JPH06150909A - Manufacture of polymer electrode - Google Patents
Manufacture of polymer electrodeInfo
- Publication number
- JPH06150909A JPH06150909A JP4299583A JP29958392A JPH06150909A JP H06150909 A JPH06150909 A JP H06150909A JP 4299583 A JP4299583 A JP 4299583A JP 29958392 A JP29958392 A JP 29958392A JP H06150909 A JPH06150909 A JP H06150909A
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- disulfide compound
- electrode
- monomer
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池、電気二重層キャ
パシタ、エレクトロクロミック表示素子等の電気化学デ
バイスに用いられるポリマー電極の製造法に関する。さ
らに詳しくは、電解還元により硫黄−硫黄結合が開裂
し、硫黄−金属イオン(プロトンを含む)結合を生成
し、電解酸化により硫黄−金属イオン結合が元の硫黄−
硫黄結合を再生する有機イオウ化合物(以後これをジス
ルフィド化合物と呼ぶ)を主成分とするポリマー電極の
製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer electrode used in electrochemical devices such as batteries, electric double layer capacitors and electrochromic display devices. More specifically, the sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond, and the sulfur-metal ion bond is replaced by the original sulfur-
The present invention relates to a method for producing a polymer electrode containing an organic sulfur compound that regenerates a sulfur bond (hereinafter referred to as a disulfide compound) as a main component.
【0002】[0002]
【従来の技術】ジスルフィド化合物は、高エネルギー密
度が期待できる有機材料として、米国特許第4,833,048
号にジスルフィドに提案されている。最も簡単にはR−
S−S−Rと表される(Rは脂肪族または芳香族の有機
基、Sは硫黄)。S−S結合は電解還元により開裂(脱
重合)し、電解浴中のカチオン(M+ )とでR−S- ・
M+ で表される塩を生成する。この塩は、電解酸化(重
合)により元のR−S−S−Rに戻る。カチオン
(M+ )を供給、捕捉する金属Mとジスルフィド系化合
物を組み合わせた金属−イオウ二次電池が前述の米国特
許に提案されている。この金属−イオウ二次電池は、1
50Wh/Kg以上と、通常の二次電池に匹敵あるいはそれ
以上のエネルギー密度が期待できる。2. Description of the Related Art Disulfide compounds are known as organic materials which can be expected to have high energy density, and are disclosed in US Pat. No. 4,833,048.
No. proposed for disulfide. The simplest is R-
It is represented as S-S-R (R is an aliphatic or aromatic organic group, and S is sulfur). The S—S bond is cleaved (depolymerized) by electrolytic reduction, and R—S − · with the cation (M + ) in the electrolytic bath.
This produces a salt represented by M + . This salt returns to the original R-S-S-R by electrolytic oxidation (polymerization). A metal-sulfur secondary battery in which a metal M that supplies and captures a cation (M + ) and a disulfide compound is combined is proposed in the above-mentioned US patent. This metal-sulfur secondary battery has 1
Energy density of 50Wh / Kg or more, which is comparable to or higher than that of ordinary secondary batteries, can be expected.
【0003】[0003]
【発明が解決しようとする課題】ジスルフィド化合物は
それ自体電子伝導性に乏しいので、電池等の電極に用い
る場合は、米国特許第4,833,048 号の発明者らがJ.Elec
trochem.Soc, Vol.137,No.4, p.1191〜1192(1990)や
J.Electrochem. Soc, Vol.138, No.7, 1896-1901(1991)
で報告しているように、ジスルフィドモノマーあるいは
予め重合したジスルフィド化合物ポリマーをカーボンフ
ェルトに含浸したり、カーボンブラック等の導電材と混
合して用いられている。しかしながら、ジスルフィド化
合物を導電材含浸したり単に混合するだけでは、電解質
に液体あるいは液体を含む電解質を用いて電池を構成す
る場合は、ジスルフィド化合物の電極内への保持が不十
分で、電池の充放電に伴ってジスルフィド化合物が重
合、脱重合を繰り返す間に電極からジスルフィド化合物
が流れ出し、電池容量が劣化するという問題があった。
また、リチウム塩を溶解したポリエチレンオキサイド等
のポリマー固体電解質を用いる場合は、導電材とジスル
フィド化合物が均一に分散されず、重合、脱重合を繰り
返していると、さらに不均一さが増し、導電材と電気的
に接続されない充放電できないジスルフィド化合物の塊
が電極内に発生し電池容量が劣化するという問題があっ
た。DISCLOSURE OF THE INVENTION Since the disulfide compound itself is poor in electronic conductivity, when it is used for an electrode of a battery or the like, the inventors of US Pat. No. 4,833,048 have proposed J. Elec.
trochem.Soc, Vol.137, No.4, p.1191 to 1192 (1990) and
J. Electrochem. Soc, Vol.138, No.7, 1896-1901 (1991)
As reported in (1), a disulfide monomer or a prepolymerized disulfide compound polymer is impregnated in carbon felt or is mixed with a conductive material such as carbon black. However, when a battery is formed by using a liquid or an electrolyte containing a liquid as the electrolyte by simply impregnating the conductive material with the disulfide compound or simply mixing, the retention of the disulfide compound in the electrode is insufficient and the battery is charged. There is a problem that the disulfide compound flows out from the electrode during repeated polymerization and depolymerization of the disulfide compound with discharge, and the battery capacity deteriorates.
Further, when a polymer solid electrolyte such as polyethylene oxide in which a lithium salt is dissolved is used, the conductive material and the disulfide compound are not uniformly dispersed, and when polymerization and depolymerization are repeated, the nonuniformity is further increased and the conductive material There is a problem in that a lump of a disulfide compound that is not electrically connected to and cannot be charged and discharged is generated in the electrode and the battery capacity is deteriorated.
【0004】本発明は、このような問題を解決するもの
で、電池充放電に際して容量劣化の少ないジスルフィド
化合物を主成分とする電極の製造方法を提供することを
目的とする。The present invention solves such problems, and an object of the present invention is to provide a method for producing an electrode containing a disulfide compound as a main component, which causes little capacity deterioration during battery charge / discharge.
【0005】[0005]
【課題を解決するための手段】前記目的を達成するた
め、本発明のポリマー電極の製造法は、電解還元により
硫黄−硫黄結合が開裂し、硫黄−金属イオン(プロトン
を含む)結合を生成し、電解酸化により硫黄−金属イオ
ン結合が元の硫黄−硫黄結合を再生する有機イオウ化合
物モノマーを原料成分とするポリマー電極の製造法にお
いて、前記有機イオウ化合物モノマーを有機溶媒中に溶
解し、得られた溶液と導電性物質とを混合した後、混合
物中の前記モノマーを重合することを特徴とする。In order to achieve the above object, in the method for producing a polymer electrode of the present invention, a sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including a proton) bond. In the method for producing a polymer electrode using an organic sulfur compound monomer whose sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation as a raw material component, the organic sulfur compound monomer is dissolved in an organic solvent to obtain a product. After mixing the solution and the conductive substance, the monomer in the mixture is polymerized.
【0006】前記構成においては、導電性物質が導電性
高分子粉末であることが好ましい。また前記構成におい
ては、導電性物質が、ポリアニリン粉末であることが好
ましい。In the above structure, the conductive substance is preferably a conductive polymer powder. Further, in the above structure, the conductive substance is preferably polyaniline powder.
【0007】また前記構成においては、導電性物質がフ
ッ素樹脂と炭素材料との複合体であることが好ましい。Further, in the above structure, the conductive substance is preferably a composite of a fluororesin and a carbon material.
【0008】[0008]
【作用】前記した本発明の構成によれば、電解酸化によ
り硫黄−金属イオン結合が元の硫黄−硫黄結合を再生す
る有機イオウ化合物モノマーを有機溶媒中に溶解し、得
られた溶液と導電性物質とを混合した後、混合物中の前
記モノマーを重合することにより、電池充放電に際して
容量劣化の少ないジスルフィド化合物を主成分とする電
極を製造することができる。すなわち、ジスルフィド化
合物モノマーは溶液に溶解した状態で導電性物質と均一
に混合された後、重合されるので、ジスルフィド化合物
の重合物と導電性物質とが均一に混合・分散した状態の
電極を得ることができる。このような電極を用いた電池
を充放電すると、導電性物質とジスルフィド化合物との
電気的な接続が良好に保たれ、電池容量の劣化が軽減さ
れるという効果が得られる。According to the above-mentioned constitution of the present invention, the organic sulfur compound monomer whose sulfur-metal ionic bond regenerates the original sulfur-sulfur bond by electrolytic oxidation is dissolved in an organic solvent, and the solution and conductivity By mixing the substance with the substance and then polymerizing the monomer in the mixture, it is possible to produce an electrode containing a disulfide compound as a main component, which causes less capacity deterioration during battery charge and discharge. That is, the disulfide compound monomer is uniformly mixed with the conductive substance in a state of being dissolved in the solution, and then polymerized, so that an electrode in a state where the polymer of the disulfide compound and the conductive substance are uniformly mixed and dispersed is obtained. be able to. When a battery using such an electrode is charged and discharged, the electrical connection between the conductive substance and the disulfide compound is maintained well, and the deterioration of the battery capacity is reduced.
【0009】[0009]
【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。本発明の製造方法においては、ジスルフィド
化合物モノマーを溶解した溶液と導電性物質とを混合し
た後、混合物中のジスルフィド化合物モノマーを重合す
ることで電極を製造する。本発明で用いられるジスルフ
ィド化合物モノマーとしては、ジチオグリコール(エタ
ンジチオール)、2、5−ジメルカプト−1、3、4−
チアジアゾール、チオシアヌル酸(s−トリアジン−
2、4、6−トリチオール)、チオ尿素等が用いられ
る。これらのジスルフィド化合物モノマーを溶解するた
めの溶媒としては、メタノール、エタノール等のアルコ
ール類、アセトン、メチルエチルケトン等のケトン類、
エチルエーテル等のエーテル類、アルカリ性の水、ある
いはこれら混合物が用いられる。ジスルフィド化合物モ
ノマーの溶解にあたっては、予めあるいは同時にジスル
フィド化合物モノマーを水酸化リチウムで中和しておく
のが望ましい。導電性物質としては、アセチレンブラッ
ク、人造黒鉛、天然黒鉛等の炭素材料、ポリアニリン、
ポリピロール、ポリチオフェン等の導電性高分子材料等
が用いられる。導電性物質としては、以上の導電性物質
をお互いに複合化したもの、あるいは、以上の導電性物
質と、ポリプロピレン、ポリブテン等のポリオレフィ
ン、ポリテトラフルオロエチレン等のフッ素樹脂、ある
いは合成ゴム等の合成樹脂材料と複合化したものも用い
ることができる。特に、可撓性のある導電性高分子材
料、中でも、フィブリル構造あるいは多孔質構造を有し
ジスルフィド化合物を有効に分散保持できるポリアニリ
ンが好ましい。さらに、アセチレンブラックとポリテト
ラフルオロエチレンとを複合化した導電材料は、導電
性、可撓性がある上に、ジスルフィド化合物と複合化し
た電極材料を実際の電池の電極に用いるために成形した
際に成形物に良好な形状保持性を与えるので特に好まし
い。ジスルフィド化合物モノマーの重合は、沃素、フェ
リシアン化カリウム、過酸化水素等の酸化剤を用いて化
学重合法により、あるいは電解酸化法により行うことが
できる。EXAMPLES The present invention will be described in more detail with reference to the following examples. In the manufacturing method of the present invention, the electrode is manufactured by mixing the solution in which the disulfide compound monomer is dissolved with the conductive substance, and then polymerizing the disulfide compound monomer in the mixture. The disulfide compound monomer used in the present invention includes dithioglycol (ethanedithiol), 2,5-dimercapto-1,3,4-
Thiadiazole, thiocyanuric acid (s-triazine-
2,4,6-trithiol), thiourea and the like are used. Solvents for dissolving these disulfide compound monomers include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone,
Ethers such as ethyl ether, alkaline water, or a mixture thereof is used. Before dissolving the disulfide compound monomer, it is desirable to neutralize the disulfide compound monomer with lithium hydroxide in advance or at the same time. As the conductive material, acetylene black, carbon materials such as artificial graphite and natural graphite, polyaniline,
Conductive polymer materials such as polypyrrole and polythiophene are used. As the conductive substance, a composite of the above conductive substances with each other, or the above conductive substance and a polyolefin such as polypropylene or polybutene, a fluororesin such as polytetrafluoroethylene, or a synthetic rubber or the like is synthesized. A composite material with a resin material can also be used. In particular, a conductive polymer material having flexibility, and among them, polyaniline having a fibril structure or a porous structure and capable of effectively dispersing and holding a disulfide compound is preferable. Furthermore, the conductive material that is a composite of acetylene black and polytetrafluoroethylene has conductivity and flexibility, and when the electrode material that is composited with a disulfide compound is molded for use in the electrode of an actual battery, It is particularly preferable because it gives the molded article good shape retention. The disulfide compound monomer can be polymerized by a chemical polymerization method using an oxidizing agent such as iodine, potassium ferricyanide, hydrogen peroxide or the like, or by an electrolytic oxidation method.
【0010】以下具体的実施例を説明する。 実施例1 2、5−ジメルカプト−1、3、4−チアジアゾール
(以下、DMcTという)5grを、二塩基酸であるD
McTを中和するのに必要な当量の水酸化リチウムを溶
解したアセトン−水(1:1容積)混合溶媒100ml
に加え中和溶解した。得られた溶液中に、ポリアニリン
粉末(電気抵抗=1.6s/cm、25℃、平均粒径=
6μm)7.5grを加え、ホモジナイザーで回転数1
000rpmで均一に分散し分散液を調製した。次に、
同様のアセトン−水混合溶媒100ml中に、DMcT
を酸化するのに必要な当量の沃素と、沃素と同一モル数
の沃化リチウムを溶解し酸化剤溶液を調製した。先に調
製した分散液をホモジナイザーで回転数1000rpm
で撹半しながら、酸化剤溶液を2時間かけて滴下し、D
McTモノマーを重合した。滴下後、一昼夜放置したの
ち、上澄み液を捨て、200mlのアセトンで沈澱物を
洗浄し、さらに200mlの純水で沈澱物を3度洗浄
し、最後にもう一度アセトンで洗浄し、濾過したのち、
60℃で17時間真空乾燥(1mmHg)してDMcT
ポリマーとポリアニリン粉末とを複合化した電極粉末A
を得た。Specific embodiments will be described below. Example 1 5 gr of 2,5-dimercapto-1,3,4-thiadiazole (hereinafter referred to as DMcT) was used as a dibasic acid D.
100 ml of acetone-water (1: 1 volume) mixed solvent in which an equivalent amount of lithium hydroxide necessary for neutralizing McT was dissolved
In addition, it was neutralized and dissolved. In the obtained solution, polyaniline powder (electrical resistance = 1.6 s / cm, 25 ° C., average particle size =
6 μm) 7.5 gr were added, and the rotation speed was 1 with a homogenizer.
A dispersion was prepared by uniformly dispersing at 000 rpm. next,
DMcT was added to 100 ml of the same acetone-water mixed solvent.
An oxidant solution was prepared by dissolving an equivalent amount of iodine necessary to oxidize the above compound and the same molar number of lithium iodide as iodine. Rotation speed of the dispersion liquid prepared above is 1000 rpm with a homogenizer.
The oxidant solution was added dropwise over 2 hours while stirring with D.
The McT monomer was polymerized. After the dropping, the mixture was allowed to stand for a whole day and night, the supernatant was discarded, the precipitate was washed with 200 ml of acetone, the precipitate was washed with 200 ml of pure water three times, and finally with acetone again, and then filtered.
Vacuum dry (1 mmHg) at 60 ° C for 17 hours and DMcT
Electrode powder A in which polymer and polyaniline powder are composited
Got
【0011】比較例1 DMcT5grを、二塩基酸であるDMcT中和するの
に必要な当量の水酸化リチウムを溶解したアセトン−水
(1:1容積)混合溶媒100mlに加え中和溶解し
た。得られた溶液に、実施例1と同様の酸化剤溶液を滴
下し、DMcTモノマーを重合した。一夜放置後、沈澱
を、アセトン、純水、アセトンの順に洗浄したのち、真
空乾燥することで、DMcTモノマーの重合体の薄黄色
の粉末4.92grを得た。この粉末1重量部に対し、
実施例1で用いたのと同様のポリアニリン粉末1.5重
量部をアルミナ乳鉢で混合することで電極粉末Bを得
た。Comparative Example 1 DMcT (5 gr) was neutralized and dissolved by adding 100 ml of an acetone-water (1: 1 volume) mixed solvent in which an equivalent amount of lithium hydroxide necessary for neutralizing the dibasic acid DMcT was dissolved. The same oxidizing agent solution as in Example 1 was added dropwise to the obtained solution to polymerize the DMcT monomer. After standing overnight, the precipitate was washed with acetone, pure water, and acetone in this order, and then vacuum dried to obtain 4.92 gr of a pale yellow powder of a DMcT monomer polymer. For 1 part by weight of this powder,
Electrode powder B was obtained by mixing 1.5 parts by weight of the same polyaniline powder as used in Example 1 in an alumina mortar.
【0012】実施例2 透明液状のジチオグルコール(DTGという)5gr
を、二塩基酸であるDTGを中和するのに必要な当量の
水酸化リチウムを溶解したエタノール−水(1:1容積
比)混合溶媒100mlに加え中和溶解した。得られた
水溶液中に、実施例1で用いたのと同様のポリアニリン
粉末7.5grを加え、ホモジナイザーで回転数100
0rpmで均一に分散し分散液を調製した。次に、同様
のエタノール−水混合溶媒100ml中に、DTGを酸
化するのに必要な当量の沃素と、沃素と同一モル数の沃
化リチウムを溶解し酸化剤溶液を調製した。先に調製し
た分散液をホモジナイザーで回転数1000rpmで撹
半しながら、酸化剤溶液を2時間に渡り滴下し、DTG
モノマーを重合した。滴下後、一昼夜放置したのち、上
澄み液を捨て、200mlのアセトンで沈澱物を洗浄
し、さらに200mlの純水で沈澱物を3度洗浄し、最
後にもう一度アセトンで洗浄し、濾過したのち、60℃
で17時間真空乾燥(1mmHg)してDTGポリマー
とポリアニリン粉末とを複合化した電極粉末Cを得た。Example 2 5 gr of transparent liquid dithioglycol (referred to as DTG)
Was added to 100 ml of an ethanol-water (1: 1 volume ratio) mixed solvent in which an equivalent amount of lithium hydroxide necessary for neutralizing the dibasic acid DTG was dissolved to neutralize and dissolve. To the obtained aqueous solution, 7.5 gr of the same polyaniline powder as used in Example 1 was added, and the number of revolutions was 100 with a homogenizer.
A dispersion was prepared by uniformly dispersing at 0 rpm. Next, an oxidant solution was prepared by dissolving an equivalent amount of iodine necessary for oxidizing DTG and lithium iodide in the same mole number as iodine in 100 ml of the same ethanol-water mixed solvent. The oxidant solution was added dropwise over 2 hours while stirring the dispersion liquid prepared above with a homogenizer at a rotation speed of 1000 rpm.
The monomer was polymerized. After the dropping, the mixture was allowed to stand for a whole day and night, the supernatant was discarded, the precipitate was washed with 200 ml of acetone, the precipitate was washed with 200 ml of pure water three times, and finally with acetone again, and then filtered. ℃
After vacuum drying (1 mmHg) for 17 hours, an electrode powder C in which the DTG polymer and the polyaniline powder were composited was obtained.
【0013】比較例2 DTG5grを、二塩基酸であるDTGを中和するのに
必要な当量の水酸化リチウムを溶解したアセトン−水
(1:1容積比)混合溶媒100mlに加え中和溶解し
た。得られた溶液に、実施例1と同様の酸化剤溶液を滴
下し、DTGモノマーを重合した。一夜放置後、沈澱
を、アセトン、純水、アセトンの順に洗浄したのち、真
空乾燥することで、DTGモノマーの重合体の白色の粉
末4.98grを得た。この粉末1重量部に対し、実施
例2で用いたのと同様のポリアニリン粉末1.5重量部
をアルミナ乳鉢で混合することで電極粉末Dを得た。Comparative Example 2 DTG (5 gr) was neutralized and dissolved by adding 100 ml of an acetone-water (1: 1 volume ratio) mixed solvent in which an equivalent amount of lithium hydroxide necessary for neutralizing the dibasic acid DTG was dissolved. . The same oxidizing agent solution as in Example 1 was added dropwise to the obtained solution to polymerize the DTG monomer. After standing overnight, the precipitate was washed with acetone, pure water, and acetone in this order, and then vacuum dried to obtain 4.98 gr of a white powder of a polymer of DTG monomer. Electrode powder D was obtained by mixing 1 part by weight of this powder with 1.5 parts by weight of the same polyaniline powder as used in Example 2 in an alumina mortar.
【0014】電池性能評価 実施例1、2で得た電極粉末A,Cおよび、比較例1、
2で得た電極粉末B,Dを正極活物質材料として用い、
厚み0.3mmの金属リチウムを負極とし、ポリアクリ
ロニトリル3.0grをLiBF4 を1M溶解したプロ
ピレンカーボネート/エチレンカーボネート(1:1容
積比)溶液20.7gでゲル化したゲル電解質を厚み
0.6mmのセパレータ層として用い、直径13mmの
電池を構成し、0.27mAの定電流値で、4.05〜
2.50Vの範囲内で充放電試験を行い、それぞれの電
極粉末の電池特性を評価した。1、5、10、20、3
0サイクル後の放電容量により評価した。正極は、それ
ぞれの電極粉末2.5重量部とゲル電解質2.5重量部
を混合し、厚さ0.17mmのシート状に成形した後、
直径13mmの円板状に打ち抜いたものを用いた。ま
た、電極の重量はすべて、20mgとした。試験結果を
表1に示す。Evaluation of Battery Performance Electrode powders A and C obtained in Examples 1 and 2 and Comparative Example 1
Using the electrode powders B and D obtained in 2 as the positive electrode active material,
Using a metal lithium having a thickness of 0.3 mm as a negative electrode, 3.0 g of polyacrylonitrile was gelled with 20.7 g of a propylene carbonate / ethylene carbonate (1: 1 volume ratio) solution in which 1 M of LiBF 4 was dissolved to a thickness of 0.6 mm. , A battery having a diameter of 13 mm is formed, and a constant current value of 0.27 mA is applied to the battery.
A charge / discharge test was performed within a range of 2.50 V to evaluate the battery characteristics of each electrode powder. 1, 5, 10, 20, 3
It was evaluated by the discharge capacity after 0 cycle. The positive electrode was prepared by mixing 2.5 parts by weight of each electrode powder and 2.5 parts by weight of a gel electrolyte and molding the mixture into a sheet having a thickness of 0.17 mm.
A disc punched out with a diameter of 13 mm was used. The weight of all the electrodes was 20 mg. The test results are shown in Table 1.
【0015】[0015]
【表1】 [Table 1]
【0016】以上の結果から明らかなように、本発明に
従う方法で製造した実施例1、2の電極粉末A,Cを用
いた電池では、充放電30サイクル後も1サイクル目の
容量の77%、74%を保持しているのに対し、従来の
方法で製造した比較例1、2の電極粉末B,Dを用いた
電池では、40%、38%の放電容量を保持するのみで
ある。As is clear from the above results, in the batteries using the electrode powders A and C of Examples 1 and 2 produced by the method according to the present invention, 77% of the capacity at the first cycle was obtained even after 30 cycles of charging and discharging. , 74%, while the batteries using the electrode powders B and D of Comparative Examples 1 and 2 manufactured by the conventional method only hold the discharge capacities of 40% and 38%.
【0017】以上説明した通り、本実施例によれば、ジ
スルフィド化合物モノマーを溶解した溶液と導電性物質
とを均一に混合した後、得られた分散溶液中に、沃素あ
るいはフェリシアン化カリウム等の酸化剤を添加するこ
とでジスルフィド化合物モノマーを重合して得られる沈
澱物を洗浄、濾過、乾燥することによりジスルフィド化
合物の重合体と導電性物質の複合物よりなるポリマー電
極を製造する。分散溶液を電解することでジスルフィド
化合物モノマーを酸化重合してもよい。これにより、電
池充放電に際して容量劣化の少ない電極とすることがで
きる。As described above, according to this example, the solution in which the disulfide compound monomer is dissolved and the conductive substance are uniformly mixed, and then the resulting dispersion solution is added with an oxidizing agent such as iodine or potassium ferricyanide. The precipitate obtained by polymerizing the disulfide compound monomer by adding is washed, filtered and dried to produce a polymer electrode composed of a composite of a polymer of the disulfide compound and a conductive substance. The disulfide compound monomer may be oxidatively polymerized by electrolyzing the dispersion solution. As a result, it is possible to obtain an electrode with little capacity deterioration during battery charging and discharging.
【0018】[0018]
【発明の効果】本発明の製造法に従えば、ジスルフィド
化合物モノマーは溶液に溶解した状態で導電性物質と均
一に混合された後、重合されるので、ジスルフィド化合
物の重合物と導電性物質とが均一に混合・分散した状態
の電極を得ることができる。そして、このような電極を
用いた電池を充放電すると、導電性物質とジスルフィド
化合物との電気的な接続が良好に保たれ、電池容量の劣
化が軽減されるという効果が得られる。According to the production method of the present invention, the disulfide compound monomer is homogeneously mixed with the conductive substance in a state of being dissolved in a solution, and then polymerized, so that the disulfide compound polymer and the conductive substance are mixed. It is possible to obtain an electrode in a state of being uniformly mixed and dispersed. Then, when a battery using such an electrode is charged / discharged, the electrical connection between the conductive substance and the disulfide compound is maintained well, and the deterioration of the battery capacity is reduced.
Claims (4)
し、硫黄−金属イオン(プロトンを含む)結合を生成
し、電解酸化により硫黄−金属イオン結合が元の硫黄−
硫黄結合を再生する有機イオウ化合物モノマーを原料成
分とするポリマー電極の製造法において、前記有機イオ
ウ化合物モノマーを有機溶媒中に溶解し、得られた溶液
と導電性物質とを混合した後、混合物中の前記モノマー
を重合することを特徴とするポリマー電極の製造法。1. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond, and a sulfur-metal ion bond is converted to the original sulfur-
In a method for producing a polymer electrode using an organic sulfur compound monomer that regenerates a sulfur bond as a raw material component, the organic sulfur compound monomer is dissolved in an organic solvent, and the obtained solution is mixed with a conductive substance, and then in a mixture. A method for producing a polymer electrode, which comprises polymerizing the above monomer.
請求項1に記載のポリマー電極の製造法。2. The method for producing a polymer electrode according to claim 1, wherein the conductive substance is a conductive polymer powder.
請求項1に記載のポリマー電極の製造法。3. The method for producing a polymer electrode according to claim 1, wherein the conductive substance is polyaniline powder.
の複合体である請求項1に記載のポリマー電極の製造
法。4. The method for producing a polymer electrode according to claim 1, wherein the conductive substance is a composite of a fluororesin and a carbon material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4299583A JPH06150909A (en) | 1992-11-10 | 1992-11-10 | Manufacture of polymer electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4299583A JPH06150909A (en) | 1992-11-10 | 1992-11-10 | Manufacture of polymer electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06150909A true JPH06150909A (en) | 1994-05-31 |
Family
ID=17874519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4299583A Pending JPH06150909A (en) | 1992-11-10 | 1992-11-10 | Manufacture of polymer electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06150909A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011077754A1 (en) | 2009-12-24 | 2011-06-30 | パナソニック株式会社 | Electrode and electricity storage device |
-
1992
- 1992-11-10 JP JP4299583A patent/JPH06150909A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011077754A1 (en) | 2009-12-24 | 2011-06-30 | パナソニック株式会社 | Electrode and electricity storage device |
US9640335B2 (en) | 2009-12-24 | 2017-05-02 | Panasonic Corporation | Electrode and electricity storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6174621B1 (en) | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same | |
US4740436A (en) | Secondary battery | |
JP3015411B2 (en) | Polyaniline battery | |
JPH11339808A (en) | Electrode | |
JP3257018B2 (en) | Battery charge / discharge method | |
JPH06150909A (en) | Manufacture of polymer electrode | |
JPH06150910A (en) | Manufacture of electrode | |
JP3042743B2 (en) | Electrode manufacturing method | |
US6309778B1 (en) | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same | |
JP3131441B2 (en) | Anode for battery | |
JP3048798B2 (en) | Reversible electrode and lithium secondary battery comprising the same | |
JP3237261B2 (en) | Reversible composite electrode and lithium secondary battery using the same | |
JP2501821B2 (en) | Secondary battery | |
JPH06310127A (en) | Manufacture of electrode | |
JPH0660907A (en) | Organic compound battery | |
JP4343819B2 (en) | Redox-active polymer, electrode using the same, and non-aqueous battery | |
JPS6326955A (en) | Nonaqueous electrolyte battery | |
JPS6282670A (en) | Charging method for nonaqueous secondary battery | |
JPH0660906A (en) | Organic compound battery | |
JPH06283175A (en) | Reversible electrode | |
JPH0620000B2 (en) | Non-aqueous secondary battery | |
JPH08203529A (en) | Combined electrode, manufacture thereof and lithium secondary battery | |
JPS62157678A (en) | Secondary battery | |
JPH06150932A (en) | Electrode | |
JPH0740493B2 (en) | Non-aqueous solvent secondary battery |