[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06145407A - Preexpanded bead for in-mold fuse molding and its production - Google Patents

Preexpanded bead for in-mold fuse molding and its production

Info

Publication number
JPH06145407A
JPH06145407A JP29455392A JP29455392A JPH06145407A JP H06145407 A JPH06145407 A JP H06145407A JP 29455392 A JP29455392 A JP 29455392A JP 29455392 A JP29455392 A JP 29455392A JP H06145407 A JPH06145407 A JP H06145407A
Authority
JP
Japan
Prior art keywords
particles
expanded particles
expanded
resin
experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29455392A
Other languages
Japanese (ja)
Other versions
JP3149144B2 (en
Inventor
Noboru Takeda
登 武田
Manabu Tanuma
学 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP29455392A priority Critical patent/JP3149144B2/en
Publication of JPH06145407A publication Critical patent/JPH06145407A/en
Application granted granted Critical
Publication of JP3149144B2 publication Critical patent/JP3149144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To provide the subject thermoplastic preexpanded beads excellent in in-mold fuse moldability, capable of giving in-mold expanded foam having high-grade physical properties. CONSTITUTION:Perfectly cylindrical or ellipsoidally cylindrical resin beads are impregnated with a volatile foaming agent having a gas permeability constant of >=1X10<-10>cc. (STP).cm/cm<2>.sec.cmHg, followed by heating to effect expansion into primary expanded beads 1.5-5cm<3>/g in expansion ratio, which are then further expanded by a factor of >=3, thus affording the objective virtually spherical preexpanded beads. For the beads, one bandlike ring with relatively large film thickness at each hemisphere is found on the surface layer without crossing each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、型内融着成形により熱
可塑性樹脂発泡成形体を製造するための、いわゆる予備
発泡された熱可塑性樹脂発泡粒子及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to so-called pre-expanded thermoplastic resin expanded particles for producing a thermoplastic resin expanded molded article by in-mold fusion molding and a method for producing the same.

【0002】[0002]

【従来の技術】発泡した熱可塑性樹脂からなる成形体
を、予備発泡させた発泡樹脂粒子を型内融着成形により
製造する方法は、従来から広く実施されている。そして
この型内成形に供する予備発泡粒子としては、粒子径の
揃った球状の発泡粒子が理想的であるとされている。こ
れは、成形機の型内に充填して加熱し、発泡粒子を膨張
させて粒子相互間の空間が埋った密に融着した状態の成
形体にしようとする際に、角ばった部分のある予備発泡
粒子より球状の予備発泡粒子の方が型窩内への充填状態
を均質にできること、及び得られた成形体の特性が本質
的に良くあることに基づくものと考えられている。
2. Description of the Related Art A method for producing a preformed foamed resin particle by in-mold fusion molding of a molded article made of a foamed thermoplastic resin has been widely practiced. And, as the pre-expanded particles to be subjected to the in-mold molding, spherical expanded particles having a uniform particle diameter are said to be ideal. This is because there is an angled portion when filling the inside of the mold of the molding machine and heating it to expand the expanded particles to form a densely fused molded product in which the spaces between the particles are filled. It is considered that the spherical pre-expanded particles are more uniform than the pre-expanded particles in the filling state in the mold cavity, and the properties of the obtained molded body are essentially good.

【0003】そこで球状の予備発泡粒子を製造する方法
に関する技術が、幾つか提案されている。例えば特公昭
52−41777号公報には、エチレン系樹脂粒子を水
性懸濁液中に懸濁させ、該樹脂の融点以上の高温度に加
熱して球状粒子を製造する方法が記載されている。特開
昭58−168626号公報および特開昭60−453
4号公報にも同様に、高温の熱水懸濁液中で加熱して球
状のポリプロピレン系樹脂粒子を製造する方法が記載さ
れている。これらの技術理想は、型内成形に供する予備
発泡粒子としては球状で粒子径のバラツキの少ない発泡
粒子が必要となるので、先ず発泡剤含浸前の樹脂粒子の
段階で着実に球状で粒子径の揃った粒子にし、これに発
泡剤を含浸し加熱発泡させると、樹脂粒子への発泡剤含
浸量バラツキや加熱温度斑が小さくなる理由で、得られ
る予備発泡粒子は形状の揃った状態になる事を教示して
いる。しかしこの方法では、発泡工程の前に独立の球状
化工程がいる為、製造工程が煩雑となる事や、専用の装
置と大量の熱エネルギーを必要とし、コストアップとな
る問題があった。
Therefore, several techniques relating to a method for producing spherical pre-expanded particles have been proposed. For example, Japanese Examined Patent Publication No. 52-41777 discloses a method of producing spherical particles by suspending ethylene resin particles in an aqueous suspension and heating to a high temperature above the melting point of the resin. JP-A-58-168626 and JP-A-60-453.
Similarly, Japanese Patent No. 4 discloses a method of producing spherical polypropylene resin particles by heating in a hot water suspension at high temperature. These technical ideals require that the pre-expanded particles to be used for in-mold molding have spherical expanded particles with little variation in particle size. When the particles are made uniform, and the foaming agent is impregnated into the particles and the mixture is heated and foamed, the pre-expanded particles to be obtained have a uniform shape because variations in the amount of the foaming agent impregnated in the resin particles and uneven heating temperature are reduced. Is teaching. However, in this method, since there is an independent spheroidizing step before the foaming step, there is a problem that the manufacturing step becomes complicated and a dedicated device and a large amount of heat energy are required, resulting in an increase in cost.

【0004】一方上記問題を解決したものとして、樹脂
粒子を球状化する為に加熱発泡時に球状化して、ほぼ球
状の予備発泡粒子を製造する方法がある。例えば特開昭
60−115413号公報、特開平2−53837号公
報および特開平2−67338号公報には、特殊な配向
を持つポリオレフィン樹脂粒子を得、これを密閉容器内
で発泡剤とともに分散媒に分散させて樹脂の融点近傍に
加熱した後、得られた発泡性粒子を高温高圧下の分散媒
と一諸に低圧の雰囲気に放出して発泡させる方法を採用
して、ほぼ球状の予備発泡粒子を製造する技術が記載さ
れている。
On the other hand, as a solution to the above problem, there is a method of producing pre-expanded particles having a substantially spherical shape by sphering the resin particles at the time of foaming by heating in order to make them spherical. For example, in JP-A-60-115413, JP-A-2-53837 and JP-A-2-67338, polyolefin resin particles having a special orientation are obtained, which are dispersed in a closed container together with a foaming agent in a dispersion medium. Preheated to a temperature close to the melting point of the resin, and then the resulting expandable particles are discharged into a low-pressure atmosphere together with a dispersion medium under high temperature and high pressure to form a substantially spherical prefoam. Techniques for making particles are described.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の改
良方法では、粒子径の揃った状態の発泡粒子が得られな
い欠点がある。その結果、型窩内への充填性に劣るとい
う問題点が依然として残る。この原因は、特殊な配向を
有する樹脂粒子を得る方法及びその発泡方法自体が持つ
難点にあると考えられる。即ち、i)ストランドとして
押出して切断し、配向した樹脂粒子を得る為の、ストラ
ンド冷却速度とドラフト引取速度の微妙な変動による粒
子個々の配向度斑と、ii)発泡性粒子の放出時に生じ
る容器内・分散媒内の発泡剤成分や圧力の変動がもたら
す発泡剤の含浸量斑と発泡温度の変動による樹脂粒子の
配向緩和量・収縮量の変化との2点に起因する、発泡粒
子形状が一定せず不揃いになり易い問題点が未解決のま
まである為と推察される。また前記のような粒子形状の
予備発泡粒子を用いると充填性が劣る為、予備発泡粒子
を型窩に充填し、加熱成形して得られた成形体は、表面
外観、圧縮永久歪、くり返し圧縮後の回復率などの物性
が充分満足のいく成形体にならないという問題がある。
However, the above-mentioned improved method has a drawback that expanded particles having a uniform particle diameter cannot be obtained. As a result, there still remains a problem that the filling property into the mold cavity is poor. This is considered to be due to the difficulties of the method for obtaining resin particles having a special orientation and the foaming method itself. That is, i) extruded as a strand and cut to obtain oriented resin particles, unevenness in the orientation of individual particles due to subtle fluctuations in the strand cooling rate and the draft take-up rate, and ii) a container generated when the expandable particles are discharged. The shape of the foamed particles depends on two factors: the amount of the foaming agent impregnated by the fluctuation of the foaming agent component and the pressure in the dispersion medium and the change of the orientation relaxation amount / shrinkage amount of the resin particles due to the fluctuation of the foaming temperature. It is presumed that the problems that tend to be uneven without being constant remain unsolved. Further, since the use of the pre-expanded particles having the particle shape as described above results in poor filling properties, the molded product obtained by filling the pre-expanded particles in the mold cavity and heat-molding has a surface appearance, compression set, and repeated compression. There is a problem in that the physical properties such as the recovery rate afterwards cannot be sufficiently satisfied.

【0006】本発明の目的は、型内融着成形に際して、
融着性、充填性、対金型寸法収縮率、ひけ等の成形性能
に優れた予備発泡粒子を提供することである。本発明の
他の目的は、表面外観、圧縮回復率、圧縮歪、加熱時の
寸法安定性、動的緩衝特性等に優れた発泡成形品を製造
することのできる予備発泡粒子を提供することである。
An object of the present invention is to perform in-mold fusion molding in
It is an object of the present invention to provide pre-expanded particles having excellent moldability such as fusion property, filling property, dimensional shrinkage ratio with respect to mold and sink mark. Another object of the present invention is to provide pre-expanded particles capable of producing a foamed molded article having excellent surface appearance, compression recovery rate, compression strain, dimensional stability upon heating, dynamic cushioning properties, and the like. is there.

【0007】本発明のもう一つの目的は、前記の目的を
達成する予備発泡粒子の製造方法を提供することであ
る。
Another object of the present invention is to provide a method for producing pre-expanded particles which achieves the above objects.

【0008】[0008]

【課題を解決するための手段】本発明の一つは、熱可塑
性樹脂からなるほぼ球状の予備発泡粒子であって、粒子
の表面を覆っている樹脂膜に、膜厚の厚い帯状のリング
が2本形成されており、これらのリングは互いに交叉せ
ず2本のリングは粒子を2等分した時、夫々の半球上に
1本づつ存在するように2等分できる位置にあり、かつ
個々のリングに沿って切断した2つの切断面のなす角度
が45°以下であることを特徴とする型内融着成形用予
備発泡粒子である。
One of the present inventions is a substantially spherical pre-expanded particle made of a thermoplastic resin, in which a resin film covering the surface of the particle has a thick band-shaped ring. Two rings are formed, these rings do not intersect with each other, and the two rings are in a position where they can be bisected so as to exist one on each hemisphere when the particles are bisected, and The pre-expanded particles for in-mold fusion molding are characterized in that the angle formed by the two cut surfaces cut along the ring is 45 ° or less.

【0009】もう1つの発明は、溶融状態にある熱可塑
性樹脂を押出機よりノズルを通してストランド状に押出
し、一定の長さに切断して得た円柱ないし楕円柱状粒子
に、粒子の基材樹脂に対するガス透過係数が1×10
-10 cc.(STP).cm/cm2 .sec.cmH
g以上にある揮発性発泡剤を含浸させて発泡性樹脂粒子
となし、発泡性樹脂粒子の端面(上記ストランド切断面
に相当する)と円柱側面(上記ストランド表面に相当す
る)の交点である稜近傍部に存在する揮発性発泡剤を優
先的に揮散させて発泡性樹脂粒子を加熱発泡させ、発泡
倍率で1.5〜5cm3 /gの一次発泡粒子となし、次
いで一次発泡粒子の気泡中に気体による圧力を付与せし
め、さらにこれを一次発泡粒子の発泡倍率に対する発泡
比で3倍以上に加熱発泡させることを特徴とする型内融
着成形用予備発泡粒子の製造方法である。
Another aspect of the present invention is that a thermoplastic resin in a molten state is extruded in a strand shape from an extruder through a nozzle and cut into a predetermined length to obtain cylindrical or elliptic columnar particles, and the particles are used as a base resin. Gas permeability coefficient is 1 × 10
-10 cc. (STP). cm / cm 2 . sec. cmH
A ridge which is an intersection of the end surface (corresponding to the above-mentioned strand cut surface) and the cylindrical side surface (corresponding to the above-mentioned strand surface) of the foamable resin particle by forming a foamable resin particle by impregnating with a volatile foaming agent of g or more. The volatile foaming agent present in the vicinity is volatilized preferentially to foam the expandable resin particles by heating to form primary expanded particles having an expansion ratio of 1.5 to 5 cm 3 / g, and then in the bubbles of the primary expanded particles. The method for producing pre-expanded particles for in-mold fusion molding is characterized in that a pressure of gas is applied to the pre-expanded particles, and the pre-expanded particles for in-mold fusion molding are heated and expanded at a foaming ratio of 3 or more with respect to the expansion ratio of the primary expanded particles.

【0010】以下、本発明を図面を用いて説明する。図
1〜5は各種の予備発泡粒子を示す図である。 図1(実施例1の実験No.1):本発明の予備発泡粒
子の図である。 図2〜5:比較品の予備発泡粒子の図である。 図2(同実験No.10):円柱湾曲状樹脂粒子を本発
明の発泡技術を用いて発泡させたもの。 図3(同実験No.11):三角柱状樹脂粒子を本発明
の発泡技術を用いて発泡させたもの。 図4(同実験No.9):楕円柱状粒子を高温熱水懸濁
系で球状化処理して得た、ほぼ球状の樹脂粒子を本発明
の発泡技術を用いて発泡させたもの。 図5(同実験No.6):楕円柱状樹脂粒子を従来の発
泡技術を用いて発泡させたもの。
The present invention will be described below with reference to the drawings. 1 to 5 are views showing various types of pre-expanded particles. FIG. 1 (Experiment No. 1 of Example 1): A diagram of pre-expanded particles of the present invention. 2-5: Figures of pre-expanded particles of the comparative product. Fig. 2 (same experiment No. 10): Cylindrical curved resin particles foamed using the foaming technique of the present invention. FIG. 3 (Experiment No. 11): Trigonal prismatic resin particles foamed using the foaming technique of the present invention. Fig. 4 (Experiment No. 9): Almost spherical resin particles obtained by subjecting elliptic columnar particles to a spheroidizing treatment in a high-temperature hot water suspension system and foamed using the foaming technique of the present invention. Fig. 5 (Experiment No. 6): Elliptic cylindrical resin particles foamed by a conventional foaming technique.

【0011】図1〜5において、Aは予備発泡粒子を正
面から見た図、BはAに対して側面から見た図、Cは予
備発泡粒子の中央断面図である。CにおいてSは気泡、
Uは樹脂膜、α1 〜α4 は膜厚の厚い帯状部を、β1
β2 は2つの帯状リングの中間点(α1 とα2 の中間
点、α3 とα4 中間点)を表わす。
1 to 5, A is a view of the pre-expanded particles viewed from the front, B is a view of the pre-expanded particles from the side, and C is a central cross-sectional view of the pre-expanded particles. In C, S is a bubble,
U is a resin film, α 1 to α 4 are thick belt-shaped portions, β 1 ,
β 2 represents the midpoint between the two strip rings (the midpoint between α 1 and α 2 , the midpoint between α 3 and α 4 ).

【0012】上記5種の各発泡粒子の構造上の相違を対
比すると、図1の予備発泡粒子はほぼ球状の粒子であ
り、表面を覆っている樹脂膜に膜厚の厚い帯状リングが
2つ(R1 2 )配置されている。図2の予備発泡粒子
は非球状であり、図1と同じく、2個の膜厚の厚い帯状
リングが粒子表面上に配置されている。図3の予備発泡
粒子は2個の膜厚の厚い帯状リング(R1 、R2 )と3
本のリング状になっていない。厚肉帯状膜(R3
4 、R5 )とが粒子表面上に存在し、膜厚の厚い帯状
リング(R1 、R2 )は厚肉帯状膜(R3 、R4
5 )の両端に夫々連結している。図4の予備発泡粒子
はほぼ球状であり、表面の膜厚はほぼ均一な厚みをして
いる。図5の予備発泡粒子は太鼓状の形をしており、帯
状の肉厚部は存在せず、ほぼ均一な厚みをしている。
Comparing the structural differences of the above-mentioned five kinds of expanded particles, the pre-expanded particles shown in FIG. 1 are substantially spherical particles, and the resin film covering the surface thereof has two thick band-shaped rings. (R 1 R 2 ) are arranged. The pre-expanded particles in FIG. 2 are non-spherical, and as in FIG. 1, two thick band-shaped rings are arranged on the particle surface. The pre-expanded particles in FIG. 3 are composed of two thick film-like rings (R 1 , R 2 ) and 3
The book is not ring-shaped. Thick band film (R 3 ,
R 4 and R 5 ) are present on the surface of the particle, and the thick band-shaped rings (R 1 and R 2 ) are the thick band-shaped films (R 3 and R 4 ,
It is connected to both ends of R 5 ). The pre-expanded particles in FIG. 4 are almost spherical, and the surface film thickness is almost uniform. The pre-expanded particles in FIG. 5 have a drum-like shape, have no band-shaped thick portion, and have a substantially uniform thickness.

【0013】本発明の予備発泡粒子(図1)は、ほぼ球
状であり、帯状の2本のリングは交叉しておらず、2本
のリングは粒子を2等分した時、夫々の半球上に1本づ
つ存在するように2等分できる位置にある。更に、個々
のリングに沿って切断した2つの切断面のなす角度
(θ)は45°以下である。図2は、非球状であり、上
述の角度(θ)が45°以上になっている。
The pre-expanded particles of the present invention (FIG. 1) are substantially spherical, the two ring-shaped rings are not intersected, and the two rings are on each hemisphere when the particles are bisected. It is in a position where it can be bisected so that there is one at a time. Furthermore, the angle (θ) formed by the two cut surfaces cut along each ring is 45 ° or less. FIG. 2 is non-spherical, and the above-mentioned angle (θ) is 45 ° or more.

【0014】即ち、本発明の予備発泡粒子の特徴は、 表皮層を形成している樹脂膜に膜厚の厚い帯状リン
グが2つ形成されており、 2つのリングは交叉せず、粒子を2等分した時、リ
ングは夫々の半球上にリングが1本づつ存在するように
2等分できる位置にあり、 上記個々のリングに沿って切断した2つの切断面の
なす角度は45°以下であり、 予備発泡粒子の形状がほぼ球状である点である。
That is, the characteristic feature of the pre-expanded particles of the present invention is that two band-shaped rings with a large film thickness are formed on the resin film forming the skin layer, the two rings do not cross each other, and two particles are formed. When divided equally, the ring is in a position where it can be divided into two halves so that there is one ring on each hemisphere, and the angle between the two cutting planes cut along the individual rings is 45 ° or less. That is, the shape of the pre-expanded particles is almost spherical.

【0015】は、本発明の最も特徴とする点である。
本発明の予備発泡粒子は、粒子の表面を覆っている樹脂
膜の厚みが均一でなく、粒子表面の2ケ所に、その2ケ
所以外の膜厚に対し厚い膜の帯がリング状に形成してお
り、そのことで従来の発泡粒子にはない腰の強さが確保
されている。つまり膜厚の厚い帯状リングがリブ的な役
割を果たすことを意味している。
Is the most characteristic point of the present invention.
In the pre-expanded particles of the present invention, the thickness of the resin film covering the surface of the particles is not uniform, and a band of a thick film is formed in two places on the particle surface in a ring shape with respect to the film thickness other than the two places. As a result, the firmness of the waist that is not possible with conventional foamed particles is secured. That is, it means that the band-shaped ring having a large film thickness plays a role of a rib.

【0016】膜厚の厚い帯状リング(α1 、α2
α3 、α4 )の帯幅は40〜500μmが好ましい。帯
状リングの平均膜厚(t1 )と、2つの帯状リングの中
間点(β 1 、β2 )の平均膜厚(t2 )との比(t1
2 )は3〜20が好ましい。及びはリングの位置
を規定する要件であり、図2、3と相違する点である。
図2に示すような、リングに沿って切断した2つの切断
面のなす角度が45°以上の場合、成形発泡体はリング
によるリブ効果が発揮されない。また、図3に示すよう
な、2個の帯状リングが3本の、ほぼ直線状の厚肉帯状
膜と連結して配置されたものは、粒子が球状でないた
め、次に述べる効果が発揮されない。
A band-shaped ring (α having a large thickness)1, Α2,
α3, ΑFourThe band width of () is preferably 40 to 500 μm. band
Average film thickness (t1) And the two strips
Point (β 1, Β2) Average film thickness (t2) And (t1/
t2) Is preferably 3 to 20. And the position of the ring
Is a requirement that prescribes, and is different from FIGS.
Two cuts along the ring, as shown in Figure 2.
If the angle between the surfaces is 45 ° or more, the molded foam will be a ring.
The rib effect due to is not exhibited. Also, as shown in FIG.
A straight-lined thick-walled strip with two strip-shaped rings
When placed in connection with the membrane, the particles were not spherical
Therefore, the following effects cannot be exhibited.

【0017】は本発明の発泡粒子の形状を示すもので
ある。つまり本発明の発泡粒子は、全体に丸味を帯びた
平面部分のほとんどない形状のもので、ほぼ球状の発泡
粒子である。ほぼ球状とすることによって、型内融着成
形において良好な充填性を確保することができる。本発
明において、発泡粒子の中心から表面までの距離の最大
値をA、最小値Bをとして、その比をとった球形化度Y
(=A/B)が1.5以下のほぼ球状である予備発泡粒
子が望ましい。また平均粒径が約1.5〜8.0mmφ
で、粒径の揃った状態のものが望ましい。
Shows the shape of the expanded beads of the present invention. That is, the foamed particles of the present invention have a shape with almost no rounded flat surface portions, and are substantially spherical foamed particles. By making it substantially spherical, good filling properties can be secured in the in-mold fusion molding. In the present invention, the maximum value of the distance from the center of the expanded particles to the surface is A, and the minimum value is B, and the sphericity Y is calculated by taking the ratio.
Pre-expanded particles having a substantially spherical shape with (= A / B) of 1.5 or less are desirable. Moreover, the average particle size is about 1.5 to 8.0 mmφ.
It is desirable that the particles have a uniform particle size.

【0018】本発明の予備発泡粒子は、表皮層に2つの
膜厚の厚い帯状リングを有する為に、対金型寸法収縮率
及びひけの小さい成型性能を有し、70%圧縮回復率、
繰り返し圧縮永久歪、加熱寸法変化、引張強さ、動的衝
撃特性に優れた成型発泡体を製造することが可能とな
る。これらの性能は発泡倍率が高い程、良好な結果を示
す。
Since the pre-expanded particles of the present invention have two thick band-shaped rings in the skin layer, the pre-expanded particles have a mold shrinkage ratio with respect to a mold and a molding performance with a small sink mark, a compression recovery rate of 70%,
It becomes possible to produce a molded foam having excellent repeated compression set, dimensional change upon heating, tensile strength and dynamic impact characteristics. These performances show better results as the expansion ratio is higher.

【0019】また、リングは互いに交叉せず、半球上に
1本づつ存在し、リングで囲まれた2つの面のなす角度
を45°以下とすることによって、腰の強い発泡粒子が
達成される。更に、予備発泡粒子の形状が、ほぼ球状で
ある為、型窩内への充填性が向上し、得られる発泡成形
体の表面外観が優れ、圧縮永久歪が少ない。
Further, the rings do not cross each other but exist one by one on the hemisphere, and the angle between the two surfaces surrounded by the rings is 45 ° or less, so that the foamed particles having a strong elasticity can be achieved. . Further, since the shape of the pre-expanded particles is almost spherical, the filling property into the mold cavity is improved, the surface appearance of the obtained foamed molded product is excellent, and the compression set is small.

【0020】上記の効果は、本発明の予備発泡粒子を用
いて型内融着成形を行うと、発泡成形体の内部の粒子表
面どうしの融着によってつくられる融着膜に、膜厚の厚
い融着膜部分が網目状に、立体的に形成され、その部分
がリブ効果を発揮し機械的変形、熱的変形に対し構造的
に補強する役割を演じるためと推定される。これは従来
の予備発泡粒子の表皮層膜厚に対する考え方、すなわち
表皮層に占める樹脂成分量が同一(同じ平均膜厚み)で
あれば均一膜厚みのものが好ましいという考え方とは異
なる意外な事実である。
The above-mentioned effect is that when the in-mold fusion molding is performed using the pre-expanded particles of the present invention, the fusion-bonded film formed by fusion of the particle surfaces inside the foam-molded article has a large film thickness. It is presumed that the fusion-bonding film portion is three-dimensionally formed in a mesh shape, and that portion exerts a rib effect and plays a role of structurally reinforcing against mechanical deformation and thermal deformation. This is a surprising fact different from the conventional way of thinking about the skin layer thickness of the pre-expanded particles, that is, if the resin component occupying the skin layer is the same (same average film thickness), it is preferable to have a uniform film thickness. is there.

【0021】このように、本発明の予備発泡粒子を用い
ることによって、容易に高度の物性を有する発泡成形体
が得られ本発明の予備発泡粒子は型内融着成形に理想的
なものである。本発明の予備発泡粒子を構成する熱可塑
性樹脂の種類は、押出ペレット化できて予備発泡しうる
ものであるならばとくに限定されるものではないが、た
とえば低密度ポリエチレン、直鎖状低密度ポリエチレ
ン、中密度ポリエチレン、高密度ポリエチレン、ホリプ
ロピレン、エチレンとのランダム共重合ポリプロピレ
ン、α−オレフィンとのランダム共重合ポリプロピレ
ン、エチレンとのブロック共重合ポリプロピレン、α−
オレフィンとのブロック共重合ポリプロピレン、エチレ
ン−プロピレン共重合体、エチレン−α−オレフィン共
重合体、エチレン系アイオノマー、エチレン−酢酸ビニ
ル共重合体、ポリブテン−1、ポリ−4−メチルペンテ
ン−1などのポリオレフィン系樹脂、ポリスチレン系樹
脂、ポリカーボネート樹脂、ポリエステル系樹脂、ポリ
アミド系樹脂、ポリ塩化ビニル系樹脂などがあげられる
が、好ましくは無架橋或いは軽度に架橋されたポリオレ
フィン系樹脂である。
As described above, by using the pre-expanded particles of the present invention, an expanded molded article having a high degree of physical properties can be easily obtained, and the pre-expanded particles of the present invention are ideal for in-mold fusion molding. . The type of the thermoplastic resin constituting the pre-expanded particles of the present invention is not particularly limited as long as it can be extruded into pellets and can be pre-expanded, and examples thereof include low density polyethylene and linear low density polyethylene. , Medium density polyethylene, high density polyethylene, polypropylene, random copolymer polypropylene with ethylene, random copolymer polypropylene with α-olefin, block copolymer polypropylene with ethylene, α-
Block copolymerized polypropylene with olefin, ethylene-propylene copolymer, ethylene-α-olefin copolymer, ethylene ionomer, ethylene-vinyl acetate copolymer, polybutene-1, poly-4-methylpentene-1, etc. Examples thereof include a polyolefin resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, and a polyvinyl chloride resin, but a non-crosslinked or slightly crosslinked polyolefin resin is preferable.

【0022】本発明の予備発泡粒子の発泡倍率は、5c
3 /g以上、100cm3 /g以下のものである。次
に本発明の予備発泡粒子の製造方法について説明する。
本発明の製造方法としての主要点は、 イ)ストランド状に押出して得た真円柱状ないし楕円柱
状粒子を使用すること、 ロ)上記粒子の基材樹脂に対するガス透過係数が1×1
-10 cc.(STP).cm/cm2 .sec.cm
Hg以上にある揮発性発泡剤を含浸させて発泡性樹脂粒
子となすこと、 ハ)発泡性樹脂粒子の端面(上記ストランド切断面に相
当する)と円柱側面(上記ストランド表面に相当する)
の交点である稜近傍部に存在する揮発性発泡剤を優先的
に揮散させて該発泡性樹脂粒子を加熱発泡させること、 ニ)発泡倍率で1.5〜5cm3 /gの一次発泡粒子と
なすこと、 ホ)次いで、一次発泡粒子の気泡中に気体による圧力を
付与せしめ、一次発泡粒子 の発泡倍率に対する発泡比
で3倍以上に加熱発泡させること、である。
The expansion ratio of the pre-expanded particles of the present invention is 5c.
m 3 / g or more and 100 cm 3 / g or less. Next, the method for producing the pre-expanded particles of the present invention will be described.
The main points of the production method of the present invention are: a) Use of true columnar or elliptic columnar particles obtained by extruding in a strand form, and b) Gas permeation coefficient of the above particles to the base resin is 1 × 1.
0 -10 cc. (STP). cm / cm 2 . sec. cm
Forming expandable resin particles by impregnating a volatile foaming agent of Hg or more, c) End faces of the expandable resin particles (corresponding to the cut surface of the strand) and cylindrical side surfaces (corresponding to the surface of the strand).
The volatile foaming agent present near the ridge, which is the intersection point of the above, is volatilized preferentially to heat-expand the expandable resin particles, and d) Primary expansion particles of 1.5 to 5 cm 3 / g in expansion ratio. Then, (e) Next, a gas pressure is applied to the bubbles of the primary expanded beads to heat and expand the primary expanded beads at a foaming ratio of 3 or more with respect to the expansion ratio.

【0023】2つの厚肉帯状リングを互いに交叉せず、
個々のリングに沿って切断した2つの面のなす角度が4
5°以下の図1に示すような予備発泡粒子を製造するに
は、先ず上記主要点イ)の円柱状ないし楕円柱状樹脂粒
子を使用することが必要である。非円柱状粒子や三角柱
状粒子を用いた場合、図2、図3、に示したような型内
融着成形には劣り、かつ高度な物性を有する成形発泡体
を提供するには不向きな発泡粒子になってしまう。
The two thick band-shaped rings do not cross each other,
The angle between the two faces cut along each ring is 4
In order to produce pre-expanded particles having a temperature of 5 ° or less as shown in FIG. 1, it is first necessary to use the cylindrical or elliptic cylindrical resin particles having the above-mentioned main point a). When non-cylindrical particles or triangular columnar particles are used, foaming is inferior to in-mold fusion molding as shown in FIGS. 2 and 3 and unsuitable for providing a molded foam having high physical properties. It becomes particles.

【0024】円柱状粒子は、熱可塑性樹脂を押出機で加
熱混練したのち、ダイスからストランド状に押出して冷
却し、所望の直径と高さをもったほぼ円柱状のペレット
に切断して得られる。ペレットの分子配向はダイスの構
造、ストランドの引取速度(ドラフト)、押出量、スト
ランドの冷却条件などによって微妙に変化し、その結
果、発泡粒子の形状大きさにバラツキを与える。そこ
で、なるべく分子配向のかからない条件で押出ストラン
ドを得るのが望ましい。また形状は、円柱状、楕円柱状
に限られるわけでなく、近似的に楕円形で棒状のものに
なっていればよい。
The cylindrical particles are obtained by heating and kneading a thermoplastic resin with an extruder, extruding it in a strand form from a die, cooling it, and cutting it into substantially cylindrical pellets having a desired diameter and height. . The molecular orientation of the pellet slightly changes depending on the structure of the die, the take-up speed (draft) of the strand, the extrusion rate, the cooling condition of the strand, etc., and as a result, the shape and size of the expanded particles vary. Therefore, it is desirable to obtain an extruded strand under the condition that molecular orientation is not applied as much as possible. Further, the shape is not limited to the columnar shape or the elliptic cylindrical shape, and it is sufficient that the shape is approximately elliptic and rod-shaped.

【0025】上記主要点イ)が充足されていても、上記
粒子の基材樹脂に対するガス透過係数が1×10-10
c.(STP).cm/cm2 .sec.cmHg以上
の揮発性発泡剤を用いないと、2つの厚肉帯状リングを
得ることはできない。この場合のガス透過係数はAST
M D1434−72に準じてガス透過率測定装置(東
洋精機製作所(株)製)にて測定される。上記主要点
ロ)の揮発性発泡剤としては、例えば密度が0.920
〜0.945g/cm3 のポリエチレン樹脂或いはエチ
レン−プロピレンランダム共重合樹脂の場合、二酸化炭
素、プロパン、ブタン、ペンタン、1,1−ジフルオロ
エタン(F−152a)、モノクロロジフルオロメタン
(F−22)、塩化メチレン、塩化エチレンなどが挙げ
られる。その中でも、CFC、HCFC規制の問題がな
く不燃である二酸化炭素は、望ましい発泡剤である。
Even if the above-mentioned main point a) is satisfied, the gas permeation coefficient of the above particles to the base resin is 1 × 10 -10 c.
c. (STP). cm / cm 2 . sec. Two thick band-shaped rings cannot be obtained without using a volatile foaming agent of cmHg or more. The gas permeability coefficient in this case is AST
It is measured by a gas permeability measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd.) according to MD 1434-72. As the volatile foaming agent of the above-mentioned main point (b), for example, the density is 0.920.
In the case of polyethylene resin of 0.945 g / cm 3 or ethylene-propylene random copolymer resin, carbon dioxide, propane, butane, pentane, 1,1-difluoroethane (F-152a), monochlorodifluoromethane (F-22), Examples thereof include methylene chloride and ethylene chloride. Among them, carbon dioxide, which is not combustible without the problems of CFC and HCFC regulations, is a desirable foaming agent.

【0026】主要点ハ)の発泡性粒子の端面と円柱側面
の交点である稜近傍部に存在する揮発性発泡剤を優先的
に揮散させることの意味は、2つの厚肉帯状リングを得
る為であり、この現象は上記主要点イ)、ロ)と後述す
る発泡剤の揮散処理を満たすことによって起こる現象で
ある。即ち、発泡性粒子の稜近傍部は他の粒子表面部に
比べ、単位樹脂体積に対する表面積が大きく、発泡剤揮
散量が多いこと、そしてこの発泡剤揮散量の差を、ガス
透過係数の大きい発泡剤の使用と揮散処理にて増幅して
いるものと推察される。この場合の発泡剤揮散処理は、
たとえば発泡性粒子を約1〜10分間解放状態で大気に
曝すか、発泡性粒子を発泡装置に移送する段階で系内の
圧力を大気圧に急速に減圧させたのち加熱発泡させる
か、先ず発泡開始温度以下の加熱気体を容器内に吹き込
んで粒子を昇温させたり、発泡装置内の発泡粒子が発泡
温度に高まる迄の速さを示す「昇温速度或いはスチーム
昇圧時間」を長くしたりして発泡させる等の方法によっ
て行われる。これらの方法における具体的な条件は、使
用する発泡剤の種類、目標とする発泡倍率、平均表皮膜
厚みなどにより変化するが、簡単な予備条件によって最
適条件を求めることができる。また主要点ニ)において
一次発泡粒子の発泡倍率が5cm3 /gを超えると厚肉
帯状リングが得られない理由は、発泡倍率が高い、即
ち、発泡剤含浸量が多くなると、前述した「発泡性粒子
の稜近傍部と他の表面部とにおいての発泡剤揮散量の
差」を大きくすることが難しい為と考えられる。一次発
泡倍率が1.5cm3 /g未満になる発泡条件では得ら
れた粒子は樹脂成分内に占める気泡容積が不足し、後で
膨張させて使うことが困難な粒子になってしまう。上記
の現象からみて一次発泡倍率は、1.5〜5cm3 /g
の狭い範囲で発泡管理する事が必要となる。
The main point c) is to preferentially volatilize the volatile foaming agent existing in the vicinity of the ridge, which is the intersection of the end surface of the expandable particles and the side surface of the cylinder, in order to obtain two thick band-shaped rings. This phenomenon is caused by satisfying the above-mentioned main points a), b) and the volatilization treatment of the foaming agent described later. That is, the vicinity of the ridges of the expandable particles has a larger surface area per unit resin volume than the surface area of other particles, and the amount of the foaming agent volatilized is large. It is presumed that it is amplified by the use of the agent and the volatilization treatment. In this case, the blowing agent volatilization treatment is
For example, the expandable particles are exposed to the atmosphere in an open state for about 1 to 10 minutes, or the pressure in the system is rapidly reduced to atmospheric pressure at the stage of transferring the expandable particles to a foaming device, and then heat-foaming is performed. By blowing a heated gas below the starting temperature into the container to raise the temperature of the particles, or increasing the "heating rate or steam pressurization time" that indicates the speed until the expanded particles in the foaming device reach the foaming temperature. And foaming. The specific conditions in these methods vary depending on the type of the foaming agent used, the target expansion ratio, the average surface film thickness, etc., but the optimum conditions can be determined by simple preliminary conditions. Further, in the main point d), when the expansion ratio of the primary expanded particles exceeds 5 cm 3 / g, the thick band-shaped ring cannot be obtained because the expansion ratio is high, that is, the amount of the foaming agent impregnated is large. It is considered that it is difficult to increase the "difference in the amount of the foaming agent volatilized between the edge vicinity portion and the other surface portion of the functional particles". Under the foaming conditions in which the primary expansion ratio is less than 1.5 cm 3 / g, the obtained particles lack the bubble volume occupied in the resin component and become particles that are difficult to expand and use later. From the above phenomenon, the primary expansion ratio is 1.5 to 5 cm 3 / g.
It is necessary to control foaming within a narrow range.

【0027】主要点ホ)の必要性は、厚肉帯状リングを
持ちほぼ球状の予備発泡粒子を出現させることにある。
一次発泡粒子の発泡倍率に対する発泡比で3倍以上に発
泡させることによって、厚肉帯状リングによる拘束力に
よって太鼓状粒子の胴面及びその両面部を球面化するこ
とができる。
The main point e) is that the pre-expanded particles having a thick-walled strip ring and having a substantially spherical shape are to appear.
When the foaming ratio of the primary foamed particles to the expansion ratio is 3 times or more, the drum surface of the drum-shaped particles and both surface portions thereof can be made spherical by the restraining force of the thick band-shaped ring.

【0028】本発明の発泡方法である多段階に膨張させ
て目標の発泡倍率の予備発泡粒子を得る方法としては、
例えば特公昭61−11253号公報、特公平2−50
945号公報、特願平3−174752号公報に記載さ
れている。これらの技術思想は、予備発泡粒子の型内融
着成形時(再膨張)には独立気泡構造で粒子形状の揃っ
た予備発泡粒子が必要になるので、多段階に発泡して段
階当たりの無理な発泡をさける事を教示している。この
点については、従来の発泡方法(実施例1の実験No.
6及びNo.9)との対比にて、本発明の発泡方法(実
施例1の実験No.1〜5、No.12〜13)は粒子
形状の揃った、独立気泡構造に富む予備発泡粒子が得ら
れることが確認されている。しかし前述の従来技術で
は、「表皮層に膜厚の厚い帯状リングを有する」予備発
泡粒子を得る方法に関する技術的内容や、この予備発泡
粒子が発揮するところの特異な効能についての開示はな
く、そして本発明の予備発泡粒子を製造することはでき
ない。
As a method for expanding pre-expanded particles having a target expansion ratio by expanding in multiple stages, which is the expansion method of the present invention,
For example, Japanese Examined Patent Publication No. 61-11253, Japanese Patent Publication No. 2-50
It is described in Japanese Patent Application No. 945 and Japanese Patent Application No. 3-174752. These technical thoughts require that pre-expanded particles having a closed cell structure and uniform particle shape are required during in-mold fusion molding (pre-expansion) of pre-expanded particles. It teaches you to avoid foaming. Regarding this point, the conventional foaming method (Experiment No. 1 of Example 1) was used.
6 and No. In contrast to 9), the foaming method of the present invention (Experiment Nos. 1 to 5 and Nos. 12 to 13 of Example 1) can provide pre-expanded particles having a uniform particle shape and rich in closed cell structure. Has been confirmed. However, in the above-mentioned conventional technology, there is no disclosure about the technical content regarding the method for obtaining pre-expanded particles having "a thick band-shaped ring in the skin layer", and the specific effect that the pre-expanded particles exhibit. And it is not possible to produce the pre-expanded particles of the present invention.

【0029】本発明の製造方法に基づけば、従来の予備
発泡粒子では持っていなかった型内融着成形性能と高度
な物性を有する型内発泡成形体を提供する、「表皮層に
膜厚の厚い帯状リングを有する」ほぼ球状の本発明の予
備発泡粒子を製造することができる。しかも、本発明の
製造方法は、従来の独立した球状化工程を無くして省資
源、省エネルギー、無公害(廃液処理問題解消)に貢献
しており、簡易な方法でほぼ球状の、形状の揃った予備
発泡粒子が得られ、産業界に及ぼす技術的意義は極めて
高いものである。
Based on the production method of the present invention, it is possible to provide an in-mold expansion-molded product having in-mold fusion molding performance and high physical properties which conventional pre-expanded particles do not have. It is possible to produce pre-expanded particles according to the invention of substantially spherical shape, which have a thick banded ring. Moreover, the manufacturing method of the present invention contributes to resource saving, energy saving, and pollution-free (solving the waste liquid treatment problem) by eliminating the conventional independent spheroidizing step, and the spherical shape is uniform by a simple method. Pre-expanded particles can be obtained, and the technical significance on the industrial world is extremely high.

【0030】評価方法 本発明で使用する評価方法を次に示す。 1)発泡倍率 重量(Wg)既知の発泡粒子及び成形発泡体の容積(V
cm3 )を水没法で測定し、その容積を重量で除した値
を発泡倍率(cm3 /g)とする。 2)独立気泡率 ASTM−D2856に記載されているエアーピクノメ
ーター法(BECKMAN製、モデル930)により測
定した。(n=10の平均) 3)発泡比 次式より算出した。
Evaluation Method The evaluation method used in the present invention is shown below. 1) Foaming ratio Weight (Wg) Volume of known foamed particles and molded foam (V
cm 3 ) is measured by the water immersion method, and the value obtained by dividing the volume by the weight is taken as the foaming ratio (cm 3 / g). 2) Closed cell ratio Measured by an air pycnometer method (manufactured by BECKMAN, model 930) described in ASTM-D2856. (Average of n = 10) 3) Foaming ratio Calculated from the following formula.

【0031】発泡比=(Sn−1)/(S1 −1) Sn:予備発泡粒子の発泡倍率(cm3 /g) S1 :一次発泡粒子の発泡倍率(cm3 /g) 4)形状 ほぼ球状 図1に示すように全体に丸味を帯び平面部
分のほとんどない形状のものを言う。
The foaming ratio = (Sn-1) / ( S 1 -1) Sn: pre-expansion ratio of the foamed particle (cm 3 / g) S 1 : The expansion ratio of the primary foamed particle (cm 3 / g) 4) shape Almost spherical As shown in FIG. 1, it means a shape with a rounded shape and almost no flat portion.

【0032】太鼓状 図5に示すように、樹脂粒子の陵角部は曲率半径の小さ
い状態で丸味を帯びているが、平面部も残っている形状
のものを言う。 非形状 上記及びに該当しない形状のものを言う。 5)球形化度 次式より算出した。(n=50の平均) 球形化度Y=A/B A:発泡粒子中心から表面までの距離の最大値 B:発泡粒子中心から表面までの距離の最小値 6)予備発泡粒子径のバラツキ アトランダムに200個の発泡粒子をサンプリングし、
その各粒子の最大径xを最小単位10μまでデジタル式
ノギスにて測定、そして次式より算出評価した。
Taiko shape As shown in FIG. 5, the ridges of the resin particles are rounded with a small radius of curvature, but have a flat surface. Non-shape Refers to shapes that do not correspond to the above and. 5) Spheroidization degree It was calculated from the following formula. (Average of n = 50) Spheroidization degree Y = A / B A: Maximum value of distance from center of expanded particle to surface B: Minimum value of distance from center of expanded particle to surface 6) Variation in diameter of pre-expanded particles Randomly sample 200 foam particles,
The maximum diameter x of each particle was measured to a minimum unit of 10 μ with a digital caliper, and calculated and evaluated by the following equation.

【0033】[0033]

【数1】 [Equation 1]

【0034】 評価尺度 区 分 記 号 備 考 σ値が0.2以下の場合 ○ 優れる σ値が0.2を超える場合 × 不 良 7)表皮層の膜厚 発泡粒子のほぼ中心と2つの肉厚帯状リングの重心とを
結んで出来た面に沿って切断した粒子切断片について電
子顕微鏡写真(200倍)を撮り、下記の夫々の膜厚み
を測定した。尚、厚肉帯状リングが存在しない発泡粒子
は、粒子のほぼ中心を通る長手方向に切断した粒子切断
片について分析した。
Evaluation scale Division No. Remarks When σ value is 0.2 or less ○ Excellent When σ value exceeds 0.2 × Poor 7) Skin layer thickness Near the center of foamed particles and two meats Electron micrographs (200 times) were taken of particle cut pieces cut along the surface formed by connecting the center of gravity of the thick band ring, and the following film thicknesses were measured. The expanded particles having no thick band-shaped ring were analyzed with respect to particle cut pieces cut in the longitudinal direction passing through substantially the center of the particles.

【0035】肉厚帯状部の厚みt1 (μ) 図1〜3、Cにおける肉厚帯状部の各ケ所最大膜厚を測
定し、この操作を10個の粒子の切断片について行な
い、この40点の測定値を算術平均した値である。 リング間曲線中央部の厚みt2 (μ) 図1〜3、Cにおける2つ帯状リング間の中間部に位置
する2つの表皮膜厚を測定し、この操作を10個の粒子
の切断片について行ない、この20点の測定値を算術平
均した値である。
Thickness t 1 (μ) of the thick strip portion The maximum film thickness at each of the thick strip portions in FIGS. 1 to 3C was measured, and this operation was carried out on 10 particle cut pieces. It is the value obtained by arithmetically averaging the measured values at the points. Thickness t 2 (μ) of the central portion of the curve between the rings The thickness of two surface coatings located in the intermediate portion between the two strip-shaped rings in FIGS. 1 to 3 and C was measured, and this operation was performed on a cut piece of 10 particles. This is the value obtained by arithmetically averaging the measured values of these 20 points.

【0036】平均表皮膜厚み 図1〜3のように膜層の厚いリングを有する粒子につい
ては、の厚みt1を4カ所、の厚みt2 を2カ所、
その他の表皮曲面部を14等分して得た14カ所の厚み
を測定し、この操作を10個の粒子の切断片について行
ない、この測定値を算術平均した値である。厚肉帯状リ
ングが存在しない発泡粒子は、表皮曲面部を20等分し
て得た20カ所の厚みを測定して、上記と同様に200
点の平均値とした。
Average Surface Film Thickness For particles having a thick ring of the film layer as shown in FIGS. 1 to 3, the thickness t 1 is 4 places, the thickness t 2 is 2 places,
The thickness is measured at 14 places obtained by dividing the other skin curved surface portion into 14 equal parts, and this operation is carried out for cut pieces of 10 particles, and this is a value obtained by arithmetically averaging the measured values. For the expanded beads having no thick band-shaped ring, the thickness of 20 points obtained by dividing the skin curved surface portion into 20 equal parts was measured, and 200
The average value of the points was used.

【0037】表皮膜厚比t1 /t2 上記の肉厚帯状部の厚みt1 とリング間曲線中央部の厚
みt2 との比である。 8)成形性能 8−1)融着度 箱形成形品の厚さ20mm以上の部分から100×10
0mm正方形状の試験片を切り出し、その中央部に深さ
2mmの切れ目を入れ、切れ目にそって折り曲げ成形品
を開裂させ、切開断面に存在する全粒子数に対する材料
破断して切裂している粒子数の百分率を求めた。
[0037] which is the ratio of the epidermal membrane thickness ratio t 1 / t 2 thickness t 1 and the ring between the thickness t 2 of the curved central portion of the thick belt portion. 8) Molding performance 8-1) Degree of fusion 100 × 10 from a portion of the box-formed product having a thickness of 20 mm or more
A 0 mm square test piece was cut out, a cut with a depth of 2 mm was made in the center thereof, the bending molded product was split along the cut, and the material was broken for the total number of particles present in the cut cross section. The percentage of the number of particles was calculated.

【0038】 評価基準 区 分 記 号 備 考 材破率90%以上の場合 ○ (優れる) 材破率90%未満80%以上の場合 △ (良 好) 材破率80%未満の場合 × (不 良) 8−2)対金型寸法収縮率 発泡成形体の成形用金型に対する収縮率により下記の如
く判定した。
Evaluation criteria Division No. Remarks When the material breakage rate is 90% or more ○ (excellent) When the material breakage rate is less than 90% 80% or more △ (Good) When the material breakage rate is less than 80% × (Not good Good) 8-2) Shrinkage rate of mold with respect to mold The shrinkage rate of the foamed molded product with respect to the mold is determined as follows.

【0039】 区 分 記 号 備 考 2.5%未満の場合 ○ (優れる) 2.5%以上3.0%未満の場合 △ (良 好) 3.0%以上の場合 × (不 良) 8−3)ひけ 空洞部が約300×300×100mm、厚み約20m
mの箱型成形体実験片底面に、その対角線方向に直線定
規を当て試験片と定規の間に生じた間隙の最大距離を求
め、対角線の長さに対する百分率で評価した。
Division No. Remarks If less than 2.5% ○ (Excellent) If 2.5% or more and less than 3.0% △ (Good) If 3.0% or more × (Poor) 8 -3) Sink The cavity is about 300 x 300 x 100 mm, and the thickness is about 20 m.
A straight-line ruler was applied to the bottom surface of the m-shaped box-shaped test piece in the diagonal direction, and the maximum distance between the test pieces and the ruler was determined, and evaluated as a percentage with respect to the length of the diagonal line.

【0040】 評価基準 区 分 記 号 備 考 0.5%以下の場合 ○ (優れる) 0.5%より大きく2%未満の場合 △ (良 好) 2%以上の場合 × (不 良) 8−4)充填性 発泡成形体の任意カ所の50mm×50mmの切断面を
観察し、最も長い部分の長さが1mm以上の大きさの粒
子間隙部分(ボイド)がいくつあるかにより、以下の基
準で判定した。
Evaluation criteria Division No. Remarks When 0.5% or less ○ (Excellent) When more than 0.5% and less than 2% △ (Good) When 2% or more × (Poor) 8- 4) Fillability By observing a cut surface of 50 mm x 50 mm at any place of the foamed molded article, the following criteria is used depending on how many particle gaps (voids) have a length of 1 mm or more at the longest part. It was judged.

【0041】 評価基準 区 分 記 号 備 考 2個未満の場合 ○ (優れる) 2個以上5個未満の場合 △ (良 好) 5個以上の場合 × (不 良) 9)型内成形発泡体の物性 9−1)表面外観 下記の如く評価した。Evaluation criteria Division No. Remarks Less than 2 ○ (excellent) 2 or more and less than 5 △ (good) 5 or more × (poor) 9) In-molded foam 9-1) Surface Appearance The surface appearance was evaluated as follows.

【0042】 評価基準 区 分 記 号 表面凹凸がほとんどなく平滑美麗な場合 ○ 表面凹凸が目立つがなんとか使用可能な場合 △ 表面凹凸が激しく平坦でない場合 × 9−2)70%圧縮歪回復率 厚さが40mmで50mm四方の板状試験片を圧縮速度
10mm/minで厚さ12mmになるまで厚さ方向に
全面圧縮したのち、同じ速度で除圧し、圧縮応力がゼロ
になった時の厚さtを測定し〔(40−t)/40〕×
100を70%圧縮歪回復率とする。
Evaluation Criteria Classification Code Smooth and beautiful with almost no surface irregularities ○ When surface irregularities are conspicuous but somehow manageable △ When surface irregularities are not very flat × 9-2) 70% compression strain recovery rate Thickness Is 40 mm and a 50 mm square plate-shaped test piece is fully compressed in the thickness direction at a compression speed of 10 mm / min to a thickness of 12 mm, and then decompressed at the same speed to obtain a thickness t when the compressive stress becomes zero. Is measured [[40-t) / 40] ×
100 is defined as 70% compression strain recovery rate.

【0043】9−3)圧縮永久歪 JIS K−6767法に準じて測定した。実験条件は
25%一定圧縮とした。 9−4)繰り返し圧縮永久歪 JIS K−6767法に準じて測定した。実験条件は
25%圧縮、8万回繰り返しとした。
9-3) Compression set Measured according to JIS K-6767 method. The experimental condition was 25% constant compression. 9-4) Repeated compression set Measured according to JIS K-6767 method. The experimental conditions were 25% compression and 80,000 repetitions.

【0044】9−5)加熱寸法変化 200mm正方形状に切出した成形体サンプルを25℃
に24時間静置し、その中央部に100×100mmの
正方形と中心十字線を描き、各線分の長さを精測し、1
00℃±1℃に温調した恒温槽内に96時間静置し、取
出した後25℃で1時間放冷し標線の寸法を精測し、元
の寸法からの変化率(%)を求め、その平均値を求め
た。
9-5) Change in heating dimension A molded body sample cut out in a 200 mm square shape is heated to 25 ° C.
Let stand for 24 hours, draw a 100 × 100 mm square and a crosshair in the center, and carefully measure the length of each line segment.
Let stand for 96 hours in a constant temperature bath controlled to 00 ° C ± 1 ° C, take it out, and allow it to cool at 25 ° C for 1 hour, measure the dimensions of the marked lines, and measure the rate of change (%) from the original dimensions. The average value was calculated.

【0045】9−6)引張強さ JIS K−6767、A法に準じて測定した。 9−7)動的緩衝特性 JIS Z−0234に準じて測定した。測定条件は緩
衝材厚み50mm、落下高さ60cmで行ない、1回目
の落下の測定値で示した。 10)総合評価 評価結果を総合するものとして、次の尺度の評価をす
る。
9-6) Tensile strength It was measured according to JIS K-6767, Method A. 9-7) Dynamic buffering property It was measured according to JIS Z-0234. The measurement conditions were a cushioning material thickness of 50 mm and a drop height of 60 cm, and the measurement values of the first drop were shown. 10) Comprehensive evaluation The following scale is evaluated as a comprehensive evaluation result.

【0046】 評価基準 区 分 記 号 備 考 総てが○印 ○ (市場要求品質) 総て○印か△印で×印なし △ (従来の目標品質) ×印が1個以上 × (従来の品質)Evaluation Criteria Division No. Remark All ○ ○ ○ (Quality required by the market) All ○ or △ without × mark △ (Conventional target quality) × 1 or more × (Conventional) quality)

【0047】[0047]

【実施例】以下本発明を実施例を用いて説明する。EXAMPLES The present invention will be described below with reference to examples.

【0048】[0048]

【実施例1、比較例1】実験No.1(本発明) 無架橋エチレン−プロピレンランダム共重合樹脂〔ユニ
オンポリマー社製FM821、密度0.90g/c
3 、MFR 7g/10分(230℃、2.16k
g)、エチレン含量2.7重量%〕を90ミリの押出機
を用いて、ダイスノズル径1.0φ、ダイス孔数200
のダイスより200kg/Hrの押出量にて、ポリマー
分子配向のかかりにくく、ストランドが安定して引ける
最低限の引取速度・18m/minで引取り、冷却して
切断し、長さ1.5mm、平均径1.2mmφの楕円柱
状粒子を製造した。この樹脂粒子を耐圧容器内に収容
し、発泡剤としてガス透過係数が9×10-10 cc.
(STP).cm/cm2 .sec.cmHgを示す二
酸化炭素(気体)を注入し圧力30kg/cm2 G、温
度8℃の条件下で4時間かけて樹脂粒子中に二酸化炭素
を含浸した。次にこの発泡性樹脂粒子を2分間開放状態
で大気に曝した後、発泡装置(脱気昇温方式)に収容し
て槽内温度を80℃から130℃まで25秒間かけて昇
温し更にその温度を保持しながら10秒間水蒸気加熱発
泡し、一次発泡粒子を得た。この発泡粒子の発泡倍率は
3.0cm3 /gであった。得られた発泡粒子の形状は
太鼓状のもので、両端面の稜近傍部の表皮膜厚は厚いも
のであった。この一次発泡粒子を加圧加温装置に収容
し、80℃の温度下で高圧空気を用い8kg/cm2
まで1時間かけて昇圧し更に4時間その圧力を保持し
て、一次発泡粒子の気泡内圧を高め膨張能を付与した。
次にこの膨張性一次発泡粒子を発泡装置に収容して槽内
温度80℃から130℃まで10秒間かけて昇温し、更
にその温度を保持しながら8秒間水蒸気加熱発泡し、二
次発泡粒子を得た。この二次発泡粒子は、発泡倍率6.
0cm3 /g、やや太鼓状の形状であった。更に二次発
泡粒子に、上記二次発泡粒子を得た条件と同じ条件で膨
張能処理と加熱発泡処理を行ない三次発泡粒子(予備発
泡粒子)を得た。この実験で得られた予備発泡粒子の形
状及び表皮層の膜構造の模式図を図1に示す。図1によ
ると、本発明の予備発泡粒子はほぼ球状であり、表面を
覆っている樹脂膜(いわゆる表皮層)に膜厚の厚い帯状
リングが2つ、互いに交叉せず、個々のリングで囲まれ
た2つの面がほぼ平行に位置して形状されている事が分
る。実験No.2(本発明) 実験No.1の130℃加熱時間10秒間を5秒間に変
更して、発泡倍率1.5cm3 /gの一次発泡粒子を
得、実験No.1の一次発泡粒子気泡内への空気追添圧
力、時間8kg/cm2 G×4時間を30kg/cm2
G×15時間に変更して発泡倍率6cm3 /gの、ほぼ
球状である二次発泡粒子を得た以外は実験No.1と同
様にして、予備発泡粒子を得た。実験No.3(本発明) 実験No.1の使用した揮発性発泡剤・二酸化炭素をモ
ノクロロジフルオロメタン(F−22、ガス透過係数
1.1×10-10 cc.(STP).cm/cm 2 ・s
ec.cmHg)とし60℃、24kg/cm2 Gで3
0分間液含浸に変更して、発泡倍率5cm3 /gの一次
発泡粒子を得、実験No.1の一次発泡粒子気泡内への
空気追添圧力を14kg/cm2 Gに変更して、発泡倍
率15cm 3 /gの、ほぼ球状である予備発泡粒子を二
段発泡にて得た以外は実験No.1と同様にして得た。実験No.4(本発明) 実験No1の楕円柱状粒子を真円柱状粒子(冷却水槽内
のガイドロール位置を変更して得た)に、一次発泡時の
昇温(スチーム圧)時間25秒を15秒間に変更して、
実験No.1と同じ発泡倍率、形状の一次発泡粒子を
得、実験No.1の一次発泡粒子気泡内への空気追添圧
力8kg/cm2 Gを10kg/cm2 Gに変更して、
発泡倍率7.2cm3 /gのほぼ球状である二次発泡粒
子を得た以外は実験No.1と同様にして予備発泡粒子
を得た。実験No.5(本発明) 実験No.1の楕円柱状粒子を真円柱状粒子(冷却水槽
内のガイドロール位置を変更して得た)に、揮発性発泡
剤・二酸化炭素をn−ブタン(ガス透過係数12×10
-10 cc.(STP).cm/cm2 ・sec.cmH
g)に変更して、実験No.1と同じ発泡倍率、形状の
一次発泡粒子を得、実験No.1の一次発泡粒子気泡内
への空気追添圧力8kg/cm2 Gを6kg/cm2
に変更して、発泡倍率5cm3 /gの太鼓状である二次
発泡粒子を得た以外は、実験No.1と同様にして予備
発泡粒子を得た。実験No.6(従来品) 実験No.1の樹脂粒子100重量部、発泡剤としてn
−ブタン20重量部、水450重量部、分散剤として第
3リン酸カルシウム3.0重量部を耐圧容器内に収容
し、攪拌下で130℃に昇温し1時間保持して樹脂中に
発泡剤を含浸した後、容器内圧を20秒間10kg/c
2 Gにし、次いで33kg/cm2 Gの窒素ガスで加
圧しつつ容器の一端を解放し大気中に放出発泡して発泡
倍率15cm3 /gの予備発泡粒子を得た。得られた予
備発泡粒子の形状及び表皮層の膜構造の模式図を図4に
示す。実験No.7(比較例) 実験No.1の使用した揮発性発泡剤・二酸化炭素をモ
ノクロロジフルオロメタン(F−22)とし、60℃、
24kg/cm2 Gで30分間液含浸し、一次発泡時の
昇温(スチーム圧)時間25秒間を10秒間に変更し
て、発泡倍率6cm3 /gの一次発泡粒子を得、二段発
泡にて発泡倍率15cm3 /gの予備発泡粒子を得た以
外は実験No.1と同様にして得た。実験No.8(比較例) 実験No.1の使用した揮発性発泡剤・二酸化炭素をモ
ノクロロジフルオロエタン(F−142b、ガス透過係
数2×10-10 cc.(STP).cm/cm 2 ・se
c.cmHg)とし、45℃で5時間含浸した他は、実
験No.1と同様にして予備発泡粒子を得た。実験No.9(従来品) 実験No.1の樹脂粒子100重量部、水450重量
部、分散剤として第3リン酸カルシウム3.0重量部を
耐圧容器内に収容し、攪拌下で200℃に昇温し1時間
保持した後冷却して、ほぼ球状の樹脂粒子を得た。この
ほぼ球状である樹脂粒子を使用する以外は、実験No.
1と同様に行ない、発泡倍率15cm3 /gで、ほぼ球
状の予備発泡粒子を得た。実験No.10(比較例) 実験No.1の楕円柱状粒子を円柱湾曲状粒子(押出量
を300kg/Hrに変更した結果、押出ストランドが
メルトフラクチャー現象を起こした。このストランドを
切断して得た)に変更した以外は、実験No.1と同様
にして予備発泡粒子を得た。実験No.11(比較例) 実験No.1の楕円柱状粒子を三角柱状(円形ノズルよ
り、ストランド断面形状が三角形状となるノズル形状に
して得た)に変更した以外は、実験No.1と同様にし
て予備発泡粒子を得た。
[Example 1, Comparative Example 1]Experiment No. 1 (invention) Non-crosslinked ethylene-propylene random copolymer resin [UNI
On Polymer FM821, density 0.90 g / c
m3, MFR 7g / 10min (230 ℃, 2.16k
g), ethylene content 2.7% by weight] 90 mm extruder
With a die nozzle diameter of 1.0 and a die hole number of 200
Polymer at an extrusion rate of 200 kg / Hr from the die
The molecular orientation is less likely to occur and the strand can be pulled stably.
At a minimum take-off speed of 18 m / min, cool and cool
Cut, elliptic cylinder with a length of 1.5 mm and an average diameter of 1.2 mmφ
Shaped particles were produced. Store the resin particles in a pressure container
As a foaming agent, the gas permeability coefficient is 9 × 10-Tencc.
(STP). cm / cm2. sec. Two indicating cmHg
Injection of carbon oxide (gas) pressure 30kg / cm2G, warm
Carbon dioxide in the resin particles over a period of 4 hours at a temperature of 8 ° C
Was impregnated. Next, leave the expandable resin particles open for 2 minutes.
After exposing it to the atmosphere with
The temperature inside the chamber from 80 ° C to 130 ° C over 25 seconds.
While heating and maintaining that temperature, steam heating is started for 10 seconds.
It foamed and obtained the primary expanded particle. The expansion ratio of this expanded particle is
3.0 cm3/ G. The shape of the obtained expanded particles is
It is a drum shape, and the thickness of the surface coating near the edges of both ends is thick.
It was. The primary expanded particles are stored in a pressure heating device
8kg / cm using high pressure air at a temperature of 80 ℃2G
Up to 1 hour and hold that pressure for another 4 hours
As a result, the internal pressure of the bubbles of the primary expanded particles was increased and the expandability was imparted.
Next, the expandable primary expanded particles were stored in a foaming device and stored in a tank.
Raise the temperature from 80 ° C to 130 ° C over 10 seconds, and then
While maintaining that temperature, foam with steam heating for 8 seconds,
Next expanded particles were obtained. The secondary expanded particles have an expansion ratio of 6.
0 cm3/ G, which had a slightly drum-like shape. Further secondary
Expand the foam particles under the same conditions as those for obtaining the secondary expanded particles.
Tensioning and heat-foaming treatments were carried out to produce tertiary expanded particles (preliminary
Foam particles) were obtained. Shape of pre-expanded particles obtained in this experiment
FIG. 1 shows a schematic diagram of the membrane structure of the cortical and epidermal layers. According to FIG.
Then, the pre-expanded particles of the present invention are substantially spherical, and the surface is
The resin film (so-called skin layer) that covers it is a thick band
Two rings, not intersecting each other, surrounded by individual rings
It can be seen that the two surfaces are located almost parallel to each other.
ItExperiment No. 2 (invention) Experiment No. Change 130 seconds heating time of 10 seconds to 5 seconds
Furthermore, the expansion ratio is 1.5 cm3/ G of primary expanded particles
Experiment No. Additional pressure of air into the bubbles of primary expanded particles
Power, time 8kg / cm2G × 4 hours 30kg / cm2
Change to G x 15 hours and expand ratio 6 cm3/ G, almost
Experiment No. except that secondary expanded particles having a spherical shape were obtained. Same as 1
In this way, pre-expanded particles were obtained.Experiment No. 3 (invention) Experiment No. The volatile blowing agent and carbon dioxide used in 1
Nochlorodifluoromethane (F-22, gas permeability coefficient
1.1 x 10-Tencc. (STP). cm / cm 2・ S
ec. cmHg) 60 ° C, 24 kg / cm23 in G
Change to liquid impregnation for 0 minutes, foaming ratio 5 cm3/ G primary
Expanded particles were obtained, and the experiment No. 1 primary expanded particles into the bubble
Air pressure is 14kg / cm2Change to G and double foam
Rate 15 cm 3/ G of pre-expanded particles that are nearly spherical
Experiment No. except that obtained by step foaming. Obtained as in 1.Experiment No. 4 (invention) Experiment No. 1 elliptical columnar particles were replaced by true columnar particles (in the cooling water tank
Was obtained by changing the guide roll position of the
Change the temperature rise (steam pressure) time from 25 seconds to 15 seconds,
Experiment No. The same expansion ratio and shape as those of No. 1
Experiment No. Additional pressure of air into the bubbles of primary expanded particles
Force 8kg / cm2G is 10 kg / cm2Change to G,
Foaming ratio 7.2 cm3Secondary foamed granules of approximately spherical shape / g
Experiment No. except that I got a baby Pre-expanded particles in the same manner as 1
GotExperiment No. 5 (invention) Experiment No. The elliptic cylindrical particles of No. 1 are perfectly cylindrical particles (cooling water tank
Volatile foaming, which was obtained by changing the position of the guide roll inside
N-butane (gas permeation coefficient 12 x 10
-Tencc. (STP). cm / cm2-Sec. cmH
g), and the experiment No. Same expansion ratio and shape as 1
After obtaining the primary expanded particles, the experiment No. 1 primary foam particles inside the bubbles
8kg / cm additional pressure to the air2G is 6 kg / cm2G
Change to, foaming ratio 5cm3/ G drum-shaped secondary
Experiment No. except that foamed particles were obtained. Spare in the same way as 1.
Foamed particles were obtained.Experiment No. 6 (conventional product) Experiment No. 100 parts by weight of resin particles 1 and n as a foaming agent
20 parts by weight of butane, 450 parts by weight of water, first as dispersant
Accommodates 3.0 parts by weight of calcium triphosphate in a pressure container
Then, raise the temperature to 130 ° C under stirring and hold for 1 hour to
After impregnating with the foaming agent, the internal pressure of the container is 10 kg / c for 20 seconds.
m2G, then 33 kg / cm2Add with nitrogen gas of G
While pressing, one end of the container is released and released into the atmosphere.
Magnification 15 cm3/ G of pre-expanded particles were obtained. Obtained
Fig. 4 shows a schematic diagram of the shape of the expanded beads and the membrane structure of the skin layer.
Show.Experiment No. 7 (Comparative example) Experiment No. The volatile blowing agent and carbon dioxide used in 1
Nochlorodifluoromethane (F-22), 60 ℃,
24 kg / cm2Liquid impregnation with G for 30 minutes,
Change the temperature rise (steam pressure) time from 25 seconds to 10 seconds
Foaming ratio 6cm3/ G primary foamed particles are obtained, and two-stage generation
Foaming expansion ratio 15 cm3/ G of pre-expanded particles was obtained.
Outside is the experiment No. Obtained as in 1.Experiment No. 8 (Comparative example) Experiment No. The volatile blowing agent and carbon dioxide used in 1
Nochlorodifluoroethane (F-142b, gas permeation agent)
Number 2 x 10-Tencc. (STP). cm / cm 2・ Se
c. cmHg) and impregnated at 45 ° C for 5 hours.
Test No. Pre-expanded particles were obtained in the same manner as in 1.Experiment No. 9 (conventional product) Experiment No. 100 parts by weight of resin particles of 1 and 450 parts by weight of water
Parts, 3.0 parts by weight of tricalcium phosphate as a dispersant
Store in a pressure-resistant container, raise the temperature to 200 ° C with stirring and for 1 hour.
After holding, it was cooled to obtain substantially spherical resin particles. this
Experiment No. 3 except that resin particles having a substantially spherical shape were used.
Do the same as 1 and expand ratio 15 cm3/ G, almost a sphere
Pre-expanded particles in the form of particles were obtained.Experiment No. 10 (comparative example) Experiment No. The elliptic cylindrical particles of No. 1 are cylindrical curved particles (extrusion amount)
Was changed to 300 kg / Hr,
The melt fracture phenomenon occurred. This strand
Experiment No., except that it was obtained by cutting). Same as 1
To obtain pre-expanded particles.Experiment No. 11 (comparative example) Experiment No. 1 elliptical columnar particle is a triangular column (
The nozzle has a triangular cross section.
Experiment No. Same as 1
To obtain pre-expanded particles.

【0049】これらの実験で得られた予備発泡粒子の形
状及び表皮層の膜構造は、実験No.2〜No.5の本
発明品は図1と同状のものであっのに対し、実験No.
7の一次発泡倍率が5cm3 /gを超えた6cm3 /g
の一次発泡粒子では厚肉帯状リングを現出できず、実験
No.8のガス透過係数が1×10-10 cc.(ST
P).cm/cm2 ・sec.cmHg未満の発泡剤の
使用では、他の条件が満たされていても厚肉帯状リング
を現出できないものであった。実験No.10の円柱湾
曲状樹脂粒子、実験No.11の三角柱状樹脂粒子を用
いて得た予備発泡粒子の形状及び表皮層の膜構造の模式
図をそれぞれ図2及び図3に示す。図2及び図3は、膜
厚の厚い帯状リングが粒子曲面上の片側に偏在し夫々の
リングで囲まれた面が平行でなかったり(θ1 =80
°)、3つの膜厚の厚い帯状平面部分を持ち、この帯状
平面部に交叉して、この両端に膜厚の厚い帯状リングを
配置した、非球状の構造を示した。そして、2つの厚肉
帯状リングを持つ一次発泡粒子であっても、一次発泡粒
子に対する発泡比で3倍以上膨らまさないと、ほぼ球状
の予備発泡粒子が得られない事が分かる。
The shape of the pre-expanded particles and the film structure of the skin layer obtained in these experiments are shown in Experiment No. 2 to No. The product of the present invention of No. 5 has the same shape as that of FIG.
7 6 cm primary expansion ratio exceeds 5 cm 3 / g of 3 / g
The thick-walled band-shaped ring could not appear in the primary expanded particles of Experiment No. 8 has a gas permeability coefficient of 1 × 10 −10 cc. (ST
P). cm / cm 2 · sec. With the use of the foaming agent of less than cmHg, the thick band-shaped ring could not be revealed even if other conditions were satisfied. Experiment No. No. 10 cylindrical resin particles, Experiment No. 2 and 3 are schematic diagrams of the shape of the pre-expanded particles obtained by using 11 triangular prismatic resin particles and the film structure of the skin layer, respectively. FIGS. 2 and 3 show that a band-shaped ring having a large film thickness is unevenly distributed on one side on the curved surface of the particle, and the surfaces surrounded by the respective rings are not parallel (θ 1 = 80
°) A non-spherical structure is shown in which three strip-shaped plane portions having a large film thickness are provided, the strip-shaped plane portions are intersected with and the strip-shaped rings having a thick film thickness are arranged at both ends thereof. It can be seen that even in the case of primary expanded particles having two thick band-shaped rings, substantially spherical pre-expanded particles cannot be obtained unless the expanded particles have a expansion ratio of 3 times or more with respect to the primary expanded particles.

【0050】上記実験No.1〜No.11の予備発泡
粒子について本文記載の方法で構造指標を評価し、表1
に示した。
The above experiment No. 1-No. The structure index of pre-expanded particles of No. 11 was evaluated by the method described in the text, and Table 1
It was shown to.

【0051】[0051]

【表1】 [Table 1]

【0052】表1によると、粒子表面部の発泡剤を優先
的に揮発させた条件、例えば加熱発泡昇温(スチーム
圧)時間を長くした加熱方法のもの程、表皮膜厚比(t
1 /t 2 )が大きい値である事が分る。また従来の発泡
方法である実験No.6では粒子径のバラツキが大きく
問題である事が分かる。次いで上記実験No.1〜N
o.11の予備発泡粒子を用い、各々その粒子の内圧が
1.0kg/cm2 (ゲージ圧)のものになるように空
気を圧入させ、直ちにその粒子を空胴部が305×30
5×103mm、厚み21mmの箱型を形成する型内及
び305×305×52mmの内寸法を有する型内に満
たして型内で加熱発泡させ、成形発泡体を得た。この場
合の加熱には水蒸気を用い、約15秒間、2.0kg/
cm2 (ゲージ圧)の予備加熱と、3.3kg/cm2
(ゲージ圧)、15秒の成形加熱を行ない、後冷却して
取出した。取出した成形体は90℃の室内で8時間熟成
させた。この成形性能と得られた発泡成形体の物性を本
文記載の方法で評価し、その結果を表2にまとめた。
According to Table 1, the foaming agent on the surface of the particles is prioritized.
Volatilized conditions, such as heating foaming temperature rise (steam
The heating method in which the pressure) time is lengthened, the surface film thickness ratio (t
1/ T 2) Is a large value. Also conventional foaming
Experiment No. which is a method. With 6, the variation in particle size is large.
I understand that it is a problem. Then, in the above experiment No. 1 to N
o. 11 pre-expanded particles were used, and the internal pressure of each particle was
1.0 kg / cm2Empty to be (gauge pressure)
The air is pressed in, and the particles immediately get 305 × 30.
Inside the mold to form a box mold of 5 × 103 mm and thickness 21 mm
Full in a mold with internal dimensions of 305 x 305 x 52 mm.
Then, it was heated and foamed in a mold to obtain a molded foam. This place
Steam is used for heating for about 15 seconds, 2.0 kg /
cm2Pre-heating (gauge pressure) and 3.3 kg / cm2
(Gauge pressure), heating for 15 seconds, and after cooling
I took it out. The molded product taken out is aged in a room at 90 ° C for 8 hours.
Let This molding performance and the physical properties of the foamed molded product obtained are
Evaluation was carried out by the method described in the sentence, and the results are summarized in Table 2.

【0053】[0053]

【表2】 [Table 2]

【0054】なお、70%圧縮歪回復率は、18%以下
の値を○、18%を超え22%以下の値を△、21%を
超える値を×として判定、圧縮永久歪は、5%以下の値
を○、5%を超え8%以下の値を△、8%を超える値を
×として判定、繰り返し圧縮永久歪は、6%以下の値を
○、6%を超え10%以下の値を△、10%を超える値
を×として判定、100℃加熱寸法変化は、3.0%未
満の値を○、3.0%以上で5.0%未満の値を△、
5.0%以上の値を×として判定、引張強さは、7kg
/cm2 以上の値を○、6kg/cm2 以上7kg/c
2 未満の値を△、6kg/cm2 未満の値を×として
判定、そして動的緩衝特性は最大減速度(G)が、34
G未満の値を○、34G以上37G未満の値を△、37
G以上の値を×として判定した。また発泡成形体の発泡
倍率は23cm3 /gの同じ水準になるように揃える努
力をし、そして物性対比の評価をした。
The 70% compression strain recovery rate was judged as a value of 18% or less as ◯, a value of more than 18% and 22% or less as Δ, and a value of more than 21% as ×. The compression set was 5%. The following values are judged as ◯, values exceeding 5% and 8% or less are evaluated as Δ, and values exceeding 8% are judged as ×, and the repeated compression set is ◯ for values of 6% or less and 10% or less for more than 6%. The value is judged as △, the value exceeding 10% is judged as ×, and the dimensional change at 100 ° C. is ○, the value less than 3.0% is ○, and the value of 3.0% or more and less than 5.0% is Δ,
A value of 5.0% or more is judged as ×, the tensile strength is 7 kg
/ Cm 2 or more is ○, 6 kg / cm 2 or more 7 kg / c
A value of less than m 2 is determined as Δ, and a value of less than 6 kg / cm 2 is determined as ×, and the dynamic deceleration characteristic has a maximum deceleration (G) of 34.
Values less than G are ○, values less than 37G and less than 37G are △, 37
The value of G or more was determined as x. Further, an effort was made to make the expansion ratio of the foamed molded product equal to the same level of 23 cm 3 / g, and the evaluation of the physical properties was evaluated.

【0055】表2によると、本発明の予備発泡粒子(実
験No.1〜No.5)は比較品(実験No.7〜8、
No.10〜11)や従来品(実験No.6及びNo.
9)のいずれよりも、型内融着成形性能(融着度、対金
型寸法収縮率、ひけ、充填性)に優れており、型内成形
して得た発泡成形体の表面外観、70%圧縮歪回復率、
圧縮永久歪、繰り返し圧縮永久歪、100℃加熱寸法変
化、引張強さ、動的緩衝特性といった諸物性が品位のあ
る高度な値を示すことが分かる。この結果は、本発明の
予備発泡粒子の特徴であるところの、ほぼ球状であり、
表面を覆っている樹脂膜に膜厚の厚い帯状リングが2
つ、互いに交叉せず、個々のリングで囲まれた2つの面
の角度が45度以下に形成されている為、これを型内融
着成形して得た発泡成形体の内部に厚肉表皮の融着部が
網目状に立体的に成形されリブ効果を発揮していること
を示している。
According to Table 2, the pre-expanded particles of the present invention (Experiment No. 1 to No. 5) are comparative products (Experiment No. 7 to 8,
No. 10-11) and conventional products (Experiment No. 6 and No. 6).
9) which is superior in in-mold fusion molding performance (fusion degree, mold dimensional shrinkage ratio, sink mark, filling property) to those of 9), and the surface appearance of the foamed molded product obtained by in-mold molding, 70 % Compressive strain recovery rate,
It can be seen that various physical properties such as compression set, repeated compression set, 100 ° C. heating dimensional change, tensile strength, and dynamic buffering properties show high values with quality. This result is approximately spherical, which is a characteristic of the pre-expanded particles of the present invention,
There are two strip-shaped rings with a large thickness on the resin film that covers the surface.
The two surfaces surrounded by individual rings do not intersect with each other, and the angle between them is 45 degrees or less. Therefore, a thick skin is formed inside the foamed molded product obtained by fusion-molding the two surfaces. It is shown that the fusion-bonded part of 3) is three-dimensionally shaped like a mesh and exhibits a rib effect.

【0056】[0056]

【実施例2、比較例2】ここでの実験は、本発明の製造
方法が対象とする処の独立気泡率の高い高発泡倍率の予
備発泡粒子が得られるものであることを示すものであ
る。実験に供する発泡粒子は実施例1、比較例1の実験
No.1、No.3、No.5、No.6、No.9で
得られた発泡粒子(発泡倍率15cm3 /g)である。
夫々の気泡内に発泡比が2.07倍になるように空気を
追添調整して、実験No.1の二次発泡条件と同じ様な
条件で加熱発泡して、発泡倍率30cm3 /gの予備発
泡粒子を得た。これを実験No.12、No.13、N
o.14、No.15、No.16とした。
Example 2 and Comparative Example 2 The experiment here shows that pre-expanded particles having a high expansion ratio and having a high closed cell ratio can be obtained by the production method of the present invention. . The expanded particles used in the experiment are the experiment No. 1 of Example 1 and Comparative Example 1. 1, No. 3, No. 5, No. 6, No. It is the expanded particles (expansion ratio 15 cm 3 / g) obtained in No. 9.
Air was added and adjusted so that the foaming ratio became 2.07 times in each bubble, and the experiment No. Heat-foaming was performed under the same conditions as the secondary foaming conditions of No. 1 to obtain pre-expanded particles having an expansion ratio of 30 cm 3 / g. This is No. 12, No. 13, N
o. 14, No. 15, No. It was set to 16.

【0057】得られた予備発泡粒子について、構造指標
を評価し、表3に示した。
The structural index of the obtained pre-expanded particles was evaluated and is shown in Table 3.

【0058】[0058]

【表3】 [Table 3]

【0059】表3によると、本発明品(実験No.12
〜No.14)は従来品(実験No.15、No.1
6)に較べ、独立気泡率の高い予備発泡粒子が得られて
おり、意外な事に従来品より膨張能力が同等以上にある
事が判る。上記実験No.12〜No.16の予備発泡
粒子(発泡倍率30cm3 /g)を実施例1、比較例1
記載の方法で型内成形し、成形性能と得られた発泡成形
体の物性を評価し、その結果について表4にまとめて示
した。
According to Table 3, the product of the present invention (Experiment No. 12)
~ No. 14) is a conventional product (Experiment No. 15, No. 1)
Compared with 6), pre-expanded particles having a higher closed cell rate were obtained, and it is surprisingly found that the expansion capacity is equal to or higher than that of the conventional product. The above experiment No. 12-No. 16 pre-expanded particles (expansion ratio 30 cm 3 / g) were used in Example 1 and Comparative Example 1.
In-mold molding was performed by the method described, the molding performance and the physical properties of the foamed molded product obtained were evaluated, and the results are summarized in Table 4.

【0060】[0060]

【表4】 [Table 4]

【0061】なお、70%圧縮歪回復率は、10%以下
の値を○、10%を超え13%以下の値を△、13%を
超える値を×として判定、圧縮永久歪は、8%以下の値
を○、8%を超え10%以下の値を△、10%を超える
値を×として判定、繰り返し圧縮永久歪は、6%以下の
値を○、6%を超え8%以下の値を△、8%を超える値
を×として判定、100℃加熱寸法変化は、8%以下の
値を○、8%を超え12%以下の値を△、12%を超え
る値を×として判定、引張強さは、3kg/cm2 以上
の値を○、2kg/cm2 以上で3kg/cm2 未満の
値を△、2kg/cm2 未満の値を×として判定、動的
緩衝特性は最大減速度(G)が、36G以下の値を○、
36Gを超え38G以下の値を△、38Gを超える値を
×として判定した。また発泡成形体の発泡倍率は45c
3 /gの同じ水準になるように揃える努力をした。
The 70% compression set recovery rate is determined as ◯ for values of 10% or less, Δ for values of 10% or more and 13% or less, and x for values of 13% or more. The compression set is 8%. The following values are judged as ◯, values exceeding 8% and 10% or less are judged as Δ, values exceeding 10% are judged as x, and the repeated compression set is ◯ for values of 6% or less and 8% or less for 6% or more. The value is judged as △, and the value exceeding 8% is judged as ×. For the 100 ° C heating dimension change, the value of 8% or less is judged as ○, the value exceeding 8% and 12% or less is judged as Δ, and the value exceeding 12% is judged as ×. , tensile strength, maximum determination, the dynamic cushioning properties of 3 kg / cm 2 or more values ○, 2 kg / cm 2 or more at 3 kg / cm 2 less than the value △, the value of less than 2 kg / cm 2 as × If the deceleration (G) is 36 G or less, the value is ○,
A value exceeding 36 G and 38 G or less was judged as Δ, and a value exceeding 38 G was judged as x. The expansion ratio of the foamed molded product is 45c.
Efforts were made to make the same level of m 3 / g.

【0062】表4によると、、高発泡倍率の予備発泡粒
子においても、本発明品は従来品より型内成形性能に優
れ、型内成形して得た高発泡倍率(45cm3 /g)の
発泡成形体の物性は従来品に較べ顕著な差であり品位の
高いものである事が分かる。
According to Table 4, even in the case of pre-expanded particles having a high expansion ratio, the product of the present invention is superior in the in-mold molding performance to the conventional product, and has a high expansion ratio (45 cm 3 / g) obtained by in-mold molding. It can be seen that the physical properties of the foamed molded product are significantly different from the conventional products and have high quality.

【0063】[0063]

【実施例3】この実験は、本発明の発泡シートが対象と
する「熱可塑性樹脂」のいずれにも適用できる事を示す
為のものである。実験No.17 高密度ポリエチレン樹脂〔旭化成工業社製サンテックH
D、B770、密度0.955g/cm3 、MI0.2
g/10分(190℃、2.16kg)〕を用いて、実
施例1の実験No.1の二酸化炭素をn−ブタン(ガス
透過係数5×10-10 cc.(STP).cm/cm2
・sec.cmHg)に、発泡温度130℃を126℃
にそれぞれ変更した他は実験No.1と同様にして行な
い、発泡倍率3.0cm3 /gの一次発泡粒子、発泡倍
率6.0cm3 /gの二次発泡粒子、そして発泡倍率1
5cm3 /gの予備発泡粒子を得た。実験No.18 低密度ポリエチレン樹脂〔旭化成工業社製サンテックL
D、F2130、密度0.921g/cm3 、MI3.
2g/10分(190℃、2.16kg)〕100重量
部に対し、架橋剤ジクミルパーオキサイド0.15重量
部を添加し、押出軽架橋した改質低密度ポリエチレン樹
脂(MI0.5g/10分、ゲル分率10%(沸騰トル
エン×8時間抽出)を用いて、実施例1の実験No.1
の発泡温度130℃を104℃に変更した他は実験N
o.1と同様にして行ない、発泡倍率15cm3 /gの
予備(三次)発泡粒子を得た。なお、二酸化炭素のLD
PE(F2130)樹脂に対するガス透過係数は1.4
×10-9cc.(STP).cm/cm2 ・sec.c
mHgの値である。実験No.19 ポリスチレン樹脂〔旭化成工業社製、GP680、密度
1.05g/cm3 、MFR7.5g/10分(200
℃、5kg)〕を用いて、実施例1の実験No.1の発
泡温度130℃を100℃に変更して発泡倍率3cm3
/gの一次発泡粒子を得、実験No.1の一次発泡粒子
気泡内への空気追添条件80℃×8kg/cm2 Gを6
0℃×3kg/cm2 Gに変更して、発泡倍率15cm
3 /gの予備発泡粒子を二段発泡にて得た。尚、二酸化
炭素のPS(GP680)樹脂に対するガス透過係数は
1.0×10-9cc.(STP).cm/cm2 ・se
c.cmHgの値である。
Example 3 This experiment is intended to show that the foamed sheet of the present invention can be applied to any of the target "thermoplastic resins". Experiment No. 17 High-density polyethylene resin [Suntech H manufactured by Asahi Kasei Corporation
D, B770, density 0.955 g / cm 3 , MI 0.2
g / 10 minutes (190 ° C., 2.16 kg)]. 1 carbon dioxide was added to n-butane (gas permeation coefficient 5 × 10 −10 cc. (STP) .cm / cm 2
-Sec. cmHg), foaming temperature 130 ° C to 126 ° C
Experiment No. except that each was changed to The same procedure as in 1 was carried out, and the primary expansion particles had an expansion ratio of 3.0 cm 3 / g, the secondary expansion particles had an expansion ratio of 6.0 cm 3 / g, and the expansion ratio 1
Pre-expanded particles of 5 cm 3 / g were obtained. Experiment No. 18 Low-density polyethylene resin [Suntech L manufactured by Asahi Kasei Corporation
D, F2130, density 0.921 g / cm 3 , MI3.
2 g / 10 minutes (190 ° C., 2.16 kg)] 0.15 parts by weight of dicumyl peroxide as a cross-linking agent was added to 100 parts by weight, and extrusion lightly cross-linked modified low density polyethylene resin (MI 0.5 g / 10 Min., Gel fraction 10% (boiling toluene × 8 hours extraction), Experiment No. 1 of Example 1
Experiment N except that the foaming temperature of 130 ℃ was changed to 104 ℃
o. The same procedure as in Example 1 was performed to obtain preliminary (tertiary) expanded particles having an expansion ratio of 15 cm 3 / g. In addition, LD of carbon dioxide
Gas permeation coefficient for PE (F2130) resin is 1.4
× 10 -9 cc. (STP). cm / cm 2 · sec. c
It is the value of mHg. Experiment No. 19 polystyrene resin [Asahi Kasei Corp., GP680, density 1.05 g / cm 3 , MFR 7.5 g / 10 min (200
C., 5 kg)]. Change the foaming temperature 130 ° C of 1 to 100 ° C and expand the ratio of foam 3cm 3
/ G of primary expanded particles were obtained, and the experiment No. 1 Additional conditions for adding air into the bubbles of the primary expanded particles 80 ° C. × 8 kg / cm 2 G 6
Change to 0 ℃ × 3kg / cm 2 G and expand ratio 15cm
Pre-expanded particles of 3 / g were obtained by double-stage expansion. The gas permeability coefficient of carbon dioxide to PS (GP680) resin is 1.0 × 10 -9 cc. (STP). cm / cm 2 · se
c. The value is cmHg.

【0064】これら実験No.17〜19で得た予備発
泡粒子について、本文記載の方法で独立気泡率を評価し
た結果95%、96%、100%の値を示した。又実施
例1、比較例1と同様に発泡粒子の表皮層膜構造を観察
したところ,ほぼ図1と同状で、膜厚の厚い帯状リング
が2つ、互いに交叉せず、個々のリングで囲まれた2つ
の面がほぼ平行に位置して形成している、ほぼ球状のも
のであった。
These experiment Nos. The pre-expanded particles obtained in Nos. 17 to 19 were evaluated for the closed cell ratio by the method described in the text, and the values were 95%, 96%, and 100%. When the skin layer film structure of the expanded particles was observed in the same manner as in Example 1 and Comparative Example 1, two strip-shaped rings with a large film thickness, which were almost the same as in FIG. It was almost spherical in shape, with the two enclosed surfaces being located substantially parallel to each other.

【0065】[0065]

【発明の効果】本発明の予備発泡粒子は上述の構成を持
つことにより,型内融着成形性能(融着度、対金型寸法
収縮率、ひけ、充填性)に富み、そして表面外観、70
%圧縮歪回復率、圧縮永久歪、繰り返し圧縮永久歪、1
00℃加熱寸法変化、引張強さなどの機械的、熱的特性
や動的緩衝特性に優れた成形発泡体を容易に得る事がで
きる。そしてこれらの特性が特に大きな応力を受ける構
造材、緩衝材、例えば自動車のシート、弱電機器の輸送
時の包装緩衝材のように、従来の低発泡成形体でなけれ
ば使用し得なかった分野にも高倍率の発泡体、厚さの薄
い発泡体として用いることができ、軽量化、減容化が可
能になる他、従来、成形発泡体の物性が劣る為に用途が
制限されていた樹脂素材も多くの用途に使用することが
出来るようになる。
EFFECTS OF THE INVENTION The pre-expanded particles of the present invention, having the above-mentioned constitution, are excellent in in-mold fusion molding performance (fusion degree, mold dimension shrinkage ratio, sink mark, filling property), and surface appearance, 70
% Compression strain recovery rate, compression set, repeated compression set, 1
It is possible to easily obtain a molded foam having excellent mechanical and thermal characteristics such as dimensional change by heating at 00 ° C. and tensile strength and dynamic buffering characteristics. And in the fields that could not be used without conventional low-foam molded articles, such as structural materials and cushioning materials that have particularly large stresses on these characteristics, such as automobile seats and packaging cushioning materials when transporting light electrical equipment. Can be used as a high-magnification foam or a thin foam, and it is possible to reduce the weight and volume, and in addition, the physical properties of molded foam have been inferior. Can be used for many purposes.

【0066】また製造方法としても、従来その実現が不
可能とされていた、独立した球状化工程なくして、粒径
の揃ったほぼ球状の予備発泡粒子を得ることに成功し、
その結果省資源、省エネルギー、無公害に貢献してお
り、その技術的意味は極めて高いものである。
Also as a manufacturing method, it has succeeded in obtaining substantially spherical pre-expanded particles having a uniform particle size without an independent spheroidizing step, which has heretofore been impossible to realize.
As a result, it contributes to resource saving, energy saving, and pollution-free, and its technical significance is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の予備発泡粒子の正面図(A)、側面図
(B)、中央断面図(C)である。
FIG. 1 is a front view (A), a side view (B), and a central sectional view (C) of pre-expanded particles of the present invention.

【図2】円柱湾曲状樹脂粒子を本発明の方法により予備
発泡させた粒子の正面図(A)、側面図(B)、中央断
面図(C)である。
FIG. 2 is a front view (A), a side view (B) and a central sectional view (C) of particles obtained by pre-expanding cylindrical curved resin particles by the method of the present invention.

【図3】三角柱状樹脂粒子を本発明の方法により予備発
泡させた粒子の正面面(A)、側面図(B)、中央断面
図(C)である。
FIG. 3 is a front view (A), a side view (B), and a central cross-sectional view (C) of particles obtained by pre-expanding triangular columnar resin particles by the method of the present invention.

【図4】楕円柱状粒子を高温高圧の熱水懸濁系で球状化
した粒子を本発明の方法により予備発泡させた粒子の正
面図(A)、側面図(B)、中央断面図(C)である。
FIG. 4 is a front view (A), a side view (B), a central cross-sectional view (C) of particles obtained by pre-expanding particles obtained by spheroidizing elliptical columnar particles by a hot water suspension system at high temperature and high pressure by the method of the present invention. ).

【図5】楕円柱状樹脂粒子を公知の方法により予備発泡
させた粒子の正面図(A)、側面図(B)、中央断面図
(C)である。
FIG. 5 is a front view (A), a side view (B), and a central cross-sectional view (C) of particles obtained by pre-expanding elliptic columnar resin particles by a known method.

【符号の説明】[Explanation of symbols]

U 樹脂膜 R1 、R2 膜厚の厚い帯状リング R2 、R3 、R4 膜厚の厚い帯状膜 S 気泡 θ リングに沿って切断した2つの切断面のなす角U Resin film R 1 , R 2 Thick strip ring R 2 , R 3 , R 4 Thick strip film S Bubble θ Angle between two cut surfaces cut along the ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂からなるほぼ球状の予備発
泡粒子であって、粒子の表面を覆っている樹脂膜に、膜
厚の厚い帯状のリングが2本形成されており、これらの
リングは互いに交叉せず、2本のリングは粒子を2等分
した時、夫々の半球上に1本づつ存在するように2等分
できる位置にあり、かつ個々のリングに沿って切断した
2つの切断面のなす角度が45°以下であることを特徴
とする型内融着成形用予備発泡粒子。
1. A substantially spherical pre-expanded particle made of a thermoplastic resin, wherein a resin film covering the surface of the particle is formed with two band-shaped rings having a large film thickness. Two rings that do not intersect each other are located at two halves so that when the particles are bisected, they will be on each hemisphere, one on each hemisphere, and two halves cut along each ring. Pre-expanded particles for in-mold fusion molding, characterized in that the angle formed by the surfaces is 45 ° or less.
【請求項2】 熱可塑性樹脂からなる予備発泡粒子の製
造方法において、溶融状態にある熱可塑性樹脂を押出機
よりノズルを通してストランド状に押出し、一定の長さ
に切断して得た円柱ないし楕円柱状粒子に、粒子の基材
樹脂に対するガス透過係数が1×10-10 cc.(ST
P).cm/cm2 .sec.cmHg以上の揮発性発
泡剤を含浸させて発泡性樹脂粒子となし、発泡性樹脂粒
子の端面(上記ストランド切断面に相当する)と円柱側
面(上記ストランド表面に相当する)の交点である稜近
傍部に存在する揮発性発泡剤を優先的に揮散させて発泡
性樹脂粒子を加熱発泡させ、発泡倍率で1.5〜5cm
3 /gの一次発泡粒子となし、次いで一次発泡粒子の気
泡中に気体による圧力を付与せしめ、さらにこれを一次
発泡粒子の発泡倍率に対する発泡比で3倍以上に加熱発
泡させることを特徴とする型内融着成形用予備発泡粒子
の製造方法。
2. A method for producing pre-expanded particles comprising a thermoplastic resin, wherein a thermoplastic resin in a molten state is extruded from an extruder into a strand shape through a nozzle and cut into a certain length to obtain a cylinder or an elliptic cylinder. The particles have a gas permeability coefficient of 1 × 10 −10 cc. (ST
P). cm / cm 2 . sec. Near a ridge that is an intersection of the end surface (corresponding to the above-mentioned strand cut surface) and the cylindrical side surface (corresponding to the above-mentioned strand surface) of the foamable resin particle by forming a foamable resin particle by impregnating with a volatile foaming agent of cmHg or more. Part of the volatile foaming agent is volatilized preferentially to heat and foam the expandable resin particles, and the expansion ratio is 1.5 to 5 cm.
It is characterized in that 3 / g of primary expanded particles are formed, then gas pressure is applied to the bubbles of the primary expanded particles, and this is further expanded by heating at a foaming ratio of 3 times or more with respect to the expansion ratio of the primary expanded particles. A method for producing pre-expanded particles for in-mold fusion molding.
JP29455392A 1992-11-02 1992-11-02 Pre-expanded particles for in-mold fusion molding and method for producing the same Expired - Lifetime JP3149144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29455392A JP3149144B2 (en) 1992-11-02 1992-11-02 Pre-expanded particles for in-mold fusion molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29455392A JP3149144B2 (en) 1992-11-02 1992-11-02 Pre-expanded particles for in-mold fusion molding and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06145407A true JPH06145407A (en) 1994-05-24
JP3149144B2 JP3149144B2 (en) 2001-03-26

Family

ID=17809285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29455392A Expired - Lifetime JP3149144B2 (en) 1992-11-02 1992-11-02 Pre-expanded particles for in-mold fusion molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP3149144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105879A (en) * 2009-11-19 2011-06-02 Asahi Kasei Chemicals Corp Polyamide foamed particle, method for manufacturing the same, group of polyamide foamed particles and foam molded product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067745B1 (en) * 2017-05-30 2020-01-17 재단법인 아산사회복지재단 Lymphedema circulation treating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105879A (en) * 2009-11-19 2011-06-02 Asahi Kasei Chemicals Corp Polyamide foamed particle, method for manufacturing the same, group of polyamide foamed particles and foam molded product

Also Published As

Publication number Publication date
JP3149144B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
US4104440A (en) Method for making packaging particles and resulting product
EP0291764B1 (en) Method of manufacturing foamed polypropylene resin sheet
JP6353807B2 (en) Foamed particles and foamed molded body
JPH08501810A (en) Polystyrene foam and manufacturing method thereof
EP4234223A1 (en) Method for manufacturing laminate
ES2295337T3 (en) MIXTURES OF ETHYLENE POLYMERS WITH IMPROVED MODULE AND RESISTANCE OF THE CAST AND ARTICLES MANUFACTURED FROM THESE MIXTURES.
JP2022127578A (en) Foamed particle and method for producing the same
JP6084345B1 (en) Thermoplastic resin foam particles
EP2627697A1 (en) High strength extruded thermoplastic polymer foam
JP5863531B2 (en) Polyethylene resin composition for foaming and polyethylene resin foam sheet
JPH1077359A (en) Expanded resin bead
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JPH06145407A (en) Preexpanded bead for in-mold fuse molding and its production
JPS5876230A (en) Manufacture of polypropylene resin foamed particle
JP6026814B2 (en) Polyolefin resin expanded particles and molded articles thereof
EP4310137A1 (en) Polyethylene resin foamed particle, and method for producing same
JPS6013825A (en) Pre-expanded particle of polymer and its preparation
US3435103A (en) Process for forming solid articles from expandable polymer
WO2024135414A1 (en) Polyethylene resin foam particle molded body and method for producing same
JP7575310B2 (en) Aromatic polyester resin expanded particles, their production method, expanded molded article, and automobile component
EP4310134A1 (en) Polypropylene-based resin expanded beads and molded article thereof
JP3256906B2 (en) Method for producing resin foam
GB1272129A (en) Press-moulded cross-linked polymeric foams and a process for producing the same
JPH10156916A (en) Polycarbonate resin open-cell type plate-shaped extruded foam

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

EXPY Cancellation because of completion of term