JPH06163350A - Projection exposure method and device thereof - Google Patents
Projection exposure method and device thereofInfo
- Publication number
- JPH06163350A JPH06163350A JP4310269A JP31026992A JPH06163350A JP H06163350 A JPH06163350 A JP H06163350A JP 4310269 A JP4310269 A JP 4310269A JP 31026992 A JP31026992 A JP 31026992A JP H06163350 A JPH06163350 A JP H06163350A
- Authority
- JP
- Japan
- Prior art keywords
- light
- pupil
- illumination
- light source
- contrast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70091—Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Projection-Type Copiers In General (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はホトリソグラフィで使
用するための投影露光方法および装置に関するものであ
る。FIELD OF THE INVENTION This invention relates to a projection exposure method and apparatus for use in photolithography.
【0002】[0002]
【従来の技術】近年、半導体技術の発展が目ざましく、
半導体装置のパターンも0.5ミクロンサイズのものが
形成されるようになってきている。このような微細化は
リソグラフィ技術と呼ばれる要素技術の飛躍的な進歩に
根ざしている。リソグラフィ技術は、大きく分けてレジ
スト塗布、露光と現像の工程から成っている。パターン
の微細化は、レジストの材料、露光装置および露光方
法、現像方法等の改良によって達成されている。特に、
露光装置および露光方法の改良によって顕著にパターン
の微細化が進められてきた。2. Description of the Related Art In recent years, the development of semiconductor technology has been remarkable.
As for the pattern of a semiconductor device, a pattern having a size of 0.5 μm is being formed. Such miniaturization is rooted in a breakthrough in elemental technology called lithography technology. Lithography technology is broadly divided into the steps of resist application, exposure and development. The miniaturization of the pattern has been achieved by improving the resist material, exposure apparatus and exposure method, development method and the like. In particular,
The refinement of the pattern has been remarkably promoted by the improvement of the exposure apparatus and the exposure method.
【0003】パターンの微細化を図る方法として、投影
レンズの開口数(NA)を大きくする方法がとられてき
た。しかし、高NA化は同時に焦点深度の低下を招くた
め、高NA化で解像度の向上を実現するのには限界があ
る。このため、投影レンズの開口数を変えずに解像度を
向上させる方法が求められている。このため、投影露光
装置の照明系に改良を加えて、より微細なレジストパタ
ーンを形成する方法が提案されている。A method of increasing the numerical aperture (NA) of the projection lens has been used as a method of miniaturizing the pattern. However, since increasing the NA simultaneously causes a decrease in the depth of focus, there is a limit in achieving resolution improvement with increasing the NA. Therefore, there is a demand for a method of improving the resolution without changing the numerical aperture of the projection lens. Therefore, a method of forming a finer resist pattern by improving the illumination system of the projection exposure apparatus has been proposed.
【0004】通常の投影露光装置においては、蝿の目レ
ンズの出口に置かれる開口絞りは図6(a)に示すよう
に円形である。図において、Aは瞳、Bは2次光源像で
ある。蝿の目レンズの出口は照明光学系の瞳面に相当
し、投影光学系の瞳面と光学的に共役な位置である。こ
の開口絞りは2次光源と呼ばれ、2次光源が瞳面に投影
された像(2次光源像)を等価光源と呼ぶ。2次光源面
と瞳面は共役な位置にあるので、照明系は等価光源によ
り特徴づけられる。したがって、以下の考察では照明系
を、瞳面に投影される2次光源像を用いて説明する。瞳
の半径を1として規格化して、2次光源が瞳面につくる
像は開口絞りと同じ円形となる。この円の半径σは投影
光学系のコヒーレンス度と定義される。In an ordinary projection exposure apparatus, the aperture stop placed at the exit of the fly's eye lens is circular as shown in FIG. 6 (a). In the figure, A is a pupil and B is a secondary light source image. The exit of the fly-eye lens corresponds to the pupil plane of the illumination optical system, and is a position optically conjugate with the pupil plane of the projection optical system. This aperture stop is called a secondary light source, and an image (secondary light source image) obtained by projecting the secondary light source on the pupil plane is called an equivalent light source. Since the secondary light source plane and the pupil plane are at conjugate positions, the illumination system is characterized by an equivalent light source. Therefore, in the following discussion, the illumination system will be described using the secondary light source image projected on the pupil plane. By normalizing the radius of the pupil as 1, the image formed by the secondary light source on the pupil surface becomes the same circle as the aperture stop. The radius σ of this circle is defined as the degree of coherence of the projection optical system.
【0005】これに対し、改良照明系(以下、変形照明
と呼ぶ)を用いる方法として、例えば特開平4−101
148号公報や特開平4−180612号公報等があ
る。ここで提案されている方法では、照明系の瞳面と共
役な位置に円形とは異なる形状の開口絞りを設け、マス
クを斜め方向から照明することによりより高い解像度を
実現している。この原理は顕微鏡においては暗視野照明
として古くから広く知られていた。この原理を投影露光
装置に応用した例として、堀内他の第32回応用物理学
関係連合講演会予稿集p.294(1985)記載の
「輪帯光源絞りを用いた光露光解像限界の追究」があ
る。この例では、図6(b)に示す輪帯状の開口を照明
系の瞳面と光学的に共役な位置に配置することによって
高い解像度を得ている。これに対し、特開平4−180
612号公報記載の方法は、LSIが主として水平方向
および垂直方向のパターンからなっていることに着目
し、垂直および水平方向のパターンの解像度をより効率
的に解像するために照明系に配置する開口(絞り)を図
6(c)に示すような形状としている。この開口により
照明光はマスクの45度の対角線上の4つに分割されて
マスク面に入射する。このような照明光源の改良によっ
て、マスクにおける回折光の瞳への入射角を増加するこ
とができる。この4分割照明により、水平方向および水
平方向のパターンの解像度と焦点深度が向上できること
が確かめられている。この4分割照明法では、マスクで
の回折光の片側(1/2)しか利用していないため通常
法に比べて解像度は向上するが、投影される像のコント
ラストが通常法に比べて低下するという問題点がある。
これを防止するために、4分割照明法とハーフトーン型
の位相シフトマスクと組み合わせて用いるという方法が
提案されている。On the other hand, as a method of using the improved illumination system (hereinafter referred to as modified illumination), for example, Japanese Patent Laid-Open No. 4-101.
For example, there are JP-A No. 148, JP-A-4-180612 and the like. In the method proposed here, an aperture stop having a shape different from a circle is provided at a position conjugate with the pupil plane of the illumination system, and a higher resolution is realized by illuminating the mask in an oblique direction. This principle has long been widely known as dark field illumination in microscopes. As an example of applying this principle to a projection exposure apparatus, the proceedings of the 32nd Joint Lecture on Applied Physics by Horiuchi et al., P. 294 (1985), "Pursuit of optical exposure resolution limit using annular light source diaphragm". In this example, high resolution is obtained by arranging the ring-shaped aperture shown in FIG. 6B at a position optically conjugate with the pupil plane of the illumination system. On the other hand, JP-A-4-180
In the method described in Japanese Patent No. 612, attention is paid to the fact that the LSI is mainly composed of horizontal and vertical patterns, and it is arranged in the illumination system in order to more efficiently resolve the resolution of the vertical and horizontal patterns. The aperture (diaphragm) has a shape as shown in FIG. The illumination light is divided into four on the 45-degree diagonal line of the mask by this opening and enters the mask surface. Such an improvement of the illumination light source can increase the incident angle of the diffracted light on the mask to the pupil. It has been confirmed that this four-division illumination can improve the resolution and depth of focus of horizontal and horizontal patterns. In this four-division illumination method, since only one side (1/2) of the diffracted light at the mask is used, the resolution is improved as compared with the normal method, but the contrast of the projected image is lowered as compared with the normal method. There is a problem.
In order to prevent this, a method has been proposed in which the four-division illumination method is used in combination with a halftone type phase shift mask.
【0006】[0006]
【発明が解決しようとする課題】図6(c)に示す照明
光源を45度の対角線上の4領域に分割する照明方法
(特開平4−180612号公報)は、既に述べたよう
に解像度は向上させるが、回折光の半分だけしか利用し
ていないため投影像のコントラストは逆に低下するとい
う問題がある。コントラストの低下はマスクパターンの
開口割合が高いほど顕著となる。これは、開口割合が高
くなると、回折光に対する直接光の割合が上昇するため
である。The illumination method shown in FIG. 6 (c) in which the illumination light source is divided into four areas on a diagonal line of 45 degrees (Japanese Patent Laid-Open No. 4-180612) has a resolution as described above. Although it is improved, since only half of the diffracted light is used, the contrast of the projected image is lowered. The decrease in contrast becomes more remarkable as the opening ratio of the mask pattern increases. This is because as the aperture ratio increases, the ratio of direct light to diffracted light increases.
【0007】図7(a),(b)にマスクパターンの開
口割合aと投影像のコントラストの関係を示した。図7
(a)のマスクパターンは単純な線・間隔パターンと
し、繰り返し周期で規格化し開口部の線幅をaとして示
した。図7(b)に表示したコントラストの値は最低次
の回折光(1次回折光)だけが瞳に入射し、2次以上の
回折光は瞳に入射しない場合(微細マスクパターンの転
写時)についての計算結果である。FIGS. 7A and 7B show the relationship between the opening ratio a of the mask pattern and the contrast of the projected image. Figure 7
The mask pattern of (a) is a simple line / spacing pattern, and the line width of the opening is shown as a when normalized by the repeating cycle. The contrast values shown in FIG. 7B are for the case where only the lowest-order diffracted light (first-order diffracted light) is incident on the pupil, and the second-order and higher-order diffracted light is not incident on the pupil (during transfer of the fine mask pattern). Is the calculation result of.
【0008】線と間隔の等しい場合(a=0.5)でも
通常法に比べて、4分割照明ではコントラストが低下し
ており、約0.9程度のコントラストとなっている。4
分割照明法では開口率が上がるにつれ急激に低下し、線
・間隔比が1対2を超えると(a>0.67)コントラ
ストは0.7以下となる。これに対し通常法では線・間
隔比が1対4(a<0.8)となるまでコントラストは
0.8以上を保つことができる。Even when the line and the space are equal (a = 0.5), the contrast is reduced in the four-division illumination compared with the normal method, and the contrast is about 0.9. Four
In the split illumination method, the aperture ratio sharply decreases as the aperture ratio increases, and when the line-spacing ratio exceeds 1: 2 (a> 0.67), the contrast becomes 0.7 or less. On the other hand, in the conventional method, the contrast can be maintained at 0.8 or more until the line / spacing ratio becomes 1: 4 (a <0.8).
【0009】以上から明らかなように、4分割照明法で
は高い解像度と引き換えに投影像のコントラストが低下
してしまうこと、コントラストの低下はマスク開口率が
大きいとき特に顕著であるという問題点があることがわ
かる。LSI製造工程では線・間隔比が1対1ではない
ことが多く、マスクパターンの線・間隔比の変化にとも
なってコントラストが大きく変化するとことは実用上大
きな問題である。As is apparent from the above, the four-division illumination method has a problem that the contrast of the projected image is lowered in exchange for a high resolution, and the reduction of the contrast is particularly remarkable when the mask aperture ratio is large. I understand. In the LSI manufacturing process, the line-to-spacing ratio is often not 1: 1 and the fact that the contrast changes greatly with the change in the line-to-spacing ratio of the mask pattern is a serious problem in practical use.
【0010】このような問題を解決するために、4分割
照明法にハーフトーン型位相シフトマスクを用いるとい
う方法が提案されている。ハーフトーン型位相シフトマ
スクとは、通常のマスクの遮光パターン(光透過率:0
%)の代わりに、一定の光透過率を持ち透過光の位相を
反転させるような位相シフタパターンを用いた位相シフ
トマスクの一種である。In order to solve such a problem, a method of using a halftone type phase shift mask for the four-division illumination method has been proposed. The halftone type phase shift mask is a light-shielding pattern (light transmittance: 0
%) Is a kind of phase shift mask using a phase shifter pattern that has a constant light transmittance and inverts the phase of transmitted light.
【0011】このマスクを用いると、マスクからの0次
光(直接光)を低減させることが可能になる。ハーフト
ーン型位相シフトマスクおよびこれを用いた場合の投影
像のコントラストを図8(a),(b)に示した。図8
(a)のマスクパターンは図7(a)に示したマスクパ
ターンと同じである。ただし、図7(a)のマスクでは
遮光部は光透過率が0%であったが、図8(a)のハー
フトーン型位相シフトマスクでは露光光の透過率がt
(%)で透過光の位相を反転させるような遮光パターン
である。図8(b)から明らかなように光透過率を上げ
るにつれて、線・間隔割合が1対1のマスク(a=0.
5)のコントラストが増加する。By using this mask, it is possible to reduce the 0th order light (direct light) from the mask. The halftone type phase shift mask and the contrast of the projected image when the mask is used are shown in FIGS. Figure 8
The mask pattern of (a) is the same as the mask pattern shown in FIG. However, in the mask of FIG. 7A, the light transmittance of the light-shielding portion was 0%, but in the halftone phase shift mask of FIG. 8A, the transmittance of the exposure light was t.
It is a light-shielding pattern in which the phase of transmitted light is inverted by (%). As is clear from FIG. 8B, as the light transmittance is increased, the mask having a line-to-space ratio of 1: 1 (a = 0.
The contrast of 5) increases.
【0012】しかし、開口率の増加につれ急激にコント
ラストが低下する傾向は変わらず、開口率の小さい部分
でのコントラストの低下も現われる。ハーフトーン型位
相シフトマスクは線・間隔比が1対1の場合(a=0.
5)のコントラストは改善するが、マスクパターンの線
・間隔比が変化するような場合には有効ではないという
問題がある。このような、問題点はシフター遮光型の位
相シフトマスクを用いた場合も全く同様に存在する。However, as the aperture ratio increases, the tendency for the contrast to sharply decrease does not change, and the contrast also decreases in the portion where the aperture ratio is small. The halftone phase shift mask has a line-to-space ratio of 1: 1 (a = 0.
Although the contrast of 5) is improved, there is a problem that it is not effective when the line / spacing ratio of the mask pattern changes. Such problems also exist in the same manner when a shifter light shielding type phase shift mask is used.
【0013】したがって、この発明の目的は、解像度お
よび焦点深度を向上させ、かつコントラストを向上させ
ることができる投影露光方法および装置を提供すること
である。Therefore, it is an object of the present invention to provide a projection exposure method and apparatus capable of improving the resolution and the depth of focus and improving the contrast.
【0014】[0014]
【課題を解決するための手段】この発明は、照明光源を
分割し、かつ各々の分割された光源の一部だけを瞳に入
射させることを特徴とする。The present invention is characterized in that an illumination light source is divided, and only a part of each divided light source is incident on the pupil.
【0015】[0015]
【作用】この発明により、瞳に入射する0次光の割合を
小さくすることができ、繰り返しパターンの線幅を変化
させた場合や、斜め方向の成分を含んだマスクパターン
に対しても、解像度と焦点深度を同時に向上させること
が可能となり、かつコントラストを向上させることがで
きる。According to the present invention, the proportion of the 0th-order light incident on the pupil can be reduced, and the resolution can be improved even when the line width of the repetitive pattern is changed or when the mask pattern includes a diagonal component. And the depth of focus can be improved at the same time, and the contrast can be improved.
【0016】[0016]
【実施例】この発明の実施例を図1を用いて詳細に説明
する。露光用光源である水銀ランプ1から射出され楕円
鏡2により収束された光はミラー3により反射され蝿の
目レンズ4に入射する。ここで蝿の目レンズ4の射出面
は照明光学系の瞳面となっている。この照明光学系瞳
面、あるいはその近傍に照明系開口絞り5が設けられて
いる。照明系開口絞り5を通った光はミラー6により反
射されコンデンサレンズ7によりレチクル8を照明す
る。レチクル8上のパターンによって回折された光は投
影レンズ9により、ウェハーステージ上のウェハー10
上に結像する。投影レンズ9中の投影光学系の瞳面には
投影系開口絞り11が設けられている。Embodiments of the present invention will be described in detail with reference to FIG. The light emitted from the mercury lamp 1 as an exposure light source and converged by the elliptical mirror 2 is reflected by the mirror 3 and enters the fly's eye lens 4. Here, the exit surface of the fly-eye lens 4 is the pupil surface of the illumination optical system. An illumination system aperture stop 5 is provided on or near the pupil plane of the illumination optical system. The light passing through the illumination system aperture stop 5 is reflected by the mirror 6 and illuminates the reticle 8 by the condenser lens 7. The light diffracted by the pattern on the reticle 8 is projected onto the wafer 10 on the wafer stage by the projection lens 9.
Image on top. A projection system aperture stop 11 is provided on the pupil plane of the projection optical system in the projection lens 9.
【0017】図1(a)に示した投影露光装置は従来か
ら用いられてきた投影露光装置の光学系と基本的に同等
である。従来装置と異なる点は照明系開口絞り5の形状
である。従来の投影露光装置においては、この照明系開
口絞り5は円形であり、この絞りの瞳面での投影像は図
6(a)に示されるように円形であった。その瞳の半径
を単位とした半径σは投影露光装置のコヒーレンス度で
あり、通常の投影露光装置におけるコヒーレンス度は
0.5〜0.6程度の値である。The projection exposure apparatus shown in FIG. 1 (a) is basically the same as the optical system of the projection exposure apparatus used conventionally. The difference from the conventional apparatus is the shape of the illumination system aperture stop 5. In the conventional projection exposure apparatus, the illumination system aperture stop 5 has a circular shape, and the projection image on the pupil plane of the stop has a circular shape as shown in FIG. The radius σ with the radius of the pupil as a unit is the coherence degree of the projection exposure apparatus, and the coherence degree in a normal projection exposure apparatus is a value of about 0.5 to 0.6.
【0018】これに対し4分割照明法では、照明系開口
絞り5を図6(c)に示すように変形しマスク面を分割
された光源により照明している。マスクパターンの解像
を要する微細パターンの水平方向と垂直方向から45度
回転した方向に照明光を分割する方法によって解像度お
よび焦点深度が向上する原理については特開平4−18
0612号公報に詳しく記載されている。既に述べたよ
うにこの4分割照明法の問題点は、1次回折光の半分し
か利用していないために、直接光(0次光)の割合が高
くなり、投影像のコントラストを低下させることにあ
る。コントラストを向上するためには0次光の割合を減
少させる必要がある。この発明では0次光の割合を減少
させることを目的として、照明系を最適化している。On the other hand, in the four-division illumination method, the illumination system aperture stop 5 is modified as shown in FIG. 6 (c) and the mask surface is illuminated by the divided light sources. Japanese Patent Application Laid-Open No. 4-18 has disclosed the principle of improving resolution and depth of focus by a method of dividing illumination light in a direction rotated by 45 degrees from a horizontal direction and a vertical direction of a fine pattern requiring resolution of a mask pattern.
It is described in detail in Japanese Patent Publication No. 0612. As described above, the problem with this four-division illumination method is that since only half of the 1st-order diffracted light is used, the proportion of direct light (0th-order light) increases and the contrast of the projected image decreases. is there. In order to improve the contrast, it is necessary to reduce the proportion of 0th-order light. In this invention, the illumination system is optimized for the purpose of reducing the proportion of 0th-order light.
【0019】照明系は、瞳面が図1(b)に示すように
照明されるような形状とする。図1(b)は瞳面を表わ
しており、Aで示す半径1の円が投影開口絞り11すな
わち瞳を表わしている。この円の内部に入射する光のみ
が結像に寄与する。瞳Aに一部が重なる小さな4つの円
Bは各々分割された光源の瞳面での投影像を表わしてい
る。The illumination system has a shape such that the pupil plane is illuminated as shown in FIG. 1 (b). FIG. 1B shows a pupil plane, and a circle having a radius of 1 shown by A represents the projection aperture stop 11, that is, the pupil. Only the light that enters the inside of this circle contributes to image formation. The four small circles B partially overlapping the pupil A represent the projected images of the divided light sources on the pupil plane.
【0020】図6(c)に示す4分割照明法と異なるの
は照明光の一部が瞳の外(投影系開口絞り11の外側)
を照明するように設計されている点である。4つの小さ
な円で示される等価光源のうち、瞳面に入射する部分
(瞳と投影像の重なる部分)が重要な部分である。4分
割された各々の光源の半径はそれぞれσr 、光源の中心
は瞳の中心から水平方向・垂直方向ともにσ1 だけずれ
ている。The difference from the four-division illumination method shown in FIG. 6C is that a part of the illumination light is outside the pupil (outside the projection system aperture stop 11).
Is designed to illuminate. Of the equivalent light sources represented by the four small circles, the part that enters the pupil plane (the part where the pupil and the projected image overlap) is an important part. The radius of each of the four divided light sources is σ r, and the center of the light source is deviated from the center of the pupil by σ 1 both in the horizontal and vertical directions.
【0021】このように照明系を改良した場合、マスク
で回折を受けない光(0次光)の一部しか瞳に入射しな
い。これに対し、マスク面上の水平方向・垂直方向のパ
ターンにより回折された光の一方は、瞳を横切ってしま
うまで、ほぼ完全に瞳に入射する。分割された照明光源
の直接光(0次光)が全て瞳に入射する従来の分割照明
法に比べて、この方法では0次光の割合が1次光に対し
て減少する。したがってこの発明を用いることにより投
影像のコントラストは改善されることになる。When the illumination system is improved in this way, only a part of the light (0th order light) which is not diffracted by the mask is incident on the pupil. On the other hand, one of the lights diffracted by the horizontal and vertical patterns on the mask surface is almost completely incident on the pupil until it crosses the pupil. In this method, the proportion of the 0th-order light is reduced with respect to the 1st-order light, as compared with the conventional split illumination method in which all the direct light (0th-order light) of the split illumination light source is incident on the pupil. Therefore, the contrast of the projected image is improved by using the present invention.
【0022】つぎに、この発明の照明光源についてさら
に詳細に説明する。まず、分割されたそれぞれの光源
(等価光源)の瞳面に入射する割合について考察する。
分割された各々の光源のうち直接瞳面に入射する光の割
合をkとする。図2(a)に示すように、分割された各
々の光源が瞳面に投影された円の半径σr (瞳の半径を
1に規格化)、瞳面における2次光源像の面積Sc(S
c=π・σr2)、2次光源像のうち直接瞳面に入射する
面積Spとし、 k=Sp/Sc である。Next, the illumination light source of the present invention will be described in more detail. First, let us consider the proportion of each divided light source (equivalent light source) incident on the pupil plane.
Let k be the proportion of light that directly enters the pupil plane among the respective divided light sources. As shown in FIG. 2A, the radius σ r of the circle in which each of the divided light sources is projected on the pupil plane (the pupil radius is standardized to 1), and the area Sc (S of the secondary light source image on the pupil plane)
c = π · σ r 2 ), where Sp is the area of the secondary light source image that is directly incident on the pupil plane, and k = Sp / Sc.
【0023】分割されたそれぞれの光源の瞳面における
半径σr が、瞳の半径に比べて小さく(σr <<1)、
マスクパターンのピッチが充分に小さく直接光と最低次
の回折光(1次光)のみが結像に寄与する場合につい
て、マスクパターンの線・間隔比aの変化に伴うウェハ
ー上の投影像のコントラストの計算値を図2(b)に示
した。瞳面に全ての光が入射する場合(k=1)、図6
の4分割照明と同一のコントラストとなり、開口率aの
大きな領域で急速にコントラストが低下する。The radius σr in the pupil plane of each divided light source is smaller than the radius of the pupil (σr << 1),
When the pitch of the mask pattern is sufficiently small and only the direct light and the diffracted light of the lowest order (first order light) contribute to the image formation, the contrast of the projected image on the wafer according to the change of the line / spacing ratio a of the mask pattern The calculated value of is shown in FIG. When all the light is incident on the pupil plane (k = 1), FIG.
The contrast is the same as that of the four-division illumination, and the contrast is rapidly reduced in the region where the aperture ratio a is large.
【0024】一方、瞳面に1/2の光が入射する場合
(k=0.5)、従来法(円形開口絞りを用いた場合)
のコントラストと等しくなる。最新のレジストを用いた
場合でも、1μmの膜厚のレジストにパターンを形成す
るためには投影像のコントラストが0.6以上必要であ
る。さらに、ここで示したコントラストは焦点ズレが生
じていない場合のコントラストである。焦点ズレが生じ
た場合にはコントラストは低下する。したがって、焦点
面におけるコントラストは0.8以上あることが望まし
い。On the other hand, when 1/2 of the light is incident on the pupil surface (k = 0.5), the conventional method (when a circular aperture stop is used)
Is equal to the contrast of. Even when the latest resist is used, the contrast of the projected image must be 0.6 or more in order to form a pattern on the resist having a film thickness of 1 μm. Furthermore, the contrast shown here is a contrast when no focus shift occurs. When defocus occurs, the contrast decreases. Therefore, the contrast on the focal plane is preferably 0.8 or more.
【0025】線・間隔比が1対2から2対1までの間
で、コントラスト0.8以上が得られるのは、kの値が 0.4<k<0.8 の範囲である。kの値は特に望ましくは 0.5<k<0.6 の範囲である。このとき、上記の範囲での投影像のコン
トラストは0.9以上となる。When the line-spacing ratio is 1: 2 to 2: 1, a contrast of 0.8 or more is obtained in the range of k <0.4 <k <0.8. The value of k is particularly preferably in the range 0.5 <k <0.6. At this time, the contrast of the projected image in the above range is 0.9 or more.
【0026】光源が瞳面に投影された円の中心が瞳の端
にある場合、kの値は0.5〜0.45(0<σr <
0.5)である。したがって、光源の瞳面への投影像の
中心が瞳の端から僅かに内側になるように設定すること
で、ほぼ理想的な結像特性が得られる。つぎに、各々の
分割された照明光源の瞳面での投影像の半径σr につい
て考察する。半径σr が大きすぎると直接光だけでな
く、回折光の一部も常に瞳の外に出ることになる。この
ときは回折光の割合が低下するため、コントラストが低
下することになる。図3に半径σr をパラメータとし
て、転写パターンの空間周波数νとウェハー上への投影
像のコントラストの関係を示した。転写パターンは1対
1の線・間隔パターンとした。図中でνc は νc =NA/λ である。だだし、ここでNAは投影レンズの開口数、λ
は露光波長である。半径σr の増加に伴って遮断周波数
は増加するが、低周波数領域でのコントラストが徐々に
低下する。半径σr が0.3より小さいと低空間周波数
でのコントラストの低下はないが、半径σr が0.4よ
り大きいと低空間周波数でのコントラストが急激に低下
する。したがって、半径σr は0.35以下であること
が望ましい。したがって、各々の分割された等価光源が
瞳面を照明する面積(瞳に直接入射する面積と瞳の外を
照明する面積の和)は瞳面の全面積の略1/8(≒0.
35 2 )以下であることが、高いコントラストを得るた
めには必要である。The center of the circle in which the light source is projected on the pupil plane is the edge of the pupil.
, The value of k is 0.5 to 0.45 (0 <σr <
0.5). Therefore, the projected image of the light source on the pupil plane
Set so that the center is slightly inside the edge of the pupil
Thus, almost ideal imaging characteristics can be obtained. Next, each
About the radius σr of the projected image on the pupil plane of the divided illumination source
Consider. If the radius σr is too large, only direct light
In addition, part of the diffracted light always goes out of the pupil. this
When the ratio of diffracted light decreases, the contrast is low.
Will be defeated. The radius σr is used as a parameter in Fig. 3.
, The spatial frequency ν of the transfer pattern and the projection onto the wafer
The relationship of image contrast is shown. One transfer pattern
The line and spacing pattern was 1. In the figure, νc is νc = NA / λ. However, NA is the numerical aperture of the projection lens, λ
Is the exposure wavelength. Cutoff frequency with increasing radius σr
Increase, but the contrast in the low frequency region gradually increases
descend. Low spatial frequency when radius σ r is smaller than 0.3
There is no decrease in contrast, but the radius σr is 0.4.
If it is too large, the contrast at low spatial frequencies drops sharply
To do. Therefore, the radius σr must be 0.35 or less
Is desirable. Therefore, each divided equivalent light source
Area that illuminates the pupil plane (area that directly enters the pupil and outside the pupil
The sum of the illuminated areas is approximately 1/8 of the total area of the pupil plane (≈0.
35 2) The following is a high contrast.
It is necessary for
【0027】さらに、ウェハー上で十分な光量を得るた
めには、半径σr はある程度大きな値とする必要があ
る。さらに分割された各々の光源が互いに等しくなるよ
うに調整するためにも半径σr は少なくとも0.1以上
の値であることが望ましい。さらに、ここで各々の分割
された照明光源の中心位置について考察する。図4
(a)のように分割された照明光源の中心と瞳の中心の
距離をσ2 とし(σ2 =σ1 ・√2)、分割された照明
光源の半径σr と瞳に直接入射する光の割合kの関係を
図4(b)に示した。既に示したように、半径σr は
0.1〜0.35の範囲であることが望ましく、瞳入射
割合kの値は0.4〜0.8(特に望ましくは0.5〜
0.6)の範囲にあることが望ましい。このような条件
のもとで等価光源の中心σ2 の最適値は図4(b)の斜
線で囲まれた部分となる。Further, in order to obtain a sufficient amount of light on the wafer, the radius σr needs to have a large value to some extent. It is desirable that the radius σ r is at least 0.1 or more in order to adjust each of the divided light sources to be equal to each other. Further, the center position of each divided illumination light source will be considered here. Figure 4
As shown in (a), the distance between the center of the divided illumination light source and the center of the pupil is σ2 (σ2 = σ1 · √2), and the radius σr of the divided illumination light source and the proportion k of the light directly incident on the pupil are The relationship is shown in FIG. As already shown, the radius σr is preferably in the range of 0.1 to 0.35, and the value of the pupil incidence ratio k is 0.4 to 0.8 (particularly preferably 0.5 to 0.5).
It is desirable to be in the range of 0.6). Under these conditions, the optimum value of the center σ2 of the equivalent light source is the portion surrounded by the diagonal lines in FIG. 4 (b).
【0028】図5に、通常照明法(σ=0.5)および
4分割照明法(σ1 =0.5、σr=0.25)の結像
特性と、この発明の照明法(σ1 =0.7、σr =0.
25)による結像特性を比較して示した。図5(d)の
上に示したパターン幅は開口数0.6のi線(波長36
5nm)ステッパを用いた場合の転写パターン寸法であ
る。FIG. 5 shows the image forming characteristics of the normal illumination method (σ = 0.5) and the four-division illumination method (σ1 = 0.5, σr = 0.25) and the illumination method of the present invention (σ1 = 0). .7, σ r = 0.
25) is shown for comparison. The pattern width shown in the upper part of FIG.
5 nm) Transfer pattern size when a stepper is used.
【0029】コンラスト0.7を解像限界とすると、通
常法では0.38μm、4分割照明法では0.25μ
m、本発明では0.24μmとなり解像度が向上してい
ることがわかる。さらに、4分割照明法では低周波数領
域のコントラストが約0.9しかないのに対して、本発
明の照明法では低周波数領域のコントラストが改善され
ていることがわかる。さらに、本方法では解像限界付近
のパターンに対する焦点深度が大幅に向上する。焦点深
度は直接光(0次光)と回折光との間の行路差に伴う波
面収差により決定する。本方法では、直接光は常に投影
レンズの端を通る。また、解像限界付近のレチクルパタ
ーンからの回折光の1次光は、直接光と反対側のレンズ
の端を通ることになる。このため、解像限界付近で直接
光と1次回折光の収差は0に近づき、大きな焦点深度が
得られる。When the resolution limit is set to 0.7 for contrast, 0.38 μm for the normal method and 0.25 μ for the four-division illumination method.
m, in the present invention, it is 0.24 μm, which shows that the resolution is improved. Furthermore, it can be seen that the contrast in the low frequency region is improved by the illumination method of the present invention, while the contrast in the low frequency region is only about 0.9 in the four-division illumination method. In addition, this method significantly improves the depth of focus for patterns near the resolution limit. The depth of focus is determined by the wavefront aberration associated with the path difference between the direct light (0th order light) and the diffracted light. In this method, direct light always passes through the edge of the projection lens. Further, the first-order light of the diffracted light from the reticle pattern near the resolution limit passes through the end of the lens opposite to the direct light. For this reason, the aberrations of the direct light and the first-order diffracted light approach 0 near the resolution limit, and a large depth of focus can be obtained.
【0030】この発明の照明法の有効性を実際に確かめ
るために、開口数0.5のi線ステッパの開口絞りを4
つの円形開口を持つ遮光板に変えてウェハー上への転写
実験を行った。用いた開口絞りは、σ1 =0.7、σr
=0.25に相当する。ベアシリコン上に1μm膜厚の
ホトレジストを塗布した基板上へのテストパターンの転
写実験では、0.3μmの線・間隔パターンが1.2μ
mの焦点深度をもって形成できた。In order to actually confirm the effectiveness of the illumination method of the present invention, the aperture stop of the i-line stepper with a numerical aperture of 0.5 is set to 4 mm.
We performed a transfer experiment on a wafer by changing to a light shield plate with two circular openings. The aperture stop used is σ1 = 0.7, σr
= 0.25. In a test pattern transfer experiment on a substrate in which 1 μm thick photoresist was coated on bare silicon, a 0.3 μm line / spacing pattern was 1.2 μm.
It could be formed with a focal depth of m.
【0031】このステッパを通常の円形開口絞り(σ=
0.6)とともに用いた場合、解像限界は0.35μm
であり(このときの焦点深度は0.6μm)、この発明
の照明方法により高い解像度と焦点深度の向上が実現で
きた。また、0.3μmルールのダイナミックRAMの
配線パターンを段差を有する基板上で形成可能であっ
た。この発明の方法は、繰り返し周期パターンを多く含
むメモリーデバイス,固体撮像素子等の半導体装置の製
造に特に有効である。This stepper has a normal circular aperture stop (σ =
0.6), the resolution limit is 0.35 μm
(At this time, the depth of focus is 0.6 μm), and the illumination method of the present invention can realize high resolution and improvement in depth of focus. Further, the wiring pattern of the dynamic RAM of the rule of 0.3 μm could be formed on the substrate having the step. The method of the present invention is particularly effective for manufacturing a semiconductor device such as a memory device or a solid-state image pickup device having a large number of repetitive periodic patterns.
【0032】以上述べた実施例では分割された各々の照
明光は瞳面を円形に照明している。しかし、この例に限
られるものでなく、光源の形状は分割された全ての光源
の形状が互いに等しく、また、瞳面との位置関係が互い
に対称であればどのような形状であってもよい。この発
明では、分割された各々の光源が瞳面を照明する面積は
瞳面全体の1/8以下であるので、各々の光源の形状は
結像特性に大きく寄与することはない。In the above-described embodiment, each of the divided illumination lights illuminates the pupil plane in a circular shape. However, the shape of the light source is not limited to this example, and may be any shape as long as the shapes of all the divided light sources are equal to each other and the positional relationship with the pupil plane is symmetric to each other. . In the present invention, the area of each of the divided light sources that illuminates the pupil plane is ⅛ or less of the entire pupil plane, so that the shape of each light source does not significantly contribute to the imaging characteristics.
【0033】また、以上の実施例では、分割照明の最適
化を蝿の目レンズ出口部の照明系開口絞りの形状を変化
させることにより実現している。しかし、この発明の効
果は投影系の瞳面においてこれと同等となる照明法を採
用することにより得られる。すなわち、瞳面における等
価光源形状をマスクに対し45度回転させた4つの光源
とし各々の等価光源の一部が瞳の外に出るような構成に
すればよい。例えば、照明光学系のレチクル面と共役な
位置に回折格子パターンを配置しこれにより生じた回折
光の一次の成分のみを、照明系の瞳面に置かれた開口絞
りにより選択してレチクル面を照明するような照明系の
構成とすることも可能である。あるいは、上記実施例で
はひとつの照明ランプからの光を開口絞りを用いて分割
していたが独立の4つの照明光源を配置しても同等の効
果が得られる。また、ひとつの光源から光ファイバーを
用いて4つの2次光源を構成することも可能である。さ
らに、レーザー光源(例えばフッ化クリプトンや、フッ
化アルゴンのエキシマレーザー)を用いた投影露光装置
では照明光であるレーザービームを、瞳面が時間積分し
て図1(b)に示すように照明されるように走査するこ
とによっても実現可能である。Further, in the above embodiments, the optimization of the divided illumination is realized by changing the shape of the illumination system aperture stop at the exit of the fly's eye lens. However, the effect of the present invention can be obtained by adopting an illumination method equivalent to this in the pupil plane of the projection system. That is, the equivalent light source shape on the pupil plane may be four light sources rotated by 45 degrees with respect to the mask, and a part of each equivalent light source may go out of the pupil. For example, the diffraction grating pattern is arranged at a position conjugate with the reticle surface of the illumination optical system, and only the first-order component of the diffracted light generated by this is selected by the aperture stop placed on the pupil plane of the illumination system to select the reticle surface. It is also possible to adopt a configuration of an illumination system for illuminating. Alternatively, in the above-mentioned embodiment, the light from one illumination lamp is divided by using the aperture stop, but the same effect can be obtained by disposing four independent illumination light sources. It is also possible to configure four secondary light sources by using an optical fiber from one light source. Furthermore, in a projection exposure apparatus using a laser light source (eg, krypton fluoride or an excimer laser of argon fluoride), a laser beam as illumination light is time-integrated on the pupil plane to illuminate as shown in FIG. 1 (b). It can also be realized by scanning as described above.
【0034】[0034]
【発明の効果】以上のように、この発明によれば、種々
のパターンに対し、高い投影像のコントラストを保った
まま解像度と焦点深度を向上させることが可能となる。As described above, according to the present invention, it is possible to improve the resolution and the depth of focus for various patterns while maintaining the high contrast of the projected image.
【図1】この発明の実施例である投影露光装置の構成図
である。FIG. 1 is a configuration diagram of a projection exposure apparatus that is an embodiment of the present invention.
【図2】この発明の実施例である投影露光装置の結像特
性を示す図である。FIG. 2 is a diagram showing image forming characteristics of a projection exposure apparatus that is an embodiment of the present invention.
【図3】この発明の実施例である投影露光装置の結像特
性を示す図である。FIG. 3 is a diagram showing imaging characteristics of a projection exposure apparatus that is an embodiment of the present invention.
【図4】この発明の実施例である投影露光装置の結像特
性を示す図である。FIG. 4 is a diagram showing imaging characteristics of a projection exposure apparatus that is an embodiment of the present invention.
【図5】この発明の実施例である投影露光装置の結像特
性を従来の露光装置と比較して示す図である。FIG. 5 is a diagram showing image forming characteristics of a projection exposure apparatus according to an embodiment of the present invention in comparison with a conventional exposure apparatus.
【図6】従来例の等価光源(瞳面における有効光源)を
示す図である。FIG. 6 is a diagram showing a conventional equivalent light source (effective light source on a pupil plane).
【図7】従来の分割照明法の問題点を示す図である。FIG. 7 is a diagram showing a problem of the conventional split illumination method.
【図8】従来の分割照明法とハーフトーン型位相シフト
マスクを組み合わせた場合の問題点を示す図である。FIG. 8 is a diagram showing a problem when a conventional split illumination method and a halftone type phase shift mask are combined.
1 ランプ 2 楕円鏡 3 ミラー 4 蝿の目レンズ 5 照明系開口絞り 6 ミラー 7 コンデンサレンズ 8 レチクル 9 投影レンズ 10 ウェハー 11 投影系開口絞り A 瞳 B 光源の投影像 1 Lamp 2 Elliptical Mirror 3 Mirror 4 Fly's Eye Lens 5 Illumination System Aperture Stop 6 Mirror 7 Condenser Lens 8 Reticle 9 Projection Lens 10 Wafer 11 Projection System Aperture Stop A Pupil B Projected Image of Light Source
Claims (5)
露光方法であって、瞳面に形成される2次光源像をマス
クの対角線方向に4分割し、かつ各々の分割した照明光
の一部だけを瞳に入射させることを特徴とする投影露光
方法。1. A projection exposure method for projecting a mask pattern onto a substrate, wherein a secondary light source image formed on a pupil plane is divided into four in a diagonal direction of the mask, and a part of each of the divided illumination light. A projection exposure method characterized in that only the light enters the pupil.
接入射する光の割合kを、0.4<k<0.8とする請
求項1記載の投影露光方法。2. The projection exposure method according to claim 1, wherein a ratio k of light that directly enters the pupil in each of the divided secondary light source images is 0.4 <k <0.8.
する面積を、瞳の全面積の1/8以下とする請求項1記
載の投影露光方法。3. The projection exposure method according to claim 1, wherein the area of illumination of the pupil plane by each of the divided secondary light source images is ⅛ or less of the total area of the pupil.
路パターンを形成することを特徴とする半導体装置の製
造方法。4. A method for manufacturing a semiconductor device, which comprises forming a circuit pattern by the projection exposure method according to claim 1.
露光装置であって、瞳面に形成される2次光源像をマス
クの対角線方向に4分割し、かつ各々の分割した照明光
の一部だけを瞳に入射させるようにした照明系を備えた
ことを特徴とする投影露光装置。5. A projection exposure apparatus for projecting a mask pattern onto a substrate, wherein a secondary light source image formed on a pupil plane is divided into four in a diagonal direction of the mask, and a part of each of the divided illumination light. A projection exposure apparatus, which is equipped with an illumination system in which only the light enters the pupil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4310269A JPH06163350A (en) | 1992-11-19 | 1992-11-19 | Projection exposure method and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4310269A JPH06163350A (en) | 1992-11-19 | 1992-11-19 | Projection exposure method and device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06163350A true JPH06163350A (en) | 1994-06-10 |
Family
ID=18003207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4310269A Pending JPH06163350A (en) | 1992-11-19 | 1992-11-19 | Projection exposure method and device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06163350A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448856B1 (en) * | 1996-12-23 | 2005-01-15 | 주식회사 하이닉스반도체 | Lithography exposure method using four-pole aperture whose opening is adjacent to extended lien of x and y axes of aperture |
KR100513440B1 (en) * | 1998-09-22 | 2005-11-25 | 삼성전자주식회사 | Lighting device for exposure equipment for semiconductor device manufacturing and modified illumination method using same |
US7100145B2 (en) | 2001-02-28 | 2006-08-29 | Asml Masktools B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
KR100617909B1 (en) * | 2003-02-11 | 2006-09-13 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations |
US7355673B2 (en) | 2003-06-30 | 2008-04-08 | Asml Masktools B.V. | Method, program product and apparatus of simultaneous optimization for NA-Sigma exposure settings and scattering bars OPC using a device layout |
JP2009212540A (en) * | 2003-04-09 | 2009-09-17 | Nikon Corp | Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method |
US7735052B2 (en) | 2001-04-24 | 2010-06-08 | Asml Masktools Netherlands B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1992
- 1992-11-19 JP JP4310269A patent/JPH06163350A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448856B1 (en) * | 1996-12-23 | 2005-01-15 | 주식회사 하이닉스반도체 | Lithography exposure method using four-pole aperture whose opening is adjacent to extended lien of x and y axes of aperture |
KR100513440B1 (en) * | 1998-09-22 | 2005-11-25 | 삼성전자주식회사 | Lighting device for exposure equipment for semiconductor device manufacturing and modified illumination method using same |
US7100145B2 (en) | 2001-02-28 | 2006-08-29 | Asml Masktools B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
US7735052B2 (en) | 2001-04-24 | 2010-06-08 | Asml Masktools Netherlands B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
KR100617909B1 (en) * | 2003-02-11 | 2006-09-13 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
JP2009212540A (en) * | 2003-04-09 | 2009-09-17 | Nikon Corp | Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method |
JP2011097076A (en) * | 2003-04-09 | 2011-05-12 | Nikon Corp | Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method |
JP2012164993A (en) * | 2003-04-09 | 2012-08-30 | Nikon Corp | Exposure method and device, illumination optical device, and device manufacturing method |
JP2018106179A (en) * | 2003-04-09 | 2018-07-05 | 株式会社ニコン | Exposure method and device, illumination optical device, and device production method |
JP2014116611A (en) * | 2003-04-09 | 2014-06-26 | Nikon Corp | Exposure method, device, illumination optical device, and device manufacturing method |
JP2015092604A (en) * | 2003-04-09 | 2015-05-14 | 株式会社ニコン | Exposure method and device, illumination optical device, and device manufacturing method |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
JP2016103025A (en) * | 2003-04-09 | 2016-06-02 | 株式会社ニコン | Exposure method and apparatus, illumination optical apparatus, and device manufacturing method |
JP2017097372A (en) * | 2003-04-09 | 2017-06-01 | 株式会社ニコン | Exposure method and apparatus, illumination optical apparatus, and device manufacturing method |
US7355673B2 (en) | 2003-06-30 | 2008-04-08 | Asml Masktools B.V. | Method, program product and apparatus of simultaneous optimization for NA-Sigma exposure settings and scattering bars OPC using a device layout |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5499137A (en) | Exposure method and apparatus therefor | |
JP3291849B2 (en) | Exposure method, device formation method, and exposure apparatus | |
JP3368265B2 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
US7629087B2 (en) | Photomask, method of making a photomask and photolithography method and system using the same | |
JPH0536586A (en) | Image projection method and manufacture of semiconductor device using same method | |
JPH0757993A (en) | Projection aligner | |
JPH06163350A (en) | Projection exposure method and device thereof | |
JP2008153401A (en) | Exposure device and device manufacturing method | |
JP3201027B2 (en) | Projection exposure apparatus and method | |
JPH07122478A (en) | Pattern projection method | |
JP3210123B2 (en) | Imaging method and device manufacturing method using the method | |
JP3647272B2 (en) | Exposure method and exposure apparatus | |
JP2000021720A (en) | Exposure method and manufacture of aligner | |
JPH0950117A (en) | Photomask and exposing method using the same | |
JPH04180612A (en) | Projection aligner | |
JP3306465B2 (en) | Projection exposure method and projection exposure apparatus | |
JP3647270B2 (en) | Exposure method and exposure apparatus | |
JP3133618B2 (en) | Spatial filter used in reduction projection exposure apparatus | |
JP3189009B2 (en) | Exposure apparatus and method, and method of manufacturing semiconductor element | |
JPH06267822A (en) | Fine pattern formation | |
JP3647271B2 (en) | Exposure method and exposure apparatus | |
JP2980018B2 (en) | Exposure method and apparatus, and device manufacturing method | |
JPH0737798A (en) | Projection aligner | |
JP3244076B2 (en) | Exposure apparatus and method, and method of manufacturing semiconductor element | |
JP3337983B2 (en) | Exposure method and exposure apparatus |