JPH06157923A - Production of thermoplastic polymer powder - Google Patents
Production of thermoplastic polymer powderInfo
- Publication number
- JPH06157923A JPH06157923A JP5214475A JP21447593A JPH06157923A JP H06157923 A JPH06157923 A JP H06157923A JP 5214475 A JP5214475 A JP 5214475A JP 21447593 A JP21447593 A JP 21447593A JP H06157923 A JPH06157923 A JP H06157923A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- thermoplastic polymer
- powder
- parts
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高嵩比重の熱可塑性重合
体粉末の製造方法に関する。FIELD OF THE INVENTION The present invention relates to a method for producing a thermoplastic polymer powder having a high bulk specific gravity.
【0002】[0002]
【従来の技術】従来より熱可塑性重合体粉末の嵩比重を
向上させる方法が種々検討されている。例えば、特開昭
55ー90520号公報、特開昭64ー26663号公
報には、グラフト共重合体ラテックスの凝固後に粉体改
質用グラフト重合体や無機微粉体を添加することにより
嵩比重を向上させる方法が提案されている。2. Description of the Related Art Conventionally, various methods for improving the bulk specific gravity of thermoplastic polymer powder have been studied. For example, in JP-A-55-90520 and JP-A-64-26663, the bulk specific gravity is increased by adding a powder-modifying graft polymer or an inorganic fine powder after solidification of a graft copolymer latex. Ways to improve have been proposed.
【0003】[0003]
【発明が解決しようとする課題】しかし、これらの方法
は重合体粉末の表面を改質することにより、粒子群の充
填構造を密にして嵩比重を上昇させる方法である。即
ち、個々の粒子内部の空隙を減少させて密度を上げる改
質方法ではないために、嵩比重が充分に向上した熱可塑
性重合体粉末を得るのが困難であった。However, these methods are methods of improving the bulk specific gravity by modifying the surface of the polymer powder to make the packing structure of the particle groups dense. That is, it is difficult to obtain a thermoplastic polymer powder having a sufficiently improved bulk specific gravity because it is not a modification method for increasing the density by reducing voids inside individual particles.
【0004】[0004]
【課題を解決するための手段】本発明者らは、粒子内部
の空隙を減少させることによって、嵩比重が向上する熱
可塑性重合体を得ることを目的として鋭意検討した結
果、特定の重合体および/または無機化合物を添加した
熱可塑性重合体を加圧圧縮した後、解砕することによ
り、粒子内部が圧密化された、高嵩比重を有する熱可塑
性重合体粉末が得られることを見い出し本発明に到達し
た。DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive studies for the purpose of obtaining a thermoplastic polymer whose bulk specific gravity is improved by reducing voids inside particles, and as a result, a specific polymer and It has been found that a thermoplastic polymer powder having a high bulk specific gravity, in which the inside of particles is compacted, is obtained by compressing and / or crushing a thermoplastic polymer containing an inorganic compound added thereto. Reached
【0005】本発明の要旨は、乳化重合により得られ
た、式(X)で示されるTg(A)を有する熱可塑性重
合体(A)の凝析スラリーまたは該スラリーを乾燥して
得られる重合体粉末に、該熱可塑性重合体(A)100
重量部に対して0.1〜10重量部の重合体(B)およ
び/または無機化合物(C)を添加し(Tg(A)−3
0)〜(Tg(A)+50)℃で示す温度範囲で該熱可
塑性重合体(A)を加圧圧縮した後、解砕することを特
徴とする熱可塑性重合体粉末の製造方法にある。The gist of the present invention is to obtain a coagulation slurry of a thermoplastic polymer (A) having Tg (A) represented by the formula (X), obtained by emulsion polymerization, or a heavy slurry obtained by drying the slurry. The thermoplastic polymer (A) 100 is added to the coalesced powder.
0.1 to 10 parts by weight of the polymer (B) and / or the inorganic compound (C) is added to the parts by weight (Tg (A) -3.
0) to (Tg (A) +50) ° C. The thermoplastic polymer (A) is pressure-compressed in the temperature range shown and then crushed to obtain a thermoplastic polymer powder.
【0006】 Tg(A)=W1×Tg1+W2×Tg2+・・・+Wn×Tgn−−(X) [ここで、nは熱可塑性重合体(A)を形成する単量体
の数であり、W1、W2・・・Wnは各単量体i(i=
1、2・・・、n)の重合体(A)中の重量分率を表
し、Tg1、Tg2・・・、Tgnは各単量体iから成る
重合体のガラス転移温度(℃)を表す。]以下、本発明
についてさらに詳しく説明する。Tg (A) = W 1 × Tg 1 + W 2 × Tg 2 + ... + W n × Tg n- (X) [where n is a unit amount forming the thermoplastic polymer (A)] Is the number of the body, and W 1 , W 2 ... W n are each monomer i (i =
1, 2, represents the polymer (A) weight fraction in n), Tg 1, Tg 2 ···, Tg n is the glass transition temperature of the polymer composed of the monomer i (° C. ) Represents. The present invention will be described in more detail below.
【0007】本発明における熱可塑性重合体(A)を形
成する単量体としては、例えばブタジエン、イソプロピ
レン、クロロプロピレン等のジエン系単量体;ブチルア
クリレート、オクチルアクリレート等のアクリル酸アル
キルエステル系単量体;メチルメタクリレート、エチル
メタクリレート等のメタクリル酸アルキルエステル系単
量体;アクリロニトリル、メタアクリロニトリル等のシ
アン化ビニル系単量体;スチレン、α−メチルスチレン
等の芳香族ビニル系単量体;塩化ビニル、臭化ビニル等
のハロゲン化ビニル系単量体;ジメチルシロキサン等種
々の共重合可能な単量体が挙げられ、これらは2種類以
上を併用することもできる。Examples of the monomer forming the thermoplastic polymer (A) in the present invention include diene monomers such as butadiene, isopropylene and chloropropylene; alkyl acrylates such as butyl acrylate and octyl acrylate. Monomers; methacrylic acid alkyl ester monomers such as methyl methacrylate and ethyl methacrylate; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; aromatic vinyl monomers such as styrene and α-methylstyrene; Examples thereof include vinyl halide monomers such as vinyl chloride and vinyl bromide; various copolymerizable monomers such as dimethyl siloxane, and two or more of these may be used in combination.
【0008】本発明における熱可塑性重合体(A)とし
ては、式(X)に示されるTg(A)を有するものが用
いられる。As the thermoplastic polymer (A) in the present invention, a polymer having Tg (A) represented by the formula (X) is used.
【0009】熱可塑性重合体(A)ラテックスに凝析剤
を添加すると、該ラテックスの乳化状態が破壊され、乳
化分散していた重合体粒子が凝集して凝集体粒子(以
下、凝析粒子という。)を形成し、この凝析粒子が分散
媒の水に分散しスラリーが得られる。このスラリーに重
合体(B)および/または無機化合物(C)を添加混合
すると、凝析粒子の表面に該重合体(B)および/また
は該無機化合物(C)が吸着された混合物が得られる。When a coagulant is added to the thermoplastic polymer (A) latex, the emulsified state of the latex is destroyed and the emulsified and dispersed polymer particles aggregate to form aggregate particles (hereinafter referred to as coagulated particles). .) Is formed, and the coagulated particles are dispersed in water as a dispersion medium to obtain a slurry. When the polymer (B) and / or the inorganic compound (C) is added to and mixed with this slurry, a mixture in which the polymer (B) and / or the inorganic compound (C) is adsorbed on the surface of coagulated particles is obtained. .
【0010】このようにして得られた混合物中の凝析粒
子をより緻密化させるために、スラリーは通常Tg
(A)以上の温度に昇温し加熱処理される。この処理は
一般に固化と呼ばれており、固化の温度はTg(A)に
依存するが、通常60〜120℃で行われる。固化処理
したスラリーを脱水、乾燥することにより混合物は粉体
として回収される。In order to make the coagulated particles in the mixture thus obtained more compact, the slurry usually has a Tg of
(A) The temperature is raised to the above temperature and heat treatment is performed. This treatment is generally called solidification, and the solidification temperature depends on Tg (A), but is usually 60 to 120 ° C. The mixture is recovered as a powder by dehydrating and drying the solidified slurry.
【0011】以上のプロセスは凝析後のスラリーに重合
体(B)および/または無機化合物(C)を添加混合す
る場合であるが、本発明においては、固化後および乾燥
後の熱可塑性重合体(A)に対しても添加混合すること
ができる。なお乾燥後に添加する場合は、重合体(B)
および/または無機化合物(C)は乾粉状態で添加され
るのが好ましい。The above process is a case where the polymer (B) and / or the inorganic compound (C) is added to and mixed with the slurry after coagulation. In the present invention, the thermoplastic polymer after solidification and after drying. It is also possible to add and mix with (A). When added after drying, the polymer (B)
And / or the inorganic compound (C) is preferably added in a dry powder state.
【0012】また重合体(B)および/または無機化合
物(C)は分割して添加してもよい。例えば、固化後と
乾燥後のそれぞれの段階において添加することができ
る。The polymer (B) and / or the inorganic compound (C) may be added separately. For example, it can be added at each stage after solidification and drying.
【0013】本発明に使用される重合体(B)は、熱可
塑性重合体(A)に添加することによってその解砕工程
を補助するものであるが、下式(Y)で算出されるTg
(B)がTg(A)より50℃以上高い重合体であるこ
とが好ましい。またさらにTg(B)は60℃以上であ
ることが好ましい。60℃未満の場合には重合体(B)
が凝集した状態で存在しやすくなり、添加時に本来の改
質効果が得られないことがあり好ましくない。The polymer (B) used in the present invention assists the crushing process by adding it to the thermoplastic polymer (A), and the Tg calculated by the following formula (Y)
It is preferable that (B) is a polymer that is higher than Tg (A) by 50 ° C. or more. Furthermore, Tg (B) is preferably 60 ° C. or higher. Polymer (B) when less than 60 ° C
Are likely to exist in an aggregated state, and the original modifying effect may not be obtained at the time of addition, which is not preferable.
【0014】 Tg(B)=W1×Tg1+W2×Tg2+・・・+Wn×Tgn−−(Y) [ここで、nは重合体(B)を形成する単量体の数であ
り、W1、W2・・・Wnは各単量体i(i=1、2・・
・、n)の重合体(B)中の重量分率を表し、Tg1、
Tg2・・・、Tgnは各単量体iから成る重合体のガラ
ス転移温度(℃)を表す。]また重合体(B)は、ラテ
ックス状、凝析スラリー状、乾粉状等の状態で添加混合
される。この重合体(B)を形成する単量体としては上
記の熱可塑性重合体(A)を形成する単量体と同様のも
のを用いることができる。Tg (B) = W 1 × Tg 1 + W 2 × Tg 2 + ... + W n × Tg n- (Y) [where n is a monomer forming the polymer (B)] W 1 , W 2 ... W n are each monomer i (i = 1, 2, ...
, N) represents the weight fraction in the polymer (B), Tg 1 ,
Tg 2 ..., Tg n represent the glass transition temperature (° C.) of the polymer composed of each monomer i. The polymer (B) is added and mixed in the form of latex, coagulated slurry, dry powder, or the like. As the monomer forming the polymer (B), the same monomers as those forming the thermoplastic polymer (A) can be used.
【0015】本発明に使用される無機化合物(C)は、
Si,Mg,Al,Ca,Ba,ZnおよびTiからな
る群より選ばれた1種または2種以上の元素の酸化物、
塩化物、水酸化物、炭酸塩および硫酸塩の単独またはそ
れらの混合物が挙げられ、それらの具体例としては、例
えばSiO2,MgO,Mg(OH)2,MgCO3,A
l2O3,Al(OH)3,Al2(CO3),CaO,C
aCO3,TiO2,タルク、クレー、珪藻土メタケイ酸
カルシウム等が挙げられる。The inorganic compound (C) used in the present invention is
An oxide of one or more elements selected from the group consisting of Si, Mg, Al, Ca, Ba, Zn and Ti,
Examples thereof include chlorides, hydroxides, carbonates and sulfates, or a mixture thereof. Specific examples thereof include SiO 2 , MgO, Mg (OH) 2 , MgCO 3 , and A.
l 2 O 3 , Al (OH) 3 , Al 2 (CO 3 ), CaO, C
Examples thereof include aCO 3 , TiO 2 , talc, clay, and diatomaceous earth calcium metasilicate.
【0016】重合体(B)および/または無機化合物
(C)の平均粒径は熱可塑性重合体(A)の粒径にもよ
るが10μm以下であることが好ましく、さらには5μ
m以下であることが好ましい。平均粒径が10μmを超
える場合には熱可塑性重合体(A)の粒子表面の改質効
果が小さいために、加圧圧縮後の解砕が困難となる。重
合体(B)および/または無機化合物(C)の粒径は小
さいほど少量で熱可塑性重合体(A)粉末の表面を被覆
可能であり、改質効果は大きくなる。The average particle size of the polymer (B) and / or the inorganic compound (C) depends on the particle size of the thermoplastic polymer (A), but is preferably 10 μm or less, more preferably 5 μm.
It is preferably m or less. If the average particle size exceeds 10 μm, the effect of modifying the surface of the particles of the thermoplastic polymer (A) is small, so that crushing after pressure compression becomes difficult. As the particle size of the polymer (B) and / or the inorganic compound (C) is smaller, the surface of the powder of the thermoplastic polymer (A) can be coated with a smaller amount, and the modifying effect is increased.
【0017】重合体(B)および/または無機化合物
(C)の添加量は熱可塑性重合体(A)100重量部に
対して0.1〜10重量部、より好ましくは0.1〜5
重量部である。添加量が0.1重量部未満では、後述す
る加圧圧縮後の解砕が困難となり良好な粉体が得られ
ず、また10重量部を超える場合は熱可塑性重合体
(A)の本来の物性が変化するため好ましくない。The amount of the polymer (B) and / or the inorganic compound (C) added is 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the thermoplastic polymer (A).
Parts by weight. If the addition amount is less than 0.1 parts by weight, it is difficult to crush after compression and compression described later and a good powder cannot be obtained, and if it is more than 10 parts by weight, the original amount of the thermoplastic polymer (A) is not obtained. It is not preferable because the physical properties change.
【0018】次に、混合物の加圧圧縮について述べる。
乾燥後の混合物を加圧圧縮すると、回収された混合物中
の熱可塑性重合体(A)粒子内部の空隙が排除され、内
部が圧密化される。また同時に、該混合物はブロック状
態となる。熱可塑性重合体(A)粒子の表面は重合体
(B)および/または無機化合物(C)によって被覆さ
れているため、該ブロックは容易に解砕できる。Next, pressure compression of the mixture will be described.
When the mixture after drying is pressure-compressed, voids inside the thermoplastic polymer (A) particles in the recovered mixture are eliminated and the inside is compacted. At the same time, the mixture becomes blocked. Since the surface of the particles of the thermoplastic polymer (A) is coated with the polymer (B) and / or the inorganic compound (C), the block can be easily crushed.
【0019】混合物を加圧圧縮する際の温度は、(Tg
(A)−30)〜(Tg(A)+50)℃の範囲である
ことが好ましい。(Tg(A)−30)℃未満で行うと
本発明の目的とする嵩比重の改善効果は発現しにくく、
(Tg(A)+50)℃を超える温度で行うと、重合体
(B)および/または無機化合物(C)の効果が発現せ
ず解砕が困難となり好ましくない。The temperature for compressing the mixture under pressure is (Tg
It is preferably in the range of (A) -30) to (Tg (A) +50) ° C. If it is performed at a temperature lower than (Tg (A) -30) ° C., the effect of improving the bulk specific gravity, which is the object of the present invention, is unlikely to be exhibited,
If the temperature is higher than (Tg (A) +50) ° C., the effect of the polymer (B) and / or the inorganic compound (C) will not be exhibited and crushing will be difficult, which is not preferable.
【0020】加圧圧力は面圧で通常1000Kg/cm
2程度以下であることが好ましい。圧力が高いとブロッ
ク状態の混合物の強度が増大して解砕が困難になり、良
好な粉体を得ることが困難になる。The pressurizing pressure is usually a surface pressure of 1000 kg / cm.
It is preferably about 2 or less. When the pressure is high, the strength of the mixture in a block state increases and it becomes difficult to disintegrate, and it becomes difficult to obtain a good powder.
【0021】[0021]
【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明はこれらの実施例によって何ら限定
されるものではない。なお、実施例、比較例中の「部」
は「重量部」を表す。The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by these examples. In addition, "part" in Examples and Comparative Examples
Represents "parts by weight".
【0022】実施例1 (1)熱可塑性重合体(A−1)の製法 1,3ブタジエン(Bd) 75部 スチレン(St) 25部 ジビニルベンゼン 1部 硫酸第1鉄 0.006部 ピロリン酸ソーダ 0.6部 ジイソプロピルベンゼンヒドロペルオキシド 0.4部 デキストローズ 0.4部 オレイン酸カリウム 1部 脱イオン水 200部 上記組成の各仕込み成分を耐圧オートクレーブ中に仕込
み、攪拌しながら、50℃で48時間反応させてゴムラ
テックスを製造した(重合率98%)。このゴムラテッ
クス70部(固形分として)に塩化ナトリウム1部を添
加後メチルメタクリレート13部、エチルアクリレート
2部、クメンヒドロペルオキシド0.045部からなる
混合単量体とホルムアルデヒドナトリウムスルホキシレ
ート0.06部を添加し、70℃で第1段目のグラフト
重合を2時間行った。その後、前段階で得られた重合体
の存在下で第2段目のグラフト単量体としてスチレン1
5部、クメンヒドロペルオキシドを0.06部添加後、
70℃で第2段目のグラフト重合を3時間行い、熱可塑
性重合体(A−1)のラテックスを得た(固形分濃度3
6重量%、平均粒径0.115μm)。Example 1 (1) Method for producing thermoplastic polymer (A-1) 1,3 Butadiene (Bd) 75 parts Styrene (St) 25 parts Divinylbenzene 1 part Ferrous sulfate 0.006 parts Sodium pyrophosphate 0.6 part Diisopropylbenzene hydroperoxide 0.4 part Dextrose 0.4 part Potassium oleate 1 part Deionized water 200 parts Each charge component of the above composition is charged into a pressure autoclave and stirred at 50 ° C. for 48 hours. A rubber latex was produced by reaction (polymerization rate 98%). After adding 1 part of sodium chloride to 70 parts (as solid content) of this rubber latex, a mixed monomer consisting of 13 parts of methyl methacrylate, 2 parts of ethyl acrylate and 0.045 part of cumene hydroperoxide and formaldehyde sodium sulfoxylate 0.06. Part was added, and the first stage graft polymerization was carried out at 70 ° C. for 2 hours. Then, in the presence of the polymer obtained in the previous step, styrene 1 was used as the second stage graft monomer.
After adding 5 parts and 0.06 parts of cumene hydroperoxide,
The second step graft polymerization was carried out at 70 ° C. for 3 hours to obtain a latex of the thermoplastic polymer (A-1) (solid content concentration 3
6% by weight, average particle size 0.115 μm).
【0023】(2)重合体(B−1)の製法 攪拌器および還流冷却管つき反応器に脱イオン水280
部、ジオクチルスルホコハク酸ソーダ1部、過硫酸アン
モニウム0.2部、メチルメタクリレート85部、ブチ
ルアクリレート15部、n−オクチルメルカプタン0.
02部からなる混合物を仕込み、容器内を窒素にて置換
した後、攪拌下で反応容器を65℃に昇温し、2時間加
熱攪拌して重合し重合体(B−1)を得た(固形分2
7.8重量%、平均粒径0.13μm)。(2) Method for producing polymer (B-1) Deionized water 280 was added to a reactor equipped with a stirrer and a reflux condenser.
Part, sodium dioctylsulfosuccinate 1 part, ammonium persulfate 0.2 part, methyl methacrylate 85 parts, butyl acrylate 15 parts, n-octyl mercaptan 0.
After a mixture of 02 parts was charged and the inside of the vessel was replaced with nitrogen, the temperature of the reaction vessel was raised to 65 ° C. with stirring, and the mixture was heated and stirred for 2 hours to polymerize to obtain a polymer (B-1) ( Solid content 2
7.8% by weight, average particle size 0.13 μm).
【0024】(3)重合体粉末の製法 熱可塑性重合体(A−1)ラテックス200部を、6枚
羽根ファンタービン型の攪拌機を設置した容器内で、
0.23%の希硫酸600部を用いて凝析させた。この
スラリーに、重合体(B−1)をラテックス状態で添加
した。その後、表1記載の固化温度まで昇温処理した
後、脱水乾燥し粉体を得た。この粉体に対して、表1記
載の温度と圧力で加圧圧縮した後、解砕し、粉末を得
た。評価結果を表1に示す。(3) Preparation of polymer powder 200 parts of the thermoplastic polymer (A-1) latex was placed in a container equipped with a 6-blade fan turbine type agitator.
Coagulation was performed using 600 parts of 0.23% dilute sulfuric acid. The polymer (B-1) was added to this slurry in a latex state. Then, after heating up to the solidification temperature shown in Table 1, dehydration drying was performed to obtain a powder. This powder was pressed and compressed at the temperature and pressure shown in Table 1 and then crushed to obtain a powder. The evaluation results are shown in Table 1.
【0025】実施例2 スチレン50重量%とブチルアクリレート40重量%と
メチルメタクリレート10重量%を乳化重合して熱可塑
性重合体(A−2)のラテックスを得た(固形分濃度3
3重量%、平均粒径0.137μm)。実施例1と同様
の装置を用いて、該熱可塑性重合体(A−2)ラテック
ス200部を、0.18%の希硫酸600部を用いて凝
析させた。このスラリーに疎水シリカ(B−2)(日本
アエロジル(株)製、品番:R972、平均粒径0.0
14μm)を添加した。その後、表1記載の固化温度ま
で昇温処理した後、脱水乾燥し粉体を得た。この粉体に
対して、表1記載の温度と圧力で加圧圧縮した後、解砕
し、粉末を得た。評価結果を表1に示す。Example 2 50 wt% of styrene, 40 wt% of butyl acrylate and 10 wt% of methyl methacrylate were emulsion polymerized to obtain a latex of a thermoplastic polymer (A-2) (solid content 3
3% by weight, average particle size 0.137 μm). Using the same apparatus as in Example 1, 200 parts of the thermoplastic polymer (A-2) latex was coagulated with 600 parts of 0.18% dilute sulfuric acid. Hydrophobic silica (B-2) (manufactured by Nippon Aerosil Co., Ltd., product number: R972, average particle size 0.0)
14 μm) was added. Then, after heating up to the solidification temperature shown in Table 1, dehydration drying was performed to obtain a powder. This powder was pressed and compressed at the temperature and pressure shown in Table 1 and then crushed to obtain a powder. The evaluation results are shown in Table 1.
【0026】比較例1 加圧圧縮時の温度を表1に示した条件で行った以外は、
実施例2と同様の条件で処理し、粉末を得た。評価結果
を表1に示す。Comparative Example 1 Except that the temperature at the time of compression and compression was carried out under the conditions shown in Table 1,
Treatment was carried out under the same conditions as in Example 2 to obtain a powder. The evaluation results are shown in Table 1.
【0027】実施例3 攪拌器および還流冷却管つき反応器に脱イオン水280
部、ジオクチルスルホコハク酸ソーダ1部、過硫酸アン
モニウム0.2部、メチルメタクリレート85部、ブチ
ルアクリレート15部、n−オクチルメルカプタン0.
02部からなる混合物を仕込み、容器内を窒素にて置換
した後、攪拌下で反応容器を65℃に昇温し、2時間加
熱攪拌して重合し熱可塑性重合体(A−3)を得た(固
形分濃度27.8重量%、平均粒径0.13μm)。該
熱可塑性重合体(A−3)ラテックス200部を、0.
27%の希硫酸を用いて凝析させた。このスラリーに疎
水シリカ(B−2)を添加した。その後、表1記載の固
化温度まで昇温処理した後、脱水乾燥し粉体を得た。こ
の粉体に対して、表1記載の温度と圧力で加圧圧縮した
後、解砕し、粉末を得た。評価結果を表1に示す。Example 3 Deionized water 280 was added to a reactor equipped with a stirrer and reflux condenser.
Part, sodium dioctylsulfosuccinate 1 part, ammonium persulfate 0.2 part, methyl methacrylate 85 parts, butyl acrylate 15 parts, n-octyl mercaptan 0.
After a mixture of 02 parts was charged and the inside of the vessel was replaced with nitrogen, the temperature of the reaction vessel was raised to 65 ° C. with stirring, and the mixture was heated and stirred for 2 hours to polymerize to obtain a thermoplastic polymer (A-3). (Solid concentration 27.8% by weight, average particle size 0.13 μm). 200 parts of the thermoplastic polymer (A-3) latex was mixed with 0.
Coagulation was performed using 27% dilute sulfuric acid. Hydrophobic silica (B-2) was added to this slurry. Then, after heating up to the solidification temperature shown in Table 1, dehydration drying was performed to obtain a powder. This powder was pressed and compressed at the temperature and pressure shown in Table 1 and then crushed to obtain a powder. The evaluation results are shown in Table 1.
【0028】実施例4 実施例1で使用した熱可塑性重合体(A−1)ラテック
スを実施例1と同様にして凝析させた。このスラリーを
そのまま実施例1と同様にして固化、脱水、乾燥し、粉
体を得た。この粉体に疎水シリカ(B−2)を添加し、
混合した。この粉体に対して、表1に記載されている温
度と圧力で加圧圧縮した後、解砕し粉体を得た。評価結
果を表1に示す。Example 4 The thermoplastic polymer (A-1) latex used in Example 1 was coagulated in the same manner as in Example 1. This slurry was solidified, dehydrated and dried in the same manner as in Example 1 to obtain a powder. Hydrophobic silica (B-2) was added to this powder,
Mixed. This powder was pressed and compressed at the temperature and pressure shown in Table 1 and then crushed to obtain a powder. The evaluation results are shown in Table 1.
【0029】実施例5 攪拌器および還流冷却管つき反応器に脱イオン水680
部、ジオクチルスルホコハク酸ソーダ5部、過硫酸アン
モニウム1.2部、メチルメタクリレート100部、n
−オクチルメルカプタン0.02部からなる混合物を仕
込み、容器内を窒素にて置換した後、攪拌下で反応容器
を65℃に昇温し、2時間加熱攪拌して重合し重合体
(B−3)を得た(固形分濃度15重量%、平均粒径
0.05μm)。Example 5 Deionized water 680 in a reactor equipped with stirrer and reflux condenser
Parts, dioctyl sodium sulfosuccinate 5 parts, ammonium persulfate 1.2 parts, methyl methacrylate 100 parts, n
-A mixture of 0.02 parts of octyl mercaptan was charged, the inside of the vessel was replaced with nitrogen, the temperature of the reaction vessel was raised to 65 ° C under stirring, and the mixture was heated and stirred for 2 hours to polymerize the polymer (B-3 Was obtained (solid content concentration 15% by weight, average particle size 0.05 μm).
【0030】実施例1と同様にして得られた熱可塑性重
合体(A−1)のスラリーに重合体(B−3)をラテッ
クス状態で添加した。その後実施例1と同様にして固
化、脱水、乾燥し粉体を得た。この粉体に対して表1に
記載される温度と圧力で加圧圧縮した後解砕し、粉末を
得た。評価結果を表1に示す。The polymer (B-3) was added in a latex state to the slurry of the thermoplastic polymer (A-1) obtained in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, solidification, dehydration and drying were performed to obtain a powder. This powder was pressed and compressed at the temperature and pressure shown in Table 1 and then crushed to obtain a powder. The evaluation results are shown in Table 1.
【0031】[0031]
【表1】 [Table 1]
【0032】[0032]
【発明の効果】本発明によれば、熱可塑性重合体の嵩比
重を従来より知られている方法を用いた場合に比べて著
しく向上させることができる。According to the present invention, the bulk specific gravity of the thermoplastic polymer can be remarkably improved as compared with the case where a conventionally known method is used.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 波多野 渉 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Wataru Hatano 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory
Claims (1)
されるTg(A)を有する熱可塑性重合体(A)の凝析
スラリーまたは該スラリーを乾燥して得られる重合体粉
末に、該熱可塑性重合体(A)100重量部に対して
0.1〜10重量部の重合体(B)および/または無機
化合物(C)を添加し(Tg(A)−30)〜(Tg
(A)+50)℃で示す温度範囲で該熱可塑性重合体
(A)を加圧圧縮した後、解砕することを特徴とする熱
可塑性重合体粉末の製造方法。 Tg(A)=W1×Tg1+W2×Tg2+・・・+Wn×Tgn−−(X) [ここで、nは熱可塑性重合体(A)を形成する単量体
の数であり、W1、W2・・・Wnは各単量体i(i=
1、2・・・、n)の重合体(A)中の重量分率を表
し、Tg1、Tg2・・・、Tgnは各単量体iから成る
重合体のガラス転移温度(℃)を表す。]1. A coagulated slurry of a thermoplastic polymer (A) having Tg (A) represented by the formula (X) obtained by emulsion polymerization, or a polymer powder obtained by drying the slurry, 0.1 to 10 parts by weight of the polymer (B) and / or the inorganic compound (C) are added to 100 parts by weight of the thermoplastic polymer (A) (Tg (A) -30) to (Tg).
(A) A method for producing a thermoplastic polymer powder, which comprises compressing the thermoplastic polymer (A) within a temperature range of +50) ° C. and then crushing it. Tg (A) = W 1 × Tg 1 + W 2 × Tg 2 + ... + W n × Tg n −− (X) [where n is the number of monomers forming the thermoplastic polymer (A)] And W 1 , W 2 ... W n are each monomer i (i =
1, 2, represents the polymer (A) weight fraction in n), Tg 1, Tg 2 ···, Tg n is the glass transition temperature of the polymer composed of the monomer i (° C. ) Represents. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5214475A JPH06157923A (en) | 1992-08-31 | 1993-08-30 | Production of thermoplastic polymer powder |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23239192 | 1992-08-31 | ||
JP4-232391 | 1992-08-31 | ||
JP5214475A JPH06157923A (en) | 1992-08-31 | 1993-08-30 | Production of thermoplastic polymer powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06157923A true JPH06157923A (en) | 1994-06-07 |
Family
ID=26520337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5214475A Pending JPH06157923A (en) | 1992-08-31 | 1993-08-30 | Production of thermoplastic polymer powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06157923A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265743A (en) * | 2001-03-15 | 2002-09-18 | Mitsubishi Rayon Co Ltd | Graft copolymer-based mixed powder and method for improving powder characteristics of graft copolymer |
JP2019189710A (en) * | 2018-04-23 | 2019-10-31 | 株式会社クラレ | Manufacturing method of thermoplastic resin powder |
-
1993
- 1993-08-30 JP JP5214475A patent/JPH06157923A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265743A (en) * | 2001-03-15 | 2002-09-18 | Mitsubishi Rayon Co Ltd | Graft copolymer-based mixed powder and method for improving powder characteristics of graft copolymer |
JP2019189710A (en) * | 2018-04-23 | 2019-10-31 | 株式会社クラレ | Manufacturing method of thermoplastic resin powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3679482B2 (en) | Butadiene-based impact modifier | |
JPWO2006070590A1 (en) | Method for producing coagulated latex particles | |
JP5020450B2 (en) | Method for producing powder linear polymer with excellent powder properties | |
JPH06157923A (en) | Production of thermoplastic polymer powder | |
KR100513658B1 (en) | Perparation of thermoplastic resin composition having excellent thermal stability and power properties | |
KR100837091B1 (en) | Acrylic rubber composition with improved impact resistance and weather resistance, and polyvinyl chloride resin composition containing same | |
WO2006070591A1 (en) | Aggregated-particle composition | |
US5521231A (en) | Process for producing thermoplastic copolymer powder | |
JP2000273258A (en) | Impact resistance-improved resin for vinyl chloride resin having improved powder characteristic | |
JP5078361B2 (en) | Thermoplastic resin composition | |
JP4173226B2 (en) | Graft copolymer powder and method for producing the same | |
KR20060022653A (en) | Resin powder of rubber-containing graft copolymer mixture and process for producing the same | |
JP3105915B2 (en) | Powder property improvement method | |
JPH05163359A (en) | Production of powdery polymer | |
JPH0549704B2 (en) | ||
JP4961078B2 (en) | Graft copolymer mixed powder and method for improving powder properties of graft copolymer | |
JP2888937B2 (en) | Method for producing a powdery mixture of thermoplastic polymers | |
WO2024204417A1 (en) | Method for producing particulate material | |
KR100694460B1 (en) | Method for Manufacturing Rubber Grafted Copolymer Powder | |
RU2782844C2 (en) | Polymer composition with filler, its production method and its use | |
JP4071998B2 (en) | Rubber-silica mixed powder and method for producing the same | |
JPH0525896B2 (en) | ||
JPH0146522B2 (en) | ||
JPH0362186B2 (en) | ||
JP3307975B2 (en) | Denture base resin composition |