[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0617203A - High strength thin steel sheet with composite structure excellent in formability - Google Patents

High strength thin steel sheet with composite structure excellent in formability

Info

Publication number
JPH0617203A
JPH0617203A JP4175273A JP17527392A JPH0617203A JP H0617203 A JPH0617203 A JP H0617203A JP 4175273 A JP4175273 A JP 4175273A JP 17527392 A JP17527392 A JP 17527392A JP H0617203 A JPH0617203 A JP H0617203A
Authority
JP
Japan
Prior art keywords
less
fatigue
martensite
ferrite
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4175273A
Other languages
Japanese (ja)
Other versions
JP3267682B2 (en
Inventor
Masaya Mizui
正也 水井
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15993261&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0617203(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17527392A priority Critical patent/JP3267682B2/en
Publication of JPH0617203A publication Critical patent/JPH0617203A/en
Application granted granted Critical
Publication of JP3267682B2 publication Critical patent/JP3267682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture a high strength thin steel sheet high in fatigue limit and repeated yield stress and excellent in formability by subjecting a low carbon slab having a specified compsn. to hot rolling and cooling and making the slab to a thin steel sheet having a specified structure. CONSTITUTION:The continuous cast slab of a low carbon steel having a compsn. contg., by weight, 0.05 to 0.15% C, 1.2 to 2.5% Si, 1.5 to 2.3% Mn and one or both of 0.005 to 0.15% rare earth elements and 0.005 to 0.1% Ca is subjected to hot rolling to form its shape into a thin sheet one, is subjected to air cooling on a run out table and is furthermore cooled to an ordinary temp. The high strength thin steel sheet with a composite structure in which the area ratio of ferrite having 200 to 280 Vickers hardness is regulated to 60 to 85%, that of a hard phase in the case of martensite and bainite is regulated to 15 to 40% (in which the area ratio of bainite is regulated to <=5%) or residual austenite is furthermore incorporated in the range of 20 to 50% and the maximum length of the martensite and residual austenite is regulated to 20 to 150% of the ferritic grain size and the dimension of metallic carbides present on the grain boundaries is regulated to <=0.5mum is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車等車両の軽量化を
目的に成形性が良く、特に疲労耐久性が強く要求される
足周り部品等に使用される成形性の優れた高強度薄鋼板
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength thin steel plate having excellent formability for the purpose of reducing the weight of vehicles such as automobiles, and particularly used for underbody parts and the like which are strongly required to have fatigue durability. Regarding

【0002】[0002]

【従来の技術】近年、自動車等の軽量化のために鋼板の
高強度化やAl合金等の軽量材料化が進んでいる。しか
し、Al合金の場合は軽量化の点から鋼に比較して価格
が著しく高く、また疲労強度が低いことから比重が小さ
いという利点を充分生かしきれないために特殊な用途に
使用されているにすぎないのが現状であって、大量生産
製品である乗用自動車にはより経済的な高強度鋼板が強
く望まれている。しかるに静的な降伏強度や引張強度を
向上させても疲労強度はそれにともなっては向上せず、
高強度化すればするほど問題であった。特に自動車部品
のようにプレス成形や溶接で製造されるものでは単なる
材料の高強度化はむしろこれらの特性を損なうことにな
るため、実用上好ましくなく、従って同一の静的強度で
も疲労強度の高い高強度薄鋼板が求められていた。これ
まで、Ti,Nb,Vを添加した微細な析出強化鋼、フ
ェライト・ベイナイト複合組織強化鋼やフェライト・マ
ルテンサイト複合組織強化鋼(いわゆるDual ph
ase鋼)および延性のすぐれた残留オーステナイトを
含む複合組織強化鋼が開発されていた。しかし、これら
は次に述べる問題点があった。
2. Description of the Related Art In recent years, in order to reduce the weight of automobiles and the like, the strength of steel sheets and the weight reduction of aluminum alloys have been promoted. However, in the case of an Al alloy, the price is significantly higher than that of steel in terms of weight reduction, and since the fatigue strength is low, the advantage that the specific gravity is small cannot be fully utilized, so it is used for special applications. At present, there is a strong demand for more economical high-strength steel sheets for passenger cars, which are mass-produced products. However, even if the static yield strength and tensile strength are improved, the fatigue strength is not improved accordingly.
The higher the strength, the more problematic. In particular, in the case of products manufactured by press molding or welding such as automobile parts, simply increasing the strength of the material will impair these properties and is not preferable in practice, and therefore the fatigue strength is high even with the same static strength. A high-strength thin steel sheet has been demanded. So far, fine precipitation strengthened steels containing Ti, Nb, V, ferrite / bainite composite structure strengthened steels and ferrite / martensite composite structure strengthened steels (so-called Dual ph
as) steel and a composite microstructure-strengthened steel containing retained austenite with excellent ductility. However, these had the following problems.

【0003】[0003]

【発明が解決しようとする課題】すなわち、析出強化鋼
はその製造が比較的容易であることから大量に使用され
ているが、疲労特性は低位の水準であり、成形性も他の
高強度薄鋼板より劣るため複雑な形状を有する足周り部
品に適用の限界があった。また、フェライト・ベイナイ
ト複合組織強化鋼は特に局部延性が高く穴拡げ性に優れ
ているが、疲労特性は粗大なベイナイトが存在するため
低位であるフェライト・マルテンサイト複合組織鋼(い
わゆるDual phase鋼)は発明者らの研究で引
張強度が60kg/mm2級の高強度薄鋼板における疲
労強度が優れる機構について知見を述べているが、これ
より強度の高い70kg/mm2以上の高強度薄鋼板で
は疲労強度は向上しなかった。さらに、文献(横幕ら:
1991)によれば疲労強度が向上しない理由として、
硬質相の硬さが飽和するため疲労強度の向上も飽和する
との知見が開示されているが、このように引張強度が7
0kg/mm2以上で疲労特性と成形性のよい複合組織
高強度薄鋼板を製造する技術は見当たらなかった。
That is, precipitation-strengthened steel is used in a large amount because it is relatively easy to manufacture, but its fatigue properties are at a low level and its formability is also high. Since it is inferior to a steel plate, there is a limit to its application to foot parts having a complicated shape. Ferrite / bainite composite structure strengthened steel has particularly high local ductility and excellent hole expandability, but its fatigue properties are low due to the presence of coarse bainite. Ferrite / martensite composite structure steel (so-called dual phase steel). Although tension in the study of inventors strength describes the knowledge about the mechanism of fatigue strength excellent in 60 kg / mm 2 class high strength thin steel sheet, although higher 70 kg / mm 2 or more strength of a high strength thin steel sheet Fatigue strength did not improve. Furthermore, the literature (Yokohama et al .:
1991), the reason why fatigue strength is not improved is
It has been disclosed that the hardness of the hard phase is saturated, so that the improvement of fatigue strength is also saturated.
No technology has been found for producing a high-strength steel sheet with a composite structure having a fatigue property and formability of 0 kg / mm 2 or more.

【0004】また、延性の良い残留オーステナイトを含
む複合組織鋼では一様伸びが著しく高いことを特徴とす
るが、疲労特性のばらつきが大きく実用には耐えうるも
のではなかった。また、疲労限度の向上に表層の粗さが
関与するため表層を研削して応力集中を低減することで
疲労特性は著しく向上するが、熱間圧延で製造時、加熱
により発生したスケールであるいわゆる黒皮を除去する
ための酸洗ままの状態で使用する成形用高強度薄鋼板の
場合に表面粗さを皆無にすることは実用上不可能であ
る。その他に疲労強度を高くする方法としてショットピ
ーニングや高周波焼入れによる表層に圧縮残留応力と硬
化部を導入して疲労耐久性を向上させる方法があるが、
成形性を低下させるためこの方法は成形用高強度薄鋼板
には適用できない。
Further, a composite structure steel containing good retained ductility of retained austenite is characterized in that the uniform elongation is remarkably high, but the fatigue characteristics are so large that it cannot be put to practical use. Further, since the roughness of the surface layer is involved in the improvement of the fatigue limit, the fatigue characteristics are remarkably improved by grinding the surface layer to reduce the stress concentration, but at the time of manufacturing by hot rolling, the scale generated by heating is so-called. It is practically impossible to eliminate the surface roughness in the case of a high strength thin steel sheet for forming which is used in an as-pickled state for removing black skin. As another method for increasing fatigue strength, there is a method for improving fatigue durability by introducing a compressive residual stress and a hardened part in the surface layer by shot peening or induction hardening.
This method cannot be applied to high strength thin steel sheets for forming because it lowers formability.

【0005】また、使用性能から自動車の足まわり部品
用の高強度薄鋼板には使用中に単に疲労で破壊しないと
いう疲労限度だけでなく、走行中の急旋回や緑石のりあ
げ等により繰返し回数は少ないが降伏強度以上の高い応
力振幅においても疲労強度が必要となる。すなわち、1
7回で破断しない最大の応力振幅である疲労限度と
0.2%の塑性ひずみ振幅で求める繰返し降伏応力の2
つの疲労特性について両者を満足して成形性の優れた高
強度薄鋼板が求められている。本発明は上述の現状に鑑
みてなされたもので、プレス成形性を有し高い疲労限度
と高い繰返し降伏応力を有する成形性の優れた複合組織
高強度薄鋼板を安定して提供することを目的とするもの
である。
In addition, from the viewpoint of use performance, high strength thin steel sheets for automobile suspension parts have not only a fatigue limit such that they will not be broken by fatigue during use, but also the number of repetitions due to sharp turns during driving and lifting of greenstone. Fatigue strength is required even at high stress amplitudes above the yield strength. Ie 1
2 of the fatigue limit, which is the maximum stress amplitude that does not break at 0 7 times, and the cyclic yield stress, which is determined by the plastic strain amplitude of 0.2%
There is a demand for a high-strength thin steel sheet that satisfies both fatigue characteristics and has excellent formability. The present invention has been made in view of the above situation, and an object thereof is to provide stably a composite microstructure high strength thin steel sheet having excellent press formability, high fatigue limit and high cyclic yield stress and excellent formability. It is what

【0006】なお、図1は前述のように、自動車ホイー
ルの耐久試験効果を比較鋼に比較して発明による試験結
果を使用した高強度薄鋼板の疲労限度と繰返し降伏応力
の関係を示した図である。ここで疲労限度とは3000
回/分の速度で行った両振平面曲げ疲労試験による疲労
限度で107回で破断しない最大の応力振幅であり、繰
返し降伏応力は0.4%/秒のひずみ速度でひずみ制御
疲労試験によって得られた安定時の応力・ひずみ曲線か
ら0.2%の塑性ひずみ振幅における応力振幅をもって
表したものである。使用したホイールは乗用車用ホイー
ルでリムは板厚2.8mmの60kg/mm2級の鋼板
で、デイスクには板厚3.5mmの80〜100kg/
mm2級の鋼板を用いて成形し、リムとデイスクは炭酸
ガスアーク溶接により接合した。ホイールの耐久試験は
曲げモーメント180kgmで毎分500回の速度で試
験し、比較のホイールであるデイスク、リム共60kg
/mm2級の鋼板で製造したホイールの耐久寿命と比較
した。ホイールの耐久寿命はデイスク部に疲労き裂が発
生、進展してホイールの剛性が当初の値から8%低下す
る時点をもって表したものである。
As mentioned above, FIG. 1 is a diagram showing the relationship between the fatigue limit and the cyclic yield stress of the high strength thin steel sheet using the test results of the invention in comparison with the durability test effect of the automobile wheel as compared with the comparative steel. Is. The fatigue limit here is 3000
It is the maximum stress amplitude that does not rupture at 10 7 times at the fatigue limit by the double-sided plane bending fatigue test performed at a speed of 1 time / minute, and the cyclic yield stress is 0.4% / second at a strain rate of 0.4% / sec. It is expressed as the stress amplitude at a plastic strain amplitude of 0.2% from the obtained stress-strain curve at the time of stability. The wheel used is a passenger car wheel, the rim is a 60 kg / mm 2 grade steel plate with a plate thickness of 2.8 mm, and the disk is 80-100 kg / with a plate thickness of 3.5 mm.
A steel plate of mm 2 grade was used for forming, and the rim and the disk were joined by carbon dioxide arc welding. The durability test of the wheel was carried out at a bending moment of 180 kgm at a speed of 500 times per minute.
The durability life of a wheel manufactured from a steel sheet of grade / mm 2 was compared. The durability life of a wheel is expressed as the time when a fatigue crack is generated in the disk portion and propagates, and the rigidity of the wheel decreases by 8% from the initial value.

【0007】[0007]

【課題を解決するための手段】本発明者は自動車部品の
疲労耐久性と鋼材の強化機構と疲労損傷の関係を詳細に
調査し、疲労による疲労のすべりの発生位置とき裂の位
置と微小き裂の進展が疲労特性に影響し、従来の知見で
ある疲労特性は硬質相によって疲労き裂の成長阻止やき
裂の迂回による進展力の低下で決まるのではなく軟質相
のフェライトでのき裂発生と微小き裂相互の連結、成長
を抑制するためのフェライト地の強度とフェライト粒
界、あるいはフェライトとマルテンサイトの界面の強度
を阻害する粒界に存在する炭化物の大きさが疲労損傷に
支配的に影響し、さらにこのような効果が発揮されるた
めにはマルテンサイト等の硬質相のフェライトの粒径と
の相対的寸法が疲労特性に影響することを見出した。
Means for Solving the Problems The present inventor has investigated in detail the relationship between the fatigue durability of automobile parts, the strengthening mechanism of steel materials and fatigue damage, and has found the location of fatigue slip due to fatigue and the location of cracks and small cracks. The crack growth affects the fatigue properties, and the conventional knowledge is that fatigue properties do not depend on the growth inhibition of fatigue cracks or the diminishing growth force due to bypassing cracks due to the hard phase. Of carbides existing at the grain boundary that inhibits the strength of the ferrite ground and the ferrite grain boundary to suppress the mutual connection and the growth of micro cracks and the growth, or the strength of the interface between the ferrite and martensite is dominant in fatigue damage. It was found that the relative size of the hard phase ferrite such as martensite with the grain size of the ferrite affects the fatigue properties in order to exert such effects.

【0008】そして、本発明鋼では素材の疲労特性が優
れるのみならず、足周り部品の一つで成形性が要求され
る自動車のホイールを製作して、曲げモーメント耐久試
験を行った場合にも製品として優れた疲労耐久寿命を示
した。すなわち、前述した図1のようにホイールの曲げ
モーメント耐久試験において耐久性が向上する場合は材
料の疲労限度だけでなく、繰返し降伏応力の両特性が同
時に高い時にのみ達成されることを見出した。これは疲
労限度が高いだけでは降伏強度以上の高い応力振幅にお
いても疲労強度を確保できないためで、ホイールとして
の耐久性を満足していない。また、繰返し降伏応力が高
いだけでも疲労き裂が発生し易いため、ホイールとして
の耐久性を満足していないことが判明した。
The steel of the present invention not only excels in the fatigue characteristics of the material, but is also used in a bending moment durability test when an automobile wheel that requires formability as one of the foot parts is manufactured. The product exhibited excellent fatigue life. That is, it was found that when the durability is improved in the bending moment durability test of the wheel as shown in FIG. 1 described above, not only the fatigue limit of the material but also the repeated yield stress are both high at the same time. This is because even if the fatigue limit is high, the fatigue strength cannot be ensured even at high stress amplitudes higher than the yield strength, and the durability as a wheel is not satisfied. Further, it has been found that the durability as a wheel is not satisfied because fatigue cracks are likely to occur even if the cyclic yield stress is high.

【0009】この様な知見をもとに本発明者は高い疲労
限度と高い繰返し降伏応力を有する成形性の優れた高強
度薄鋼板の条件としてフェライトの硬さを高くし、且つ
フェライトの面積率を組織中に均一に多くすることで疲
労の損傷が特定の場所に集積し易くなることを防ぎ、硬
質相であるマルテンサイト、ベイナイト等の寸法と面積
率を制限して疲労の起点となることを抑制し、且つ粒界
に析出しやすい粗大炭化物を抑制すれば、疲労限度が3
8kg/mm2以上および繰返し降伏応力が50kg/
mm2以上の成形性の良い高強度薄鋼板が可能であると
いう新たな知見を見出した。これによって高強度薄鋼板
の特に大きな問題点であった成形性と疲労強度の両立を
可能とすることができた。
Based on such knowledge, the present inventor has made the hardness of ferrite high and the area ratio of ferrite as a condition of a high strength thin steel sheet having a high fatigue limit and a high cyclic yield stress and excellent in formability. It is possible to prevent fatigue damage from easily accumulating at a specific place by uniformly increasing the amount in the structure, and to limit the size and area ratio of martensite, bainite, etc., which are hard phases, and become the starting point of fatigue. And the coarse carbides that easily precipitate at grain boundaries are suppressed, the fatigue limit becomes 3
8 kg / mm 2 or more and cyclic yield stress is 50 kg /
We have found a new finding that high strength thin steel sheets with a formability of mm 2 or more are possible. This makes it possible to achieve both the formability and the fatigue strength, which were particularly serious problems with high strength thin steel sheets.

【0010】本発明の要旨は (1)重量%にて、Cを0.05〜0.15%、Siを
1.2〜2.5%、Mnを1.5〜2.3%を含み且
つ、稀土類元素を0.005〜0.15%及びCaを
0.005〜0.1%よりなる群から選ばれ少なくとも
1種の元素を含む鋼であって、その組織がビッカース硬
度で200以上〜280以下の硬さを有するフェライト
の面積率が60%以上〜85%以下であり、マルテンサ
イトおよびベイナイトの硬質相の和が15%以上〜40
%以下であり、但しベイナイトの面積率はいずれの場合
も5%以下であり、マルテンサイトの最大長さはフェラ
イト平均粒径の20%以上〜150%以下であって、且
つ粒界炭化物の寸法が0.5μm以下である成形性の優
れた複合組織高強度薄鋼板
The gist of the present invention is as follows: (1) In weight%, 0.05 to 0.15% of C, 1.2 to 2.5% of Si, and 1.5 to 2.3% of Mn are included. A steel containing at least one element selected from the group consisting of 0.005 to 0.15% rare earth elements and 0.005 to 0.1% Ca, and having a Vickers hardness of 200 The area ratio of ferrite having a hardness of 280 to 280 is 60% to 85%, and the sum of hard phases of martensite and bainite is 15% to 40.
% Or less, but the area ratio of bainite is 5% or less in any case, the maximum length of martensite is 20% or more to 150% or less of the average ferrite grain size, and the size of grain boundary carbides. With a microstructure of 0.5 μm or less and excellent composite formability

【0011】(2)重量%にて、Cを0.15〜0.2
5%、Siを1.4〜2.3%、Mnを1.5〜2.3
%を含み且つ、稀土類元素を0.005〜0.15%及
びCaを0.005〜0.1%よりなる群から選ばれ少
なくとも1種の元素を含む鋼であって、その組織がビッ
カース硬度で210以上で300以下の硬さを有するフ
ェライトの面積率が50%以上〜80%以下であり、マ
ルテンサイト、ベイナイトおよび残留オーステナイトの
硬質相の和が20%以上〜50%以下で、マルテンサイ
トが7%以下で且つ残留オーステナイトを5%以上〜1
8%以下含んでおり、マルテンサイトまたは残留オース
テナイトの最大長さはフェライト平均粒径の20%以上
〜150%以下であって、且つ粒界炭化物の寸法が0.
5μm以下である成形性の優れた複合組織高強度薄鋼板 (3)疲労限度38kg/mm2以上、繰返し降伏応力
50kg/mm2以上で、且つ80〜100kg/mm2
級の引張強度を有することを特徴とする前項(1)また
は(2)記載の成形性の優れた複合組織高強度薄鋼板に
ある。
(2) 0.15 to 0.2 of C in wt%
5%, Si 1.4-2.3%, Mn 1.5-2.3
%, And a steel containing at least one element selected from the group consisting of 0.005 to 0.15% rare earth elements and 0.005 to 0.1% Ca, the structure of which is Vickers. The area ratio of ferrite having a hardness of 210 or more and 300 or less in hardness is 50% to 80%, the sum of hard phases of martensite, bainite and retained austenite is 20% to 50%, and martens Site is 7% or less and residual austenite is 5% or more to 1
8% or less, the maximum length of martensite or retained austenite is 20% or more to 150% or less of the average ferrite grain size, and the grain boundary carbide size is 0.
5 μm or less, excellent composite formability high strength thin steel sheet (3) Fatigue limit of 38 kg / mm 2 or more, cyclic yield stress of 50 kg / mm 2 or more, and 80 to 100 kg / mm 2
The high-strength thin steel sheet having a composite structure having excellent formability according to the above (1) or (2), which has a tensile strength of a grade.

【0012】[0012]

【作用】以下に本発明の鋼の各構成要素について説明す
る。自動車足まわり部品は使用中に単に疲労で破壊しな
いという疲労限度だけでなく、繰返し回数は少ないが降
伏強度以上の高い応力振幅における疲労強度すなわち繰
返し降伏応力が重要となる。そこで本発明では疲労限度
38kg/mm2以上と繰返し降伏応力50kg/mm2
以上という2つの疲労特性を同時に満足できるように各
構成要素を規定した。
The respective constituent elements of the steel of the present invention will be described below. Not only is the fatigue limit of automobile underbody parts not to be destroyed by fatigue during use, but the fatigue strength at high stress amplitudes above the yield strength, that is, the cyclic yield stress, is important, not only the fatigue limit. Therefore, in the present invention, the fatigue limit is 38 kg / mm 2 or more and the cyclic yield stress is 50 kg / mm 2
Each component was defined so that the above two fatigue characteristics could be satisfied at the same time.

【0013】まず、本発明第1項の化学組成について、
C(重量%)は0.05%未満では引張強度が80kg
/mm2に達せず、0.15%超では強度が高くなりす
ぎて延性を阻害することから、0.05%以上で0.1
5%以下とした。Siは1.2%未満では引張強度が8
0kg/mm2に達せず、2.5%超では延性や疲労強
度への効果が飽和することから1.2%以上で2.5%
以下とした。Mnは1.6%未満では引張強度が80k
g/mm2に達せず、2.3超ではベイナイト組織が増
加して引張強度の向上に見合った疲労特性が得られなく
なることから、1.5%以上で2.3%以下とした。
First, regarding the chemical composition of the first aspect of the present invention,
If C (% by weight) is less than 0.05%, the tensile strength will be 80 kg.
/ Mm 2 or less than 0.15%, the strength becomes too high and the ductility is hindered.
It was set to 5% or less. When Si is less than 1.2%, the tensile strength is 8
If it does not reach 0 kg / mm 2 and exceeds 2.5%, the effect on ductility and fatigue strength saturates.
Below. If Mn is less than 1.6%, the tensile strength is 80k.
If it does not reach g / mm 2 and exceeds 2.3, the bainite structure increases and the fatigue properties commensurate with the improvement in tensile strength cannot be obtained, so the content was made 1.5% or more and 2.3% or less.

【0014】次に、本発明第2項の化学組成について、
Cは0.15未満では目的とする必要量の残留オーステ
ナイトを確保できず、0.25%超ではじん性及び溶接
性を阻害することから、0.15%以上で0.25%以
下とした。Siは1.4%未満では引張強度が80kg
/mm2に達せず、また、残留オーステナイトの必要な
量を確保できない、また、2.3%超では延性や疲労強
度への効果が飽和することから1.4%以上で2.3%
以下とした。Mnは1.5%未満では引張強度が80k
g/mm2に達せず、2.3%超ではベイナイト組織が
増加して引張強度に見合った疲労特性が得られなくなる
ことから、1.5%以上で2.3%以下とした。
Next, regarding the chemical composition of the second aspect of the present invention,
If C is less than 0.15, the desired amount of retained austenite cannot be secured, and if it exceeds 0.25%, toughness and weldability are impaired, so 0.15% or more and 0.25% or less. . If Si is less than 1.4%, the tensile strength is 80 kg.
/ Mm 2 and the required amount of retained austenite cannot be secured. If it exceeds 2.3%, the effect on ductility and fatigue strength is saturated, so 1.4% or more is 2.3%.
Below. If Mn is less than 1.5%, the tensile strength is 80k.
If it does not reach g / mm 2 and exceeds 2.3%, the bainite structure increases and the fatigue properties commensurate with the tensile strength cannot be obtained, so the content was made 1.5% or more and 2.3% or less.

【0015】本発明においては上記の元素に加えて、鋼
板は次のような元素を含んでいてもよい。すなわち、N
b,V,Tiはフェライト粒径や硬質相の寸法を制御す
る析出強化元素であり、本発明第1項及び第2項の化学
組成について、Nbを0.2%以下、Vを0.2%以
下、Tiを0.15%以下を単独にまたは複合して含ん
でもよい。稀土類元素(REM)及びCaは硫化物系介
在物の形態制御に有効であり、成形性や疲労特性に効果
がある。その上限値は効果が飽和すること及び過剰では
逆に鋼の清浄度を低下させることから決定され、またそ
の下限値は形態制御に有効な最小値で決定される。従っ
て、REM及びCaからなる群の少なくとも1元素を含
むことが必要で、REM添加量は0.005%以上、
0.15%以下に、Caは0.005%以上、0.1%
以下とする。
In the present invention, in addition to the above elements, the steel sheet may contain the following elements. That is, N
b, V, and Ti are precipitation strengthening elements that control the ferrite grain size and the size of the hard phase. Regarding the chemical compositions of the first and second aspects of the present invention, Nb is 0.2% or less and V is 0.2. % Or less, and 0.15% or less of Ti may be contained alone or in combination. Rare earth elements (REM) and Ca are effective for controlling the morphology of sulfide inclusions, and are effective for formability and fatigue properties. The upper limit value is determined from the fact that the effect is saturated and, conversely, when it is excessive, the cleanliness of the steel is lowered, and the lower limit value is determined by the minimum value effective for shape control. Therefore, it is necessary to contain at least one element of the group consisting of REM and Ca, and the REM addition amount is 0.005% or more,
0.15% or less, Ca 0.005% or more, 0.1%
Below.

【0016】次に金属組織について述べる。まず、フェ
ライト硬さはフェライト・マルテンサイトを主組織とす
る複合組織鋼板の場合、フェライトが疲労のすべりが最
初に発生する箇所であり、微小ビッカース硬さが200
未満では硬さが低すぎるため疲労損傷が局部的に生じや
すくなるため疲労限度および繰返し降伏応力がともに向
上しない。また280超では硬質相との差異が少なくな
るため、繰返し降伏応力は向上するが、疲労損傷の起点
は硬質相との粒界に集中し易くなるため静的強度の向上
にもかかわらず疲労限度は向上しない。また、静的強度
が高くなりすぎるため延性を損ない自動車部品の成形に
は向かなくなる。そこで微小ビッカース硬さは200以
上〜280以下とした。また、残留オーステナイトを含
む複合組織鋼板の場合にはフェライトの微小硬さは同様
の理由から上限と下限が決まるためビッカース硬さを2
10以上〜300以下とした。
Next, the metal structure will be described. First, in the case of a steel sheet having a composite structure containing ferrite and martensite as the main structure, ferrite hardness is the point where the fatigue slip occurs first, and the micro Vickers hardness is 200.
If it is less than the above range, the hardness is too low and fatigue damage is likely to occur locally, so that neither the fatigue limit nor the cyclic yield stress is improved. If it exceeds 280, the difference between the hard phase and the hard phase will be small and the cyclic yield stress will be improved. However, the origin of fatigue damage will be more likely to concentrate at the grain boundary with the hard phase, and the fatigue limit will be increased despite the improvement in static strength. Does not improve. Further, since the static strength becomes too high, ductility is impaired and it becomes unsuitable for molding automobile parts. Therefore, the fine Vickers hardness is set to 200 or more and 280 or less. Further, in the case of a composite structure steel sheet containing retained austenite, the upper and lower limits of the microhardness of ferrite are determined for the same reason, so the Vickers hardness is set to 2
It was set to 10 or more and 300 or less.

【0017】フェライト面積率はフェライト・マルテン
サイトを主組織とする複合組織鋼板の場合、60%未満
では硬質相の割合が増えるためフェライト相を囲んでし
まう組織となり、強度が高くなりすぎ且つ硬質相により
フェライトの変形が拘束されるため成形性が低下するの
みならず、疲労限度も飽和して高くならない。また80
%超では成形性はすぐれるものの静的強度が低く目的の
疲労強度が得られない。そこでフェライト面積率は60
%以上〜80%以下とした。残留オーステナイトを含む
複合組織鋼板の場合にはフェライトの面積率は同様の理
由から上限と下限が決まるため50%以上〜80%以下
とした。
In the case of a steel sheet having a composite structure containing ferrite / martensite as the main structure, the ferrite area ratio is less than 60%, and the ratio of the hard phase increases, so that the structure surrounds the ferrite phase, resulting in too high strength and hard phase. As a result, the deformation of the ferrite is restrained, so that not only the formability is lowered, but also the fatigue limit is saturated and does not increase. Again 80
%, The formability is excellent but the static strength is low and the desired fatigue strength cannot be obtained. Therefore, the ferrite area ratio is 60
% To 80%. In the case of a composite structure steel sheet containing retained austenite, the area ratio of ferrite is set to 50% or more and 80% or less because the upper and lower limits are determined for the same reason.

【0018】マルテンサイト等硬質相の面積率はフェラ
イト・マルテンサイトを主組織とする複合組織鋼板の場
合、マルテンサイトとベイナイトの和が15%未満では
目的とする静的強度、疲労強度とも得られず、40%超
ではフェライトの相を硬質相が囲む編み目状組織とな
り、成形性が低下するのみならず、疲労限度も飽和して
高くならない。したがって、15%以上〜40%以下と
した。ただし、いずれの場合もベイナイトは粗大になり
やすいため、疲労特性を著しく低下させるので5%以下
とする。この鋼では残留オーステナイトを少量含むこと
があるが、ひずみに対して不安定なため、成形中に消失
するもので本発明第1項の必須の構成要素とはならな
い。
The area ratio of hard phase such as martensite is the desired static strength and fatigue strength when the sum of martensite and bainite is less than 15% in the case of a steel sheet having a composite structure mainly composed of ferrite and martensite. On the other hand, if it exceeds 40%, the ferrite phase is surrounded by a hard phase to form a knitted structure, which not only lowers the formability but also saturates the fatigue limit and does not increase. Therefore, it is set to 15% to 40%. However, in any case, since bainite is likely to become coarse and fatigue characteristics are significantly deteriorated, the content is made 5% or less. This steel may contain a small amount of retained austenite, but since it is unstable with respect to strain, it disappears during forming and is not an essential constituent element of the first aspect of the present invention.

【0019】残留オーステナイトを含む複合組織鋼板の
場合にはひずみに対しても安定な残留オーステナイトを
積極的に利用するものであって、本発明第2項の構成要
素であり、残留オーステナイトは5%以上〜18%以下
とする。5%未満では延性が不足し、繰返し降伏応力も
低下する。また、18%超では疲労強度が飽和する。マ
ルテンサイト、ベイナイトおよび残留オーステナイトの
硬質相の和は20%以下では目的とする静的強度、疲労
強度とも得られず、40%超ではフェライト相を硬質相
が囲む網目状組織となり、成形性が低下するのみなら
ず、疲労限度も飽和して高くならないため、したがっ
て、20%以上〜40%以下とする。この場合にはマル
テンサイトの面積率は7%超ではかえって疲労限度が低
下するため、7%以下とする必要がある。
In the case of a composite structure steel sheet containing retained austenite, the retained austenite which is stable against strain is positively utilized and is a constituent element of the second aspect of the present invention, and the retained austenite is 5%. The amount is not less than 18%. If it is less than 5%, the ductility becomes insufficient and the cyclic yield stress also decreases. Further, if it exceeds 18%, the fatigue strength is saturated. If the sum of the hard phases of martensite, bainite and retained austenite is 20% or less, neither the desired static strength nor fatigue strength can be obtained, and if it exceeds 40%, the ferrite phase is surrounded by a hard phase to form a network structure and formability is improved. Not only does it decrease, but the fatigue limit also saturates and does not increase. Therefore, it is set to 20% to 40%. In this case, if the area ratio of martensite exceeds 7%, the fatigue limit will rather decrease, so it must be 7% or less.

【0020】マルテンサイト等硬質相の寸法については
フェライトの平均粒径との関連で規定する必要がある。
本発明第1項においてはマルテンサイトの、本発明第2
項においてはマルテンサイトまたは残留オーステナイト
の最大長さがフェライトの平均粒径の20%未満ではフ
ェライト粒径に比して細かい硬質相が多数存在するた
め、硬質相同士が連結し易くなることになり、かえって
延性を阻害する。一方、最大長さが150%以上の粗大
な場合には疲労起点そのものがこれらの硬質相内で生じ
るため疲労強度の向上とはならない。そこで、マルテン
サイト等硬質相の平均粒径はフェライトの平均粒径の2
0%以上で且つ150%以下とした。粒界炭化物の寸法
については極力小さいことが望ましく最大値のみを規定
し、0.5μm以上ではフェライトにき裂が入る前に粒
界炭化物からき裂を生じ、これらの炭化物を伝播するの
で疲労特性を著しく損なう。そこで、最大値0.5μm
以下とした。
The size of the hard phase such as martensite must be specified in relation to the average grain size of ferrite.
In the first aspect of the present invention, the second aspect of the present invention of martensite
In the item, when the maximum length of martensite or retained austenite is less than 20% of the average grain size of ferrite, a large number of fine hard phases are present as compared with the ferrite grain size, so that the hard phases are easily connected to each other. On the contrary, it inhibits ductility. On the other hand, when the maximum length is 150% or more and is coarse, the fatigue starting point itself occurs in these hard phases, so that the fatigue strength is not improved. Therefore, the average grain size of hard phase such as martensite is 2 of the average grain size of ferrite.
It was set to 0% or more and 150% or less. It is desirable that the size of the grain boundary carbide is as small as possible, and only the maximum value is specified. If it is 0.5 μm or more, a crack is generated from the grain boundary carbide before cracking in the ferrite, and these carbides propagate, so fatigue characteristics are improved. Remarkably damages. Therefore, the maximum value is 0.5 μm
Below.

【0021】以下に実施例を上げてさらに説明する。Hereinafter, the present invention will be further described with reference to examples.

【実施例】本発明鋼1〜3はフェライトとマルテンサイ
トを主組織とする複合組織強化鋼で、表1に示す化学成
分の鋼を溶製、連続鋳造の後、830〜930℃の温度
範囲で3.5mmに圧延し、ランアウトテーブル上で3
0℃/秒以上の速度で740〜640℃迄冷却し、この
温度域で4〜10秒空冷した後200℃以下迄50℃/
秒以上で冷却したものである。また、本発明鋼4〜6は
残留オーステナイトを含む複合組織強化鋼で、750〜
850°の温度範囲で圧延し、4〜10秒空冷した後、
ランアウトテーブル上で30℃/秒以上の速度で350
〜450℃まで冷却したものである。比較鋼7〜11は
析出強化による鋼で850〜950℃の温度範囲で圧延
し、20〜30℃/秒の速度により550〜650℃ま
で冷却したものである。比較鋼12,13はフェライト
・マルテンサイト複合組織強化鋼であり、比較鋼14〜
16は残留オーステナイトを含む鋼であるが、それぞれ
本発明鋼1〜3及び4〜6の製造条件に示した範囲内で
製造したものである。
EXAMPLES Steels 1 to 3 of the present invention are composite structure strengthened steels having ferrite and martensite as the main structures, and steels having the chemical composition shown in Table 1 are melted and continuously cast, and then in a temperature range of 830 to 930 ° C. Rolled to 3.5 mm, and run on the runout table for 3
Cool to 740 to 640 ° C at a rate of 0 ° C / sec or more, and air cool in this temperature range for 4 to 10 seconds, then to 50 ° C / 200 ° C or less
It is cooled in more than a second. The steels 4 to 6 of the present invention are composite structure strengthened steels containing retained austenite, and are 750 to 750.
After rolling in the temperature range of 850 ° and air cooling for 4 to 10 seconds,
350 at a speed of 30 ° C / sec or more on the runout table
It was cooled to ~ 450 ° C. Comparative steels 7 to 11 are steels by precipitation strengthening, rolled in the temperature range of 850 to 950 ° C, and cooled to 550 to 650 ° C at a speed of 20 to 30 ° C / sec. Comparative steels 12 and 13 are ferritic / martensitic composite structure strengthened steels, and comparative steels 14 to
No. 16 is a steel containing retained austenite, which was produced within the ranges shown in the production conditions of the invention steels 1 to 3 and 4 to 6, respectively.

【0022】[0022]

【表1】 [Table 1]

【0023】以下に実施例を詳細に説明する。表2に示
すように本発明鋼1〜3はフェライト・マルテンサイト
を主組織とする鋼であっていずれも疲労限度及び繰返し
降伏応力は高く、ホイールの成形も良好であってホイー
ルの耐久性も比較鋼の2〜4倍を示している。本発明鋼
4〜6は残留オーステナイトを含む鋼であっていずれも
疲労限度及び繰返し降伏応力は高く、ホイールの成形も
良好であってホイールの寿命も比較鋼の2〜4倍の優れ
た耐久性を示している。
The embodiment will be described in detail below. As shown in Table 2, the steels 1 to 3 of the present invention are steels having a main structure of ferrite / martensite, and all have a high fatigue limit and a high cyclic yield stress, and have good wheel molding and wheel durability. It is 2 to 4 times that of the comparative steel. Steels 4 to 6 of the present invention are steels containing retained austenite, all of which have high fatigue limit and high cyclic yield stress, good wheel forming, and wheel life of 2 to 4 times that of comparative steels. Is shown.

【0024】次に比較鋼の結果について説明する。比較
鋼7〜11はNb,Ti,V等を含む析出強化鋼であっ
てフェライト・ベイナイトを主組織としたものであり、
本発明鋼の組織の構成とは異なるが、さらに比較鋼7は
Siが下限を外れ、また比較鋼8はSiとMnが下限を
外れ、さらにいずれも粒界炭化物の寸法が上限を外れて
いる。その結果、表3に示すように疲労限度は低く、ホ
イール耐久寿命も低い。比較鋼9はSiが下限を外れ、
REM/Caの添加が無く、フェライト硬さと粒界炭化
物の寸法が上限を外れている。その結果、疲労限度は低
く、ホイールの成形工程で割れを生じたためホイール耐
久性の評価は行っていない。
Next, the results of the comparative steel will be described. Comparative steels 7 to 11 are precipitation-strengthened steels containing Nb, Ti, V, etc., and have ferrite bainite as a main structure,
Although the structure of the steel of the present invention is different, the comparative steel 7 has Si less than the lower limit, the comparative steel 8 has Si and Mn less than the lower limits, and the sizes of grain boundary carbides are all above the upper limit. . As a result, as shown in Table 3, the fatigue limit is low and the wheel durability life is also low. In Comparative Steel 9, Si is below the lower limit,
With no addition of REM / Ca, the ferrite hardness and the grain boundary carbide dimensions are outside the upper limits. As a result, the fatigue limit was low, and cracking occurred in the wheel forming process, so the wheel durability was not evaluated.

【0025】比較鋼10はSiの下限と粒界炭化物の寸
法に外れているため疲労限度も低く、成形も不良であ
る。比較鋼11はCが上限を、Mnが下限を、Caが上
限をそれぞれ外れ且つ、フェライト硬さが上限を、さら
に粒界炭化物の寸法も外れており疲労限度は低い。比較
鋼12、13はフェライト・マルテンサイトを主組織と
したものであって、比較鋼12の場合はCaが下限を、
フェライト硬さが下限を、マルテンサイトの最大長さと
ベイナイトの面積率が上限をそれぞれ外れており引張強
度及び繰返し降伏応力が不足し、且つホイールの成形で
割れを生じた。比較鋼13はマルテンサイトの最大寸法
と粒界炭化物の寸法が外れているため疲労限度が不十分
であり、且つホイール成形過程で小さい割れを生じた。
Comparative Steel 10 is out of the lower limit of Si and the size of the grain boundary carbides, and therefore has a low fatigue limit and is poor in forming. In Comparative Steel 11, C is out of the upper limit, Mn is out of the lower limit, Ca is out of the upper limit, ferrite hardness is out of the upper limit, and the grain boundary carbides are out of size, so that the fatigue limit is low. Comparative steels 12 and 13 have a main structure of ferrite / martensite, and in the case of comparative steel 12, Ca is the lower limit,
The ferrite hardness was below the lower limit, and the maximum length of martensite and the area ratio of bainite were outside the upper limits, respectively, and the tensile strength and cyclic yield stress were insufficient, and cracks were formed during wheel molding. Comparative Steel 13 had an insufficient fatigue limit because the maximum size of martensite and the size of the grain boundary carbides were deviated, and small cracks were generated in the wheel forming process.

【0026】比較鋼14〜16は残留オーステナイトを
含む鋼であって、比較鋼14では残留オーステナイトの
面積率が下限を下回り且つ、マルテンサイト及び残留オ
ーステナイトの最大長さがいずれも外れており、さらに
粒界炭化物の寸法が外れているため繰返し降伏応力が不
足している。比較鋼15はREM/Caの添加が無く、
マルテンサイトの面積率が上限を、粒界炭化物の寸法が
それぞれ外れ、疲労限度が低くなっている。比較鋼16
はREM/Caの添加が無く、フェライト面積率が下限
値を下回り、すなわち、マルテンサイト、ベイナイト及
び残留オーステナイトの硬質相の和が上限値を越えてい
るため疲労限度は低く、ホイールの成形で割れを生じ
た。
Comparative Steels 14 to 16 are steels containing retained austenite. In Comparative Steel 14, the area ratio of retained austenite is below the lower limit and both the maximum lengths of martensite and retained austenite are out of the range. The cyclic yield stress is insufficient because the grain boundary carbides are out of size. Comparative Steel 15 has no addition of REM / Ca,
The area ratio of martensite deviates from the upper limit, and the size of grain boundary carbide deviates, so that the fatigue limit becomes low. Comparative steel 16
Has no addition of REM / Ca, the ferrite area ratio is below the lower limit value, that is, the sum of hard phases of martensite, bainite and retained austenite exceeds the upper limit value, so the fatigue limit is low and cracking occurs during wheel molding. Occurred.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】1)受入れまま材での両振平面曲げ疲労限
度である。 2)受入れまま材のひずみ制御疲労試験における定常的
な安定応力・ひずみ特性において0.2%の繰返し塑性
ひずみに対応する繰返し応力である。 3)ホイールのハブ穴加工で割れが発生しないときは
○、微小割れは△、大きい割れが発生したときは×。 4)ホイール耐久寿命(単位 万回)。 5)比較ホイール(リム、ディスクとも引張強度60k
g/mm2鋼板:平均寿命15万回)に対する寿命比。
1) It is the limit of bidirectional plane bending fatigue of the as-received material. 2) Cyclic stress corresponding to 0.2% cyclic plastic strain in the steady stable stress / strain characteristics in the strain control fatigue test of the as-received material. 3) When the wheel hub hole processing does not cause cracks, the mark is ○, minute cracks are Δ, and when large cracks occur, ×. 4) Wheel durability life (unit: 10,000 times). 5) Comparison wheel (rim and disc tensile strength 60k
g / mm 2 steel plate: life ratio to average life 150,000 times).

【0030】[0030]

【発明の効果】以上説明してきたように本発明鋼は素材
の特性として疲労特性と成形性にも優れているので、疲
労強度をあげるためにショットピーニング工程等の付加
的処理を必要とせず従来通りの生産様式で可能であり経
済的で工業的にその効果が大きい発明である。さらに付
加的処理を行えば疲労強度をより改善できる。
As described above, the steel according to the present invention is excellent in fatigue properties and formability as properties of the raw material, so that it does not require an additional treatment such as a shot peening process in order to increase fatigue strength. It is an invention that can be produced in the same way as the production method and is economically and industrially effective. The fatigue strength can be further improved by performing additional treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】自動車ホイールの耐久試験結果を比較鋼に比較
して発明鋼による試験結果を使用した高強度薄鋼板の疲
労限度と繰返し降伏応力の関係図である。
FIG. 1 is a diagram showing the relationship between fatigue limit and cyclic yield stress of a high-strength steel sheet using the test results of the invention steel in comparison with the durability test results of automobile wheels compared with the comparative steel.

【符号の説明】[Explanation of symbols]

1 寿命を示す領域の下限線 1 Lower limit line of the area showing the life

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、Cを0.05〜0.15
%、Siを1.2〜2.5%、Mnを1.5〜2.3%
を含み且つ、稀土類元素を0.005〜0.15%及び
Caを0.005〜0.1%よりなる群から選ばれ少な
くとも1種の元素を含む鋼であって、その組織がビッカ
ース硬度で200以上〜280以下の硬さを有するフェ
ライトの面積率が60%以上〜85%以下であり、マル
テンサイトおよびベイナイトの硬質相の和が15%以上
〜40%以下であり、但しベイナイトの面積率は5%以
下であり、マルテンサイトの最大長さはフェライト平均
粒径の20%以上〜150%以下であって、且つ粒界炭
化物の寸法が0.5μm以下である成形性の優れた複合
組織高強度薄鋼板
1. The weight percentage of C is 0.05 to 0.15.
%, Si 1.2 to 2.5%, Mn 1.5 to 2.3%
Is a steel containing at least one element selected from the group consisting of 0.005 to 0.15% rare earth elements and 0.005 to 0.1% Ca, the structure of which is Vickers hardness. The area ratio of ferrite having a hardness of 200 or more and 280 or less is 60% or more and 85% or less, and the sum of hard phases of martensite and bainite is 15% or more and 40% or less, provided that the area of bainite is The ratio is 5% or less, the maximum length of martensite is 20% or more to 150% or less of the average ferrite grain size, and the grain boundary carbide size is 0.5 μm or less. Microstructure high strength thin steel plate
【請求項2】 重量%にて、Cを0.15〜0.25
%、Siを1.4〜2.3%、Mnを1.5〜2.3%
を含み且つ、稀土類元素を0.005〜0.15%及び
Caを0.005〜0.1%よりなる群から選ばれ少な
くとも1種の元素を含む鋼であって、その組織がビッカ
ース硬度で210以上で300以下の硬さを有するフェ
ライトの面積率が50%以上〜80%以下であり、マル
テンサイト、ベイナイトおよび残留オーステナイトの硬
質相の和が20%以上〜50%以下で、マルテンサイト
が7%以下で且つ残留オーステナイトを5%以上〜18
%以下含んでおり、マルテンサイトまたは残留オーステ
ナイトの最大長さはフェライト平均粒径の20%以上〜
150%以下であって、且つ粒界炭化物の寸法が0.5
μm以下である成形性の優れた複合組織高強度薄鋼板
2. The C content is 0.15-0.25 in weight%.
%, Si 1.4 to 2.3%, Mn 1.5 to 2.3%
Is a steel containing at least one element selected from the group consisting of 0.005 to 0.15% rare earth elements and 0.005 to 0.1% Ca, the structure of which is Vickers hardness. The area ratio of ferrite having a hardness of 210 or more and 300 or less is 50% or more to 80% or less, and the sum of hard phases of martensite, bainite, and retained austenite is 20% or more to 50% or less, and martensite is Is 7% or less and residual austenite is 5% or more to 18
% Or less, and the maximum length of martensite or retained austenite is 20% or more of the average ferrite grain size.
150% or less and the grain boundary carbide size is 0.5
High-strength steel sheet with a composite structure of less than μm and excellent formability
【請求項3】 疲労限度38kg/mm2以上、繰返し
降伏応力50kg/mm2以上で、且つ80〜100k
g/mm2級の引張強度を有することを特徴とする請求
項1または2記載の成形性の優れた複合組織高強度薄鋼
板。
3. A fatigue limit of 38 kg / mm 2 or more, a cyclic yield stress of 50 kg / mm 2 or more, and 80 to 100 k.
The composite structure high-strength thin steel sheet with excellent formability according to claim 1 or 2, having a tensile strength of g / mm 2 grade.
JP17527392A 1992-07-02 1992-07-02 High-strength composite steel sheet with excellent formability Expired - Lifetime JP3267682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17527392A JP3267682B2 (en) 1992-07-02 1992-07-02 High-strength composite steel sheet with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17527392A JP3267682B2 (en) 1992-07-02 1992-07-02 High-strength composite steel sheet with excellent formability

Publications (2)

Publication Number Publication Date
JPH0617203A true JPH0617203A (en) 1994-01-25
JP3267682B2 JP3267682B2 (en) 2002-03-18

Family

ID=15993261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17527392A Expired - Lifetime JP3267682B2 (en) 1992-07-02 1992-07-02 High-strength composite steel sheet with excellent formability

Country Status (1)

Country Link
JP (1) JP3267682B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428723A (en) * 1977-08-08 1979-03-03 Nippon Steel Corp Method of improving grain boundary embrittlement of steel material
JPS5770257A (en) * 1980-10-17 1982-04-30 Kobe Steel Ltd High strength steel plate
JPS61130454A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd High-strength hot-rolled steel sheet having superior suitability to stretch flanging and ferrite-bainite structure and its manufacture
JPH01162723A (en) * 1987-12-18 1989-06-27 Kobe Steel Ltd Production of high-strength hot rolled thin steel sheet having excellent stretch-flanging property
JPH03126813A (en) * 1989-10-07 1991-05-30 Nippon Steel Corp Production of hot rolled high strength steel plate for working excellent in durability and fatigue characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428723A (en) * 1977-08-08 1979-03-03 Nippon Steel Corp Method of improving grain boundary embrittlement of steel material
JPS5770257A (en) * 1980-10-17 1982-04-30 Kobe Steel Ltd High strength steel plate
JPS61130454A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd High-strength hot-rolled steel sheet having superior suitability to stretch flanging and ferrite-bainite structure and its manufacture
JPH01162723A (en) * 1987-12-18 1989-06-27 Kobe Steel Ltd Production of high-strength hot rolled thin steel sheet having excellent stretch-flanging property
JPH03126813A (en) * 1989-10-07 1991-05-30 Nippon Steel Corp Production of hot rolled high strength steel plate for working excellent in durability and fatigue characteristics

Also Published As

Publication number Publication date
JP3267682B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JP5302009B2 (en) High carbon steel sheet with excellent formability and method for producing the same
JP5331698B2 (en) Steel wire for spring with high strength and toughness excellent in cold workability, method for producing the steel wire, and method for producing a spring with the steel wire
JP4436419B2 (en) Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method
JP5088631B2 (en) Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method
JP4824145B1 (en) Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
WO2008123483A1 (en) Pearlite steel rail of high internal hardness type excellent in wear resistance and fatigue failure resistance and process for production of the same
WO1995017532A1 (en) Rail of high abrasion resistance and high tenacity having pearlite metallographic structure and method of manufacturing the same
JP7244723B2 (en) High-strength steel material with excellent durability and its manufacturing method
US9670570B2 (en) High carbon steel rail with enhanced ductility
JP2013057114A (en) Medium carbon steel plate having excellent workability and hardenability and method for producing the same
JP2021531405A (en) High-strength steel plate with excellent collision resistance and its manufacturing method
KR20190131408A (en) Precipitation hardening and grain refined hot-rolled high strength abnormal steel sheet with a tensile strength of at least 600 MPa and a method of manufacturing
JP2006161111A (en) Hot rolled steel plate and its production method
KR100903546B1 (en) High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
US20240337003A1 (en) High-strength steel having high yield ratio and excellent durability, and method for manufacturing same
CN108220547B (en) High-strength low-yield-ratio type micro spheroidized steel plate and manufacturing method thereof
CN114641587B (en) Thick composite structural steel excellent in durability and method for producing same
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP7167159B2 (en) Hot-rolled steel sheet for electric resistance welded steel pipe, manufacturing method thereof, and electric resistance welded steel pipe
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
JP2001316767A (en) Hot rolled steel having extremely high elastic limit and mechanical strength and particularly useful for production of automotive parts
JPH0617203A (en) High strength thin steel sheet with composite structure excellent in formability
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11