[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0617040A - Refrigerant for refrigerator - Google Patents

Refrigerant for refrigerator

Info

Publication number
JPH0617040A
JPH0617040A JP4025491A JP2549192A JPH0617040A JP H0617040 A JPH0617040 A JP H0617040A JP 4025491 A JP4025491 A JP 4025491A JP 2549192 A JP2549192 A JP 2549192A JP H0617040 A JPH0617040 A JP H0617040A
Authority
JP
Japan
Prior art keywords
propane
refrigerant
carbon dioxide
liquefied carbon
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4025491A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
昭夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURAIOTETSUKU KK
Original Assignee
KURAIOTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURAIOTETSUKU KK filed Critical KURAIOTETSUKU KK
Priority to JP4025491A priority Critical patent/JPH0617040A/en
Publication of JPH0617040A publication Critical patent/JPH0617040A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To obtain economically a refrigerant for a refrigerator having a refrigerative capacity superior to that of a fluorocarbon refrigerant, dispensing with high pressure and being free from the problem in flammability by mixing propane with a specified gas in a specified ratio. CONSTITUTION:The refrigerant is prepared by mixing propane with liquefied carbon dioxide in an amount to give an ignitability limit value or larger, desirably in a mixing ratio of the propane to the liquefied carbon dioxide in the liquid phase of 8:2-6:4 (by mole). Namely, propane is used as the principal component to be mixed with liquefied carbon dioxide in an amount to give a concentration in the liquid phase of 30-35mol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍機に用いられる冷媒
に関し、特にフロン系冷媒に代替しうる有用な冷媒に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant used in a refrigerator, and more particularly to a useful refrigerant which can substitute for a chlorofluorocarbon refrigerant.

【0002】[0002]

【従来の技術】一般に冷凍機による冷却作用は、図1に
示すような乾き蒸気圧縮サイクルによる冷凍サイクルで
表される。図1において1から2は蒸発過程、2から3
は圧縮過程、3から4は凝縮過程、4から1は自由膨張
過程であって、この方向で一巡すると、温度T1(K)
の低温で冷媒1kgが周囲から熱量q1を吸収し、凝縮器
では温度T2の常温で熱量q2を放出する。
2. Description of the Related Art Generally, the cooling action of a refrigerator is represented by a refrigeration cycle of a dry vapor compression cycle as shown in FIG. In FIG. 1, 1 to 2 are evaporation processes, 2 to 3
Is a compression process, 3 to 4 is a condensation process, and 4 to 1 is a free expansion process. One cycle in this direction results in a temperature T 1 (K)
At a low temperature of 1 kg, 1 kg of the refrigerant absorbs the heat quantity q 1 from the surroundings, and the condenser discharges the heat quantity q 2 at the normal temperature of T 2 .

【0003】上記冷凍サイクルに用いられる冷媒は、以
下のような条件を具備することが求められる。第一に沸
点が低い、すなわち冷却到達温度が低いことである。第
二に臨界温度が常温である、すなわち常温で凝縮できる
ことである。第三に蒸発潜熱が大きい、すなわち冷媒1
Kgあたりの冷却熱量が大きいことである。第四に蒸気密
度が大きい、すなわち装置容積が小さくて済むことであ
る。第五に圧縮比が小さい、すなわち圧縮動力が小さく
て済むことである。第六に分解性、腐食性、毒性がない
ことである。
The refrigerant used in the refrigeration cycle is required to satisfy the following conditions. First, the boiling point is low, that is, the temperature reached by cooling is low. Secondly, the critical temperature is room temperature, that is, it can be condensed at room temperature. Third, the latent heat of vaporization is large, that is, refrigerant 1
That is, the cooling heat amount per Kg is large. Fourthly, the vapor density is high, that is, the device volume is small. Fifth, the compression ratio is small, that is, the compression power is small. Sixth is that it is not degradable, corrosive, or toxic.

【0004】以上の条件を具備する代表的冷媒として、
フロン12、フロン22、プロパン、液化炭酸ガスが挙
げられる。このうちプロパンは可燃性であること、また
液化炭酸ガスは高圧力での使用が必要であるという難点
があった。したがって、特殊な場合を除き、これまでは
フロン系のものが広く用いられてきた。
As a typical refrigerant satisfying the above conditions,
CFC 12, CFC 22, propane, and liquefied carbon dioxide gas can be used. Of these, propane is flammable and liquefied carbon dioxide gas needs to be used under high pressure. Therefore, except for a special case, the CFC type has been widely used until now.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近時フ
ロンは、地球オゾン層の破壊につながるものとして、そ
の大気中への放散が厳しく規制されてきており、冷凍機
のように閉鎖環境で使用される場合でも、その漏洩や廃
棄における処理が必要な時代になりつつある。
However, recently, CFCs have been severely regulated in their emission into the atmosphere as they lead to the destruction of the earth's ozone layer, and are used in a closed environment like refrigerators. However, even in the case where there is a leak, it is becoming an era where it is necessary to deal with the leakage and disposal.

【0006】本発明は前記事情に鑑みてなされたもの
で、冷凍サイクルにおいてフロン系冷媒に代わる優れた
冷媒を提供するものである。
The present invention has been made in view of the above circumstances, and provides an excellent refrigerant that replaces a fluorocarbon refrigerant in a refrigeration cycle.

【0007】[0007]

【課題を解決するための手段】本発明の冷凍機用冷媒は
プロパンを主成分とし、これに液化炭酸ガスを混合した
混合系とすることを前記課題の解決手段とした。
The refrigerating machine refrigerant of the present invention comprises propane as a main component and a mixed system in which liquefied carbon dioxide gas is mixed to form a mixed system.

【0008】[0008]

【作用】一般にプロパンのような可燃性ガスに、不活性
ガスを発火限界値以上混合すると、可燃性ガスの爆発を
防止することができる。本発明はこの不活性ガスとし
て、それ自体優れた冷媒である液化炭酸ガスを用いた。
さらにこのような混合系では、液化炭酸ガス単独の場合
より、凝縮圧力が低減できるという利点がある。
In general, when an inactive gas is mixed with a flammable gas such as propane in excess of the ignition limit value, explosion of the flammable gas can be prevented. In the present invention, liquefied carbon dioxide gas, which is an excellent refrigerant in itself, is used as the inert gas.
Further, such a mixed system has an advantage that the condensation pressure can be reduced as compared with the case of using liquefied carbon dioxide gas alone.

【0009】[0009]

【実施例】以下、本発明を詳しく説明する。表1は各冷
媒について、本発明者の創出による物性値の近似式を用
いて計算しその特性を比較したものである。ただしサイ
クルの全実効率をη=0.5、圧縮比をZ=6と一律に
設定した。表1において、成績係数εは冷凍効果q(Kc
al)と圧縮機の仕事量W(Kcal)の比であり、図1にお
いてε=q/Wと表わされる。この成績係数εは一般的
に冷凍サイクルの構成と冷媒の選定に重要な指標となる
ものである。また冷凍熱量qvは、冷凍蒸気1m3あたり
の吸収熱量を表わし、装置の大きさの尺度となるもので
ある。
The present invention will be described in detail below. Table 1 shows the characteristics of the respective refrigerants calculated by using the approximation formula of the physical property values created by the present inventors and comparing the characteristics thereof. However, the total actual efficiency of the cycle was uniformly set to η = 0.5 and the compression ratio was Z = 6. In Table 1, the coefficient of performance ε is the freezing effect q (Kc
al) and the work W (Kcal) of the compressor, which is expressed as ε = q / W in FIG. This coefficient of performance ε is generally an important index for the structure of the refrigeration cycle and the selection of the refrigerant. The freezing heat quantity q v represents the amount of heat absorbed per 1 m 3 of freezing steam and serves as a measure of the size of the device.

【表1】 [Table 1]

【0010】表1より、成績係数εは、液化炭酸ガスが
最大で、フロン22とフロン12がそれに続き、プロパ
ンがやや小さい。また冷凍熱量qvは、液化炭酸ガスは
フロン12の21倍、フロン22の13倍であり、プロ
パンはほぼフロン22に匹敵している。このように液化
炭酸ガスは成績係数ε、冷凍熱量qv共に大きく、冷凍
能力の点で優れているが、凝縮圧力P2が極めて大きい
という実用上の欠点がある。したがって、本発明の冷媒
においては、プロパンを主成分として使用する。
From Table 1, the coefficient of performance ε is maximum for liquefied carbon dioxide, followed by Freon 22 and Freon 12, and slightly smaller for propane. The freezing heat quantity q v is 21 times that of chlorofluorocarbon 12 and 13 times that of chlorofluorocarbon 22, and propane is almost equal to that of fluorocarbon 22. As described above, liquefied carbon dioxide has a large coefficient of performance ε and a large amount of freezing heat q v , and is excellent in refrigerating capacity, but it has a practical drawback that the condensing pressure P 2 is extremely large. Therefore, in the refrigerant of the present invention, propane is used as a main component.

【0011】そこで、プロパンと液化炭酸ガスの液相に
おける混合比を、モル比で8:2、7:3、6:4と
し、これらの混合物の冷媒として使用したときの成績係
数ε、冷凍熱量qvを、表1と同様に算出すると表2の
ようになる。ただし表2においては、蒸発温度T1、凝
縮温度T2、およびサイクルの全実効率ηを50%と一
律に設定した。
Therefore, the mixing ratio of propane and liquefied carbon dioxide in the liquid phase is 8: 2, 7: 3, 6: 4 in terms of molar ratio, and the coefficient of performance ε and the amount of heat of freezing when these mixtures are used as a refrigerant. Table 2 shows q v calculated in the same manner as in Table 1. However, in Table 2, the evaporation temperature T 1 , the condensation temperature T 2 , and the total actual efficiency η of the cycle were uniformly set to 50%.

【表2】 表2の結果から明らかなように、上記混合物はいずれ
も、成績係数ε、冷凍熱量qvにおいてフロン系を上回
るものである。また上記混合物の凝縮圧力P2は、液化
炭酸ガス単独に比べ、低減されている。
[Table 2] As is clear from the results in Table 2, all of the above-mentioned mixtures have a coefficient of performance ε and a freezing heat quantity q v higher than those of the CFC type. Further, the condensation pressure P 2 of the mixture is reduced as compared with liquefied carbon dioxide gas alone.

【0012】次にプロパンの発火限界値について説明す
る。図2はプロパンー炭酸ガスー空気の発火制御範囲を
示している(化学工学協会編、物性定数6集11頁参
照)。よってプロパンに混合する液化炭酸ガスの液相に
おける濃度を30mol%以上にすれば、万一、プロパン
ー液化炭酸ガス混合物が漏洩しても、常に発火限界外に
あることになり、常用の漏洩探知機により安全に措置す
ることができる。一方液化炭酸ガスの濃度を上げること
は、すでに述べたように圧力の点から好ましくない。し
たがってプロパンに混合する液化炭酸ガスの液相におけ
る濃度は、30〜35mol%の範囲が最適であるといえ
る。
Next, the ignition limit value of propane will be described. FIG. 2 shows the ignition control range of propane-carbon dioxide-air (see the physical property constants, Vol. 6, page 11, edited by Chemical Society of Japan). Therefore, if the concentration of liquefied carbon dioxide mixed with propane in the liquid phase is set to 30 mol% or more, even if the propane-liquefied carbon dioxide mixture leaks, it will always be outside the ignition limit. Can be taken safely. On the other hand, increasing the concentration of liquefied carbon dioxide is not preferable from the viewpoint of pressure, as already described. Therefore, it can be said that the optimum concentration of liquefied carbon dioxide mixed with propane in the liquid phase is in the range of 30 to 35 mol%.

【0013】また本発明の冷媒は、液化炭酸ガスとプロ
パンを混合したものであるが、炭酸ガスとプロパンは、
極性がいずれもゼロであって、両者の混合に障害はな
く、正常な気液平衡を示すと考えられる。ただし一般に
低温の液体は、エントロピーが小さいため、単に液ー液
を混合しただけでは均一な混合状態は得られない。この
ため低圧(例えば25℃、10atm)のプロパンの液相
に、高圧の炭酸ガスをバブルする方法、または高圧のガ
スーガスを膨張させて液化する方法などで混合させるこ
とが必要である。
The refrigerant of the present invention is a mixture of liquefied carbon dioxide and propane. Carbon dioxide and propane are
It is considered that the polarities are zero, there is no obstacle in the mixing of the two, and normal vapor-liquid equilibrium is exhibited. However, in general, a low temperature liquid has a small entropy, and therefore a uniform mixed state cannot be obtained by simply mixing liquid and liquid. Therefore, it is necessary to mix high-pressure carbon dioxide gas with a low-pressure (eg, 25 ° C., 10 atm) liquid phase of propane by a method of bubbling it or by expanding a high-pressure gas-gas to liquefy it.

【0014】また気液平衡における組成変化について
は、開放系においては問題となるが、本発明の冷媒は閉
鎖系で用いるので、極端な組成変化は起きないと考えら
れる。
The composition change in gas-liquid equilibrium is a problem in an open system, but since the refrigerant of the present invention is used in a closed system, it is considered that no extreme composition change occurs.

【0015】[0015]

【発明の効果】以上説明したように本発明の冷凍機用冷
媒は、プロパンに液化炭素ガスが発火限界値以上混合さ
れてなるもの、好ましくはプロパンと液化炭素ガスの液
相における混合比が、モル比で8:2〜6:4の範囲で
あるものである。したがって、液化炭酸ガス単独のよう
な高圧力の必要がなく、特に前者においてはプロパンの
可燃性という問題も解決でき、しかも冷凍能力でフロン
系を上回るものである。また工業用フロン系冷媒の1kg
あたりの価格は、プロパンおよび液化炭酸ガスの十数倍
であるから、本発明の冷媒はフロン系のものに比べては
るかに経済的である。
As described above, the refrigerant for a refrigerator of the present invention is one in which liquefied carbon gas is mixed with propane at an ignition limit value or more, preferably, the mixing ratio of propane and liquefied carbon gas in the liquid phase is The molar ratio is in the range of 8: 2 to 6: 4. Therefore, it is not necessary to use high pressure like liquefied carbon dioxide alone, and in particular, in the former case, the problem of flammability of propane can be solved, and the refrigerating capacity is higher than that of CFCs. In addition, 1 kg of industrial CFC refrigerant
Since the price per unit is ten times that of propane and liquefied carbon dioxide, the refrigerant of the present invention is much more economical than the chlorofluorocarbon type.

【図面の簡単な説明】[Brief description of drawings]

【図1】 乾き蒸気圧縮サイクルによる冷凍サイクルを
表わす図である。
FIG. 1 is a diagram showing a refrigeration cycle based on a dry vapor compression cycle.

【図2】 プロパンー炭酸ガスー空気の発火制御範囲を
示す図である。
FIG. 2 is a diagram showing an ignition control range of propane-carbon dioxide-air.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プロパンに液化炭素ガスが発火限界値以
上混合されてなることを特徴とする冷凍機用冷媒。
1. A refrigerating machine refrigerant, characterized in that liquefied carbon gas is mixed with propane at an ignition limit value or more.
【請求項2】 プロパンと液化炭素ガスの液相における
混合比がモル比で8:2〜6:4であることを特徴とす
る冷凍機用冷媒。
2. A refrigerating machine refrigerant, wherein the mixing ratio of propane and liquefied carbon gas in the liquid phase is 8: 2 to 6: 4 in molar ratio.
JP4025491A 1992-02-12 1992-02-12 Refrigerant for refrigerator Withdrawn JPH0617040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025491A JPH0617040A (en) 1992-02-12 1992-02-12 Refrigerant for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025491A JPH0617040A (en) 1992-02-12 1992-02-12 Refrigerant for refrigerator

Publications (1)

Publication Number Publication Date
JPH0617040A true JPH0617040A (en) 1994-01-25

Family

ID=12167533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025491A Withdrawn JPH0617040A (en) 1992-02-12 1992-02-12 Refrigerant for refrigerator

Country Status (1)

Country Link
JP (1) JPH0617040A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280028A (en) * 1985-10-03 1987-04-13 Toppan Printing Co Ltd Manufacture of molded piece having partly deposited hologram
KR20020019682A (en) * 2000-09-06 2002-03-13 권오석 The composition of refrigerant mixtures for high back pressure condition
EP1431684A1 (en) * 2002-12-20 2004-06-23 Sanyo Electric Co., Ltd. Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
EP1431683A3 (en) * 2002-12-20 2004-10-13 Sanyo Electric Co., Ltd Refrigerating device
CN103937459A (en) * 2014-01-29 2014-07-23 中国科学院力学研究所 Novel power cycle mixed working fluid with CO2 as the main component and its system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280028A (en) * 1985-10-03 1987-04-13 Toppan Printing Co Ltd Manufacture of molded piece having partly deposited hologram
JPH0618746B2 (en) * 1985-10-03 1994-03-16 凸版印刷株式会社 Method for manufacturing molded article having partially vapor-deposited hologram
KR20020019682A (en) * 2000-09-06 2002-03-13 권오석 The composition of refrigerant mixtures for high back pressure condition
EP1431684A1 (en) * 2002-12-20 2004-06-23 Sanyo Electric Co., Ltd. Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
EP1431683A3 (en) * 2002-12-20 2004-10-13 Sanyo Electric Co., Ltd Refrigerating device
SG116517A1 (en) * 2002-12-20 2005-11-28 Sanyo Electric Co Refrigerating device.
CN103937459A (en) * 2014-01-29 2014-07-23 中国科学院力学研究所 Novel power cycle mixed working fluid with CO2 as the main component and its system and method

Similar Documents

Publication Publication Date Title
CA2293153C (en) Method for providing refrigeration
US6327866B1 (en) Food freezing method using a multicomponent refrigerant
JPH04350471A (en) Refrigerator
JPH07504889A (en) Refrigerant composition and method of use thereof
US4943388A (en) Azeotrope-like compositions of pentafluoroethane; 1,1,1-trifluoroethane; and chlorodifluoromethane
EP0593777B1 (en) Refrigerant composition and binary refrigerating system using the composition
EP1577619B1 (en) Refrigerator system using non-azeotropic refrigerant, and non-azeotropic refrigerant for very low temperature used for the system
WO2019022141A1 (en) Azeotrope or azeotropic composition, working medium for heat cycle, and heat cycle system
US5647224A (en) Air conditioner and heat exchanger therefor
US4783276A (en) Refrigerant and a machine having a refrigerating circuit with refrigerant
JPH0617040A (en) Refrigerant for refrigerator
WO1997029162A1 (en) Difluoromethane/hydrocarbon refrigerant mixture and refrigeration cycle plant using the same
JPH0854149A (en) Refrigerating device
TW201328B (en)
US4101436A (en) Constant boiling mixtures of 1-chloro-2,2,2-trifluoroethane and hydrocarbons
JPH07502774A (en) Compositions useful as refrigerants
JP2007085729A (en) Refrigerator system using non-azeotropic refrigerant
JPH06281272A (en) Maximum azeotropic mixture and azeotropiclike mixture
JPH05271122A (en) Mixture of 1,1,1-trifluoroethane, perfuluoropropane and propane, and its use as refrigerant, aerosol propellant or as blowing agent for plastic foam
JPH05279659A (en) Working fluid for rankine cycle
JPH08127767A (en) Working fluid
JP2005344057A (en) Mixture refrigerant of dimethyl ether and carbon dioxide
JP2007145922A (en) Refrigerant composition
JPH08151569A (en) Working fluid
JPH0660306B2 (en) Refrigerant composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518