排出孔32から冷却流体を翼外へ排出しているの
下流に向かうにしたがって通過する冷却流体の量が徐々
に減少し、対流冷却効果が低下する虞れがあるので、こ
の実施例では、下流に向かうにしたがって通路断面積を
減少させ、これによって流速をほぼ一定に保つようにし
ている。また流路の圧力損失を少なくするという観点か
ら2つのリターン部はなめらかな曲率で変化する曲率路
に形成されている。
At a plurality of locations along the refraction channel 31, the cooling fluid is discharged from the discharge holes 32 to the outside of the blade, and the amount of the cooling fluid passing therethrough gradually decreases, and convection cooling is performed. Since the effect may be reduced, in this embodiment, the passage cross-sectional area is reduced toward the downstream side, thereby keeping the flow velocity substantially constant. Further, from the viewpoint of reducing the pressure loss of the flow path, the two return parts are formed in a curvature path that changes with a smooth curvature.

【0018】前記第3の冷却系統13は、翼の後縁部側
を冷却するためのもので、仕切壁15と翼本体1の後縁
部側に設けられた仕切壁41との間に翼根部2から翼本
体1の先端壁Xの近辺に至るまで延びる流路42と、仕
切壁41と翼本体1の後縁部Rとの間に形成された空洞
43と、仕切壁41に設けられた複数の小孔44と、空
洞43と後縁部Rとの間に存在する壁45に設けられた
複数の排出孔46とで構成されている。
The third cooling system 13 is for cooling the trailing edge side of the blade, and is provided between the partition wall 15 and the partition wall 41 provided on the trailing edge side of the blade body 1. The flow passage 42 extending from the root portion 2 to the vicinity of the tip wall X of the blade body 1, a cavity 43 formed between the partition wall 41 and the trailing edge R of the blade body 1, and the partition wall 41 are provided. It is composed of a plurality of small holes 44 and a plurality of discharge holes 46 provided in the wall 45 existing between the cavity 43 and the rear edge portion R.

【0019】したがって、この第3の冷却系統13に導
かれた冷却流体は、翼根部2から流路42内を翼本体1
の先端部側へと流れた後、小孔44を通って空洞43内
に流れ込み、次に排出孔46を通って翼外へと流れる。
なお、図中47は、攪拌ストリップを示している。
Therefore, the cooling fluid guided to the third cooling system 13 flows from the blade root portion 2 through the flow passage 42 into the blade main body 1.
After flowing to the tip side of the blade, it flows into the cavity 43 through the small hole 44, and then to the outside of the blade through the discharge hole 46.
In the figure, 47 indicates a stirring strip.

【0020】この第3の冷却系統13の冷却性能は、流
路42での対流冷却効果、小孔44を通過した冷却流体
が噴流となって壁45の内面に衝突することによるイン
ピンジ冷却効果および排出孔46の内面における対流冷
却効果によって与えられる。
The cooling performance of the third cooling system 13 includes the convective cooling effect in the flow path 42, the impingement cooling effect due to the cooling fluid passing through the small holes 44 forming a jet and colliding with the inner surface of the wall 45. It is provided by the convective cooling effect on the inner surface of the discharge hole 46.

【0021】一方、第1,第2,第3の冷却系統11,
12,13の翼根部2に位置する冷却流体導入口には、
各冷却系統11,12,13に流入する冷却流体の流量
を細かに調整するオリフィスプレート51が着脱自在に
設けられている。
On the other hand, the first, second and third cooling systems 11,
The cooling fluid introduction ports located at blade roots 2 of 12 and 13 are
An orifice plate 51 for finely adjusting the flow rate of the cooling fluid flowing into each cooling system 11, 12, 13 is provided detachably.

【0022】これは次のような理由に基づく。すなわ
ち、上記構成の翼は、翼の内部から外部へ冷却流体を吹
出す、いわゆるフィルム冷却用の排出孔を多用している
ため、少ない流量で冷却効果を得るには各冷却系統間の
流量配分を厳密に行なう必要がある。この配分を行なう
手段として、製造加工時の精度を上げることも考えられ
るが、上記精度を上げることは実際問題として困難であ
る。そこで、この実施例では、流量調整機構、つまりオ
リフィスプレート51を付加して製作後に流量配分を適
正値に保つようにしているのである。
This is based on the following reasons. That is, since the blade having the above-mentioned structure uses a large number of discharge holes for so-called film cooling, which blows out the cooling fluid from the inside of the blade to the outside, in order to obtain the cooling effect with a small flow rate, the flow rate distribution between the cooling systems Must be done strictly. As a means for carrying out this distribution, it may be possible to increase the precision during the manufacturing process, but it is actually difficult to raise the precision. Therefore, in this embodiment, a flow rate adjusting mechanism, that is, an orifice plate 51 is added to maintain the flow rate distribution at an appropriate value after manufacturing.

【0023】このように、タービンの翼の内部を複数の
細長い流路に区切り、内部を通過する冷却流体の速度を
上昇させて対流冷却効果を高めると同時に、フィルム冷
却用の排出孔を多数配置し、フィルム冷却の重ね合わさ
れた効果をも併用しているので少ない量の冷却流体で冷
却性能を飛躍的に向上させることができる。また、第2
の冷却系統12では、翼中間部領域内の後縁部から翼中
間部領域内の前縁部に向けて屈折しながら延びる流路構
成となっているので、屈折流路31の翼中間部領域内の
後縁部を延びる部分から排出孔32を介して翼中間部領
域の後縁部外面に冷却流体を噴出させてフイルム冷却す
るようにすると、翼の形状に起因する特性から翼中間部
領域の後縁部を良好に冷却できる。すなわち、翼中間部
領域の後縁部外面で腹側に沿って流れる燃焼ガスの流速
は通常、極めて速い。したがって、この腹側部分に冷却
流体を噴出させてフイルム冷却を行うと、翼とフイルム
との間の温度境界層を薄くでき、翼からフイルムへ熱伝
達率を大きくできる。すなわち、この腹側部分を良好に
冷却できる。一方、翼中間部領域の後縁部外面で背側に
沿って流れる燃焼ガスは翼の形状の影響を受けて乱流化
する。したがって、この背側部分に冷却流体を噴出させ
てフイルム冷却を行うと、やはり翼とフイルムとの間の
温度境界層を薄くでき、翼からフイルムへの熱伝達率を
大きくできる。すなわち、この背側部分を良好に冷却で
きる。このため、第2の冷却系統12を流れる冷却流体
が第2の冷却系統12の後流域に達するまでに温度上昇
してしまうのを防止でき、この結果、冷却流体の量を増
すことなく翼中間部領域の前縁部も良好に冷却すること
が可能となる。
As described above, the inside of the blade of the turbine is divided into a plurality of elongated flow paths, the speed of the cooling fluid passing through the inside is increased to enhance the convection cooling effect, and at the same time, a large number of discharge holes for film cooling are arranged. However, since the combined effect of film cooling is also used, the cooling performance can be dramatically improved with a small amount of cooling fluid. Also, the second
Since the cooling system 12 has a flow path configuration that extends while refracting from the trailing edge portion in the blade intermediate portion area toward the leading edge portion in the blade intermediate portion area, the blade intermediate portion area of the refraction flow passage 31 is formed. When the cooling fluid is jetted from the portion extending the inner trailing edge portion to the outer surface of the trailing edge portion of the blade intermediate portion through the discharge hole 32 to cool the film, the blade intermediate portion area is formed due to the characteristic of the blade. The trailing edge of the can be cooled well. That is, the flow velocity of the combustion gas flowing along the ventral side on the outer surface of the trailing edge portion of the blade middle region is usually extremely high. Therefore, when the cooling fluid is jetted to the ventral side portion to cool the film, the temperature boundary layer between the blade and the film can be thinned and the heat transfer coefficient from the blade to the film can be increased. That is, this ventral portion can be cooled well. On the other hand, the combustion gas flowing along the back side at the outer surface of the trailing edge of the blade middle region is turbulent due to the influence of the shape of the blade. Therefore, when the cooling fluid is jetted to the back side portion to cool the film, the temperature boundary layer between the blade and the film can be thinned and the heat transfer coefficient from the blade to the film can be increased. That is, this back portion can be cooled well. Therefore, it is possible to prevent the temperature of the cooling fluid flowing through the second cooling system 12 from rising until it reaches the wake region of the second cooling system 12, and as a result, the amount of the cooling fluid is not increased and the blade intermediate portion is increased. It is also possible to cool the leading edge of the partial region satisfactorily.

【0024】なお、本発明は、上述した実施例に限定さ
れるものではない。すなわち、第2の冷却系統12の屈
折流路31におけるリターン部に図5に示すようにガイ
ド61を設けることによって、この部分での流動抵抗を
減少させるようにしてもよい。また、第3の冷却系統1
3において、翼後縁部Rの両面の冷却を強化するために
流路42および空洞43と翼外とを連通させるフィルム
冷却用の排出孔を設けてもよい。さらに、最後縁部の流
路形状としては、図6(a) ,(b) に示すようにスリット
状流路71としてもよいし、また図7(a) ,(b) に示す
ように空洞43内に熱交換面を増加させるためにピンフ
ィン72を設けるようにしてもよい。さらに、各冷却系
統において、翼本体1の先端壁Xにフィルム冷却用の排
出孔を設けてもよい。
The present invention is not limited to the above embodiment. That is, the flow resistance in this portion may be reduced by providing the guide 61 as shown in FIG. 5 in the return portion of the refraction channel 31 of the second cooling system 12. Also, the third cooling system 1
In order to enhance the cooling of both surfaces of the blade trailing edge portion R, a discharge hole for film cooling may be provided that connects the flow passage 42 and the cavity 43 to the outside of the blade. Further, the flow path shape of the last edge may be a slit-like flow path 71 as shown in FIGS. 6 (a) and 6 (b), or a cavity as shown in FIGS. 7 (a) and 7 (b). A pin fin 72 may be provided in the portion 43 to increase the heat exchange surface. Further, in each cooling system, a discharge hole for film cooling may be provided in the tip wall X of the blade body 1.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
独立した3つの冷却流路を設けているので、各冷却流路
への冷却流体供給圧力を一定とした場合、従来の翼のよ
うに1つあるいは2つの内部流路だけを設けたものに較
べて冷却流体の流速を増加させることができる。この結
果、対流による冷却効果を向上させることができ、結果
的に冷却流体の供給圧力を低下でき、冷却流体の量の減
少化を図れ、空力損失の減少化ならびに効率の向上化を
図ることができる。また、3つの冷却流路を完全に独立
させているので、各冷却流路内の圧力が互いに干渉する
ことがなく、各冷却通路に設定通りの冷却流体を通流さ
せることが可能となり、最少の流量で最大の冷却効果を
発揮させることが可能となる。また、第2の冷却流路で
は、翼中間部領域内の後縁部から翼中間部領域内の前縁
部に向けて屈折しながら延びる流路構成となっているの
で、翼中間部領域内の後縁部を延びる流路部分からフイ
ルム冷却用の排出孔を介して翼中間部領域の後縁部外面
に冷却流体を噴出させてフイルム冷却するようにする
と、翼の形状に起因する特性から翼中間部領域の後縁部
を良好に冷却できる。したがって、第2の冷却流路を流
れる冷却流体が第2の冷却流路の後流域に達するまでに
温度上昇してしまうのを防止でき、この結果、少ない量
の冷却流体で翼中間部領域の前縁部も良好に冷却するこ
とができる。
As described above, according to the present invention,
Since three independent cooling channels are provided, when the cooling fluid supply pressure to each cooling channel is constant, compared to a conventional blade that has only one or two internal channels. The flow velocity of the cooling fluid can be increased. As a result, the cooling effect by convection can be improved, the supply pressure of the cooling fluid can be reduced as a result, the amount of the cooling fluid can be reduced, the aerodynamic loss can be reduced, and the efficiency can be improved. it can. Further, since the three cooling flow paths are completely independent, the pressures in the respective cooling flow paths do not interfere with each other, and it is possible to allow the cooling fluid to flow through the respective cooling paths according to the setting. It is possible to maximize the cooling effect at the flow rate of. Further, in the second cooling flow passage, since the flow passage structure extends from the trailing edge portion in the blade intermediate portion area toward the leading edge portion in the blade intermediate portion area while refracting, in the blade intermediate portion area. If the cooling fluid is jetted from the flow path portion extending through the trailing edge portion to the outer surface of the trailing edge portion of the blade middle area through the film cooling discharge hole to cool the film, the characteristics due to the shape of the blade will result. The trailing edge of the blade middle region can be cooled well. Therefore, it is possible to prevent the temperature of the cooling fluid flowing through the second cooling passage from rising before reaching the wake region of the second cooling passage, and as a result, a small amount of the cooling fluid can be applied to the blade middle region. The leading edge can also be cooled well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るタービンの翼の外観図FIG. 1 is an external view of a turbine blade according to an embodiment of the present invention.

【図2】図1におけるP−P線に沿って切断し矢印方向
に見た断面図
FIG. 2 is a cross-sectional view taken along the line P-P in FIG. 1 and viewed in the direction of the arrow.

【図3】図1におけるQ−Q線に沿って切断し矢印方向
に見た断面図
3 is a cross-sectional view taken along the line QQ in FIG. 1 and viewed in the direction of the arrow.

【図4】図1におけるS−S線に沿って切断し矢印方向
に見た局部的な断面図
FIG. 4 is a local cross-sectional view taken along line S-S in FIG. 1 and viewed in the direction of the arrow.

【図5】本発明に係るタービンの翼の変形例を局部的に
示す断面図
FIG. 5 is a cross-sectional view locally showing a modified example of a turbine blade according to the present invention.

【図6】(a) は本発明の別の実施例における要部の縦断
面図で(b) は同要部の横断面図
FIG. 6 (a) is a longitudinal sectional view of an essential part in another embodiment of the present invention, and FIG. 6 (b) is a lateral sectional view of the same part.

【図7】(a) は本発明のさらに別の実施例における要部
の縦断面図で(b) は同要部の横断面図
FIG. 7 (a) is a vertical cross-sectional view of a main part in yet another embodiment of the present invention, and (b) is a cross-sectional view of the main part.

【符号の説明】[Explanation of symbols]

1…翼本体 2…翼根部 3…プラットホーム部 11…第1の冷
却系統 12…第2の冷却系統 13…第3の冷
却系統
DESCRIPTION OF SYMBOLS 1 ... Blade main body 2 ... Blade root part 3 ... Platform part 11 ... 1st cooling system 12 ... 2nd cooling system 13 ... 3rd cooling system

フロントページの続き (72)発明者 大友 文雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内Front page continuation (72) Inventor Fumio Otomo 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】翼根部の基端部に入口を有するとともに上
記入口から翼根部の内部および翼本体の内部を経由して
翼外に通じる冷却流路を備え、上記入口を冷却流体供給
部に接続するようにしたタービンの翼において、 翼前縁部内に設けられ、主として冷却流体を前記翼根部
の内部および前記翼本体の内部に翼の高さ方向に沿って
形成された経路で導く流路および上記流路に案内された
冷却流体を上記翼本体の外部へ排出させる排出孔を備え
てなる第1の冷却流路と、 この第1の冷却流路とは独立して翼中間部内に設けら
れ、主として冷却流体を前記翼根部の内部および前記翼
本体の内部に翼の高さ方向に沿って形成された経路で導
いた後に上記翼本体の高さ方向先端部近傍で上記翼本体
の前縁部側回りにリターンさせて上記翼本体の基端部近
傍まで案内し、さらに上記基端部近傍から上記翼本体の
前縁部側回りにリターンさせて上記翼本体の高さ方向先
端部近傍まで案内する屈折流路および上記屈折流路の少
なくとも最下流領域に案内された冷却流体を上記翼本体
の外部へ排出させる排出孔を備えてなる第2の冷却流路
と、 この第2の冷却流路および前記第1の冷却流路とは独立
に翼後縁部内に設けられ、主として冷却流体を前記翼根
部の内部および前記翼本体の内部に翼の高さ方向に沿っ
て形成された経路で導く流路および上記流路に案内され
た冷却流体を上記翼本体の後縁から外部へ排出させる流
路を備えてなる第3の冷却流路とを具備してなることを
特徴とするタービンの翼。
1. A cooling fluid passage having an inlet at a base end portion of a blade root and communicating from the inlet to the outside of the blade via the inside of the blade root portion and the inside of the blade main body, and the inlet to a cooling fluid supply portion. In a turbine blade configured to be connected, a flow path that is provided in a blade leading edge and mainly guides a cooling fluid to the inside of the blade root portion and the inside of the blade main body through a path formed along the height direction of the blade. And a first cooling flow passage having a discharge hole for discharging the cooling fluid guided to the flow passage to the outside of the blade main body, and the first cooling flow passage is provided in the blade intermediate portion independently of the first cooling flow passage. The cooling fluid is mainly guided inside the blade root portion and the inside of the blade main body by a path formed along the height direction of the blade, and then in front of the blade main body in the vicinity of the height direction tip of the blade main body. Return to the periphery of the rim to allow the base end of the wing body At least the most downstream of the refraction channel and the refraction channel that guides to the vicinity and further returns from the vicinity of the base end portion to the vicinity of the front edge portion of the blade body and guides to the vicinity of the tip end in the height direction of the blade body A second cooling flow path having a discharge hole for discharging the cooling fluid guided to the region to the outside of the blade body, and the second cooling flow path and the first cooling flow path independently of each other. A cooling fluid is provided in the trailing edge portion, which mainly guides the cooling fluid through the passage formed along the height direction of the blade inside the blade root portion and inside the blade body. A blade for a turbine, comprising: a third cooling flow path having a flow path for discharging the air from the trailing edge of the blade body.
【請求項2】前記第1,第2,第3の冷却流路の入口に
は、各流路に流入する冷却流体の流量を調整する流量調
整機構が設けられてなることを特徴とする請求項1に記
載のタービンの翼。
2. A flow rate adjusting mechanism for adjusting a flow rate of a cooling fluid flowing into each of the first, second, and third cooling flow paths is provided. The turbine blade according to Item 1.
【請求項3】前記第1,第2,第3の冷却流路は、前記
翼本体の高さ方向先端部外面に沿って冷却流体を翼外へ
排出させる排出孔を備えてなることを特徴とする請求項
1に記載のタービンの翼。
3. The first, second, and third cooling passages are provided with discharge holes for discharging the cooling fluid to the outside of the blade along the outer surface of the tip portion in the height direction of the blade body. The blade of the turbine according to claim 1.
【請求項4】前記第1の冷却流路は、冷却流体を前記翼
本体の高さ方向に案内する部分と、この部分と上記翼本
体の前縁部外面との間に形成された空洞と、この空洞と
上記部分とを仕切る仕切壁に設けられ上記部分によって
案内された冷却流体を上記翼本体の前縁部外面と上記空
洞との間に存在する壁部の内面に向けて噴射させる複数
の小孔とを備えてなることを特徴とする請求項1に記載
のタービンの翼。
4. The first cooling flow passage includes a portion for guiding a cooling fluid in a height direction of the blade body, and a cavity formed between this portion and an outer surface of a front edge portion of the blade body. A plurality of cooling fluids, which are provided on a partition wall that divides the cavity from the cavity and are guided by the section, toward the inner surface of the wall portion existing between the outer surface of the leading edge of the blade body and the cavity. The blade of the turbine according to claim 1, further comprising:
JP5202287A 1993-08-16 1993-08-16 Turbine wing Expired - Lifetime JP2645209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202287A JP2645209B2 (en) 1993-08-16 1993-08-16 Turbine wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202287A JP2645209B2 (en) 1993-08-16 1993-08-16 Turbine wing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5350882A Division JPS58170801A (en) 1982-03-31 1982-03-31 Blade for turbine

Publications (2)

Publication Number Publication Date
JPH06185301A true JPH06185301A (en) 1994-07-05
JP2645209B2 JP2645209B2 (en) 1997-08-25

Family

ID=16455044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202287A Expired - Lifetime JP2645209B2 (en) 1993-08-16 1993-08-16 Turbine wing

Country Status (1)

Country Link
JP (1) JP2645209B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073707A (en) * 1999-05-14 2001-03-21 General Electric Co <Ge> Rear-edge cooling passage causing partial turbulence for gas turbine nozzle
JP2008128234A (en) * 2006-11-20 2008-06-05 General Electric Co <Ge> Double feeding serpentine cooled blade
JP2014001633A (en) * 2012-06-15 2014-01-09 Hitachi Ltd Gas turbine moving blade, gas turbine, and gas turbine moving blade adjusting method
WO2019102556A1 (en) * 2017-11-22 2019-05-31 東芝エネルギーシステムズ株式会社 Turbine blade and turbine
CN114017133A (en) * 2021-11-12 2022-02-08 中国航发沈阳发动机研究所 Cooled variable-geometry low-pressure turbine guide vane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129707U (en) * 1974-04-10 1975-10-24
GB1514613A (en) * 1976-04-08 1978-06-14 Rolls Royce Blade or vane for a gas turbine engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129707U (en) * 1974-04-10 1975-10-24
GB1514613A (en) * 1976-04-08 1978-06-14 Rolls Royce Blade or vane for a gas turbine engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073707A (en) * 1999-05-14 2001-03-21 General Electric Co <Ge> Rear-edge cooling passage causing partial turbulence for gas turbine nozzle
JP2008128234A (en) * 2006-11-20 2008-06-05 General Electric Co <Ge> Double feeding serpentine cooled blade
JP2014001633A (en) * 2012-06-15 2014-01-09 Hitachi Ltd Gas turbine moving blade, gas turbine, and gas turbine moving blade adjusting method
WO2019102556A1 (en) * 2017-11-22 2019-05-31 東芝エネルギーシステムズ株式会社 Turbine blade and turbine
CN114017133A (en) * 2021-11-12 2022-02-08 中国航发沈阳发动机研究所 Cooled variable-geometry low-pressure turbine guide vane
CN114017133B (en) * 2021-11-12 2023-07-07 中国航发沈阳发动机研究所 Cooled variable geometry low pressure turbine guide vane

Also Published As

Publication number Publication date
JP2645209B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
EP0992654B1 (en) Coolant passages for gas turbine components
US6050777A (en) Apparatus and method for cooling an airfoil for a gas turbine engine
JP4509263B2 (en) Backflow serpentine airfoil cooling circuit with sidewall impingement cooling chamber
KR100572299B1 (en) A coolable airfoil for a gas turbine engine
US8246307B2 (en) Blade for a rotor
US6514042B2 (en) Method and apparatus for cooling a wall within a gas turbine engine
EP0670953B1 (en) Coolable airfoil structure
US6179565B1 (en) Coolable airfoil structure
US4604031A (en) Hollow fluid cooled turbine blades
US6234754B1 (en) Coolable airfoil structure
US6129515A (en) Turbine airfoil suction aided film cooling means
US4859147A (en) Cooled gas turbine blade
JPS62159701A (en) Aerofoil section for turbine of gas turbine engine
JPH0353442B2 (en)
EP0924384A2 (en) Airfoil with leading edge cooling
US7311498B2 (en) Microcircuit cooling for blades
US10590779B2 (en) Double wall turbine gas turbine engine blade cooling configuration
CN108884716A (en) Turbine airfoil with the internal cooling channel for having current divider feature
US20060034690A1 (en) Internally cooled gas turbine airfoil and method
JPH06185301A (en) Blade of turbine
JPH0421042B2 (en)
JPS60135605A (en) Turbine cooling blade
JPH0451641B2 (en)
US11486257B2 (en) Cooling passage configuration
EP3495618B1 (en) Airfoil with internal cooling passages