[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06144874A - Heat ray reflective film and its production - Google Patents

Heat ray reflective film and its production

Info

Publication number
JPH06144874A
JPH06144874A JP31621492A JP31621492A JPH06144874A JP H06144874 A JPH06144874 A JP H06144874A JP 31621492 A JP31621492 A JP 31621492A JP 31621492 A JP31621492 A JP 31621492A JP H06144874 A JPH06144874 A JP H06144874A
Authority
JP
Japan
Prior art keywords
oxide
heat ray
reflective film
ray reflective
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31621492A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tomonaga
浩之 朝長
Takeshi Yoshizuka
武司 吉塚
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP31621492A priority Critical patent/JPH06144874A/en
Publication of JPH06144874A publication Critical patent/JPH06144874A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

PURPOSE:To obtain a heat ray reflective film with radio wave transmissivity by coating a base with a liquid consisting mainly of electrically conductive oxide superfine particles, ruthenium oxide and specific metal oxide(s) followed by heating. CONSTITUTION:A coating liquid consisting mainly of (A) electrically conductive oxide superfine particles, (B) ruthenium oxide and (C) at least one kind of metal oxide selected from silicon oxide, titanium dioxide, zirconium oxide and aluminum oxide, is applied on a base followed by heating to obtain the objective heat ray reflective film. With this method, the final film has high surface resistivity, thereby being furnished with radio wave transmissivity. Therefore, decline in the advantages of radio wave receivers (e.g. antennas) due to the influence of conventional heat ray reflective films can be prevented, and incidence of heat rays into rooms can effectively be reduced without hampering the indoor use of communication equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用ガラス、建材用
ガラス等に利用できる電波透過性能を有する熱線反射膜
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat ray reflective film having a radio wave transmitting property which can be used for automobile glass, building glass and the like.

【0002】[0002]

【従来の技術】従来、熱線反射膜は窒化チタンや銀、ア
ルミニウム、といったような比較的導電性の高い物質を
蒸着やスパッタリング法などの乾式法でコートすること
によって得られてきた。しかし、これらの方法でコート
した熱線反射膜は表面の電気伝導度が高く、その性質上
電磁波遮蔽性の高いものとなり、電波が透過できないた
めに室内アンテナやガラスプリントアンテナ、携帯電話
に対応できないという欠点があった。
2. Description of the Related Art Conventionally, a heat ray reflective film has been obtained by coating a relatively highly conductive substance such as titanium nitride, silver or aluminum by a dry method such as vapor deposition or sputtering. However, the heat ray reflective film coated by these methods has a high electric conductivity on the surface and has a high electromagnetic wave shielding property due to its nature, and it cannot be used for indoor antennas, glass print antennas, and mobile phones because it cannot transmit radio waves. There was a flaw.

【0003】また、窒化チタンや銀などをコートすると
可視光領域の反射率が高くなるために可視光透過率が低
下し、そのままでは自動車用のガラスには使えないとい
う問題点もあるために、実際には反射防止膜が施されて
使用されていた。
Further, when titanium nitride, silver, or the like is coated, the reflectance in the visible light region is increased, and the visible light transmittance is lowered, and there is a problem that it cannot be used as it is for glass for automobiles. In practice, an antireflection film was applied and used.

【0004】[0004]

【発明が解決しようとする課題】本発明は従来技術の有
する前述の問題点を解消し、電波透過性能を具備させた
熱線反射膜、及びその製造方法を提供することを目的と
するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a heat ray reflective film having radio wave transmission performance, and a method for manufacturing the same. .

【0005】[0005]

【課題を解決するための手段】即ち、本発明は、導電性
酸化物の超微粒子と、酸化ルテニウムと、さらに、酸化
珪素、酸化チタン、酸化ジルコニウム、酸化アルミニウ
ムから選ばれる少なくとも1種の金属酸化物とを主成分
とする熱線反射膜であって、表面抵抗が20KΩ/□以
上であることを特徴とする熱線反射膜、及び、導電性酸
化物の超微粒子と、ルテニウム化合物と、さらに、珪素
化合物、チタン化合物、ジルコニウム化合物及びアルミ
ニウム化合物から選ばれる少なくとも1種とを主成分と
するコーティング液を塗布した後、加熱することによっ
て熱線反射膜を製造することを特徴とする熱線反射膜の
製造方法を提供するものである。
That is, the present invention provides ultrafine particles of a conductive oxide, ruthenium oxide, and at least one metal oxide selected from silicon oxide, titanium oxide, zirconium oxide, and aluminum oxide. And a heat ray reflective film having a surface resistance of 20 KΩ / □ or more, ultrafine particles of a conductive oxide, a ruthenium compound, and silicon. A method for producing a heat ray reflective film, which comprises producing a heat ray reflective film by applying a coating liquid containing at least one selected from a compound, a titanium compound, a zirconium compound and an aluminum compound as a main component, and then heating. Is provided.

【0006】本発明においては、熱線反射膜が室内に入
る電波や室内の通信機材から発信される電波を遮蔽しな
いようにするために、熱線反射膜としては20KΩ/□
以上、好ましくは1MΩ/□以上の表面抵抗値を有する
ことが必要である。送受信する電波がFM,AM,T
V,電話等の目的により対応して必要な熱線反射膜の表
面抵抗値の下限が若干異なるが、1MΩ/□以上であれ
ばこれらのどの目的にも十分に対応できる。
In the present invention, in order to prevent the heat ray reflection film from blocking the radio waves entering the room or the radio waves emitted from the communication equipment in the room, the heat ray reflection film is 20 KΩ / □.
Above, it is necessary to have a surface resistance value of preferably 1 MΩ / □ or more. The transmitted and received radio waves are FM, AM, T
The required lower limit of the surface resistance value of the heat ray reflective film is slightly different depending on the purpose such as V, telephone, etc., but if it is 1 MΩ / □ or more, any of these purposes can be sufficiently satisfied.

【0007】本発明における熱線反射膜は、導電性薄膜
によって熱線反射性能を発現するドルーデミラータイプ
の従来の熱線反射膜の電磁波遮蔽特性を消失させるべ
く、導電性酸化物の超微粒子を被膜中で高度に分散させ
ることによって、導電性粒子どうしのコンタクトを制限
し、それにより表面抵抗を高めたことを特徴としてい
る。
The heat ray-reflecting film in the present invention contains ultrafine particles of a conductive oxide in the film in order to eliminate the electromagnetic wave shielding property of the conventional heat ray reflecting film of the Drude Mirror type in which the heat ray reflecting performance is expressed by the conductive thin film. It is characterized in that the highly dispersed particles limit the contact between the conductive particles, thereby increasing the surface resistance.

【0008】本発明における導電性酸化物の超微粒子と
しては、アンチモン含有酸化錫(ATO)、錫含有酸化
インジウム(ITO)等が利用できるが、経済性、化学
的耐久性、再現性等から考えてアンチモン含有酸化錫が
比較的好適に使用できる。
As the ultrafine particles of the conductive oxide in the present invention, antimony-containing tin oxide (ATO), tin-containing indium oxide (ITO) and the like can be used, but it is considered from the viewpoint of economical efficiency, chemical durability and reproducibility. Thus, tin oxide containing antimony can be used relatively favorably.

【0009】導電性酸化物の超微粒子の分散媒、分散法
は特に限定される物ではなく種々使用可能である。例え
ば、水あるいはアルコール等の有機溶媒中に導電性酸化
物超微粒子を添加し、酸あるいはアルカリを添加しpH
を調整した後、コロイドミル、ボールミル、サンドミ
ル、ホモミキサー等の市販の粉砕器や超音波分散器など
により分散させて得ることができる。
The dispersion medium and dispersion method of the ultrafine particles of the conductive oxide are not particularly limited, and various kinds can be used. For example, adding conductive oxide ultrafine particles to an organic solvent such as water or alcohol and adding acid or alkali to adjust the pH
After being adjusted, it can be obtained by dispersing with a commercially available pulverizer such as a colloid mill, a ball mill, a sand mill, a homomixer, or an ultrasonic disperser.

【0010】分散液中の導電性酸化物超微粒子の平均粒
径は100nm以下となっていることが好ましい。好ま
しくは50nm以下、特に好ましくは20nm以下であ
ることが望ましい。100nmを超える粒径を有する粒
子を用いると被膜の透明性を阻害するおそれがあり、ま
た被膜強度にも悪影響を与える。またこの分散液はアル
コール、水などで任意に希釈して用いることができる。
The average particle diameter of the conductive oxide ultrafine particles in the dispersion is preferably 100 nm or less. It is preferably 50 nm or less, particularly preferably 20 nm or less. If particles having a particle size of more than 100 nm are used, the transparency of the coating may be impaired and the strength of the coating may be adversely affected. Further, this dispersion can be used after being arbitrarily diluted with alcohol, water or the like.

【0011】本発明において、酸化ルテニウムは、それ
自身導電体であるが、可視光領域〜近赤外領域に非常に
強い吸収を有しているために、表面抵抗値に影響を与え
ない程度のごく少量を添加することによって日射透過率
(JIS−R3106)の低減に大きく寄与する。
In the present invention, ruthenium oxide is a conductor itself, but since it has a very strong absorption in the visible light region to the near infrared region, it does not affect the surface resistance value. Addition of a very small amount greatly contributes to the reduction of solar radiation transmittance (JIS-R3106).

【0012】本発明における塗布液中のルテニウム化合
物には、β−ジケトンなどのキレート配位子と錯体を形
成したルテニウム塩を使用することが重要である。キレ
ート安定化されていないルテニウム化合物を使うと、そ
れら無機ルテニウム化合物は加熱により分解して揮発し
やすいために、加熱後のルテニウム量が仕込量に対して
著しく低くなり、所望の透過率の低減効果が得られない
し、またその効果の再現性も乏しくなる。使用するルテ
ニウム塩には、塩化ルテニウム、硝酸ルテニウムなどが
あるが、経済性、入手しやすさ等を考慮すると塩化ルテ
ニウムが比較的好適に利用できる。
It is important to use a ruthenium salt complexed with a chelate ligand such as β-diketone as the ruthenium compound in the coating solution in the present invention. When non-chelate-stabilized ruthenium compounds are used, these inorganic ruthenium compounds are easily decomposed and volatilized by heating, so the amount of ruthenium after heating becomes significantly lower than the charged amount, and the desired transmittance reduction effect. And the reproducibility of the effect becomes poor. Ruthenium salts to be used include ruthenium chloride and ruthenium nitrate, but ruthenium chloride can be used relatively favorably in consideration of economical efficiency and availability.

【0013】ルテニウム化合物のキレート錯体は、ルテ
ニウム塩に配位子となる有機化合物を反応させることに
よって容易に得られる。この反応は有機配位子が液体
(アセチルアセトンなど)であれば無溶媒で行ってもよ
いし、また生成物の溶剤となる有機溶媒中で行ってもよ
い。反応が進みにくい時には、加熱するなどして反応を
促進させることもできる。
The chelate complex of a ruthenium compound can be easily obtained by reacting a ruthenium salt with an organic compound serving as a ligand. This reaction may be carried out without a solvent as long as the organic ligand is a liquid (such as acetylacetone), or may be carried out in an organic solvent which is a solvent for the product. When the reaction is difficult to proceed, the reaction can be promoted by heating.

【0014】ルテニウムキレート錯体の配位子(Lとす
る)の数はL/Ruのモル比で1〜3にするとよい。配
位子がこれより少ないと、前述したようにルテニウム化
合物が揮発しやすくなるし、またこれより多くてもルテ
ニウムと反応できないために無駄となる。
The number of ligands (L) in the ruthenium chelate complex is preferably 1 to 3 in terms of L / Ru molar ratio. When the amount of the ligand is less than this, the ruthenium compound is liable to volatilize as described above, and when the amount of the ligand is more than that, it cannot be reacted with the ruthenium and is wasted.

【0015】本発明のコーティング液は、上記の導電性
酸化物の超微粒子の分散液と、ルテニウムキレート化合
物と、それにバインダ成分としての珪素化合物、チタン
化合物、ジルコニウム化合物、アルミニウム化合物から
選ばれる少なくとも1種を含む溶液とを混合し、所望の
濃度にアルコールなどの有機溶剤で希釈することによっ
て得られる。
The coating liquid of the present invention comprises a dispersion liquid of the above-mentioned ultrafine particles of the conductive oxide, a ruthenium chelate compound, and at least one selected from silicon compounds, titanium compounds, zirconium compounds and aluminum compounds as binder components. It is obtained by mixing with a solution containing seeds and diluting to a desired concentration with an organic solvent such as alcohol.

【0016】具体的には、Si(OR)mn 、Ti
(OR)mn 、Zr(OR)mnAl(OR)uv
(ただし、m+n=4、m=1〜4、n=0〜3、u
+v=3、u=1〜3、v=0〜3、R=C1 〜C4
アルキル基、L=β−ジケトンなどのキレート配位子、
ステアリン酸などのアシレート配位子から選ばれる少な
くとも1種の配位子)、あるいはこれらの重合体のうち
少なくとも1種、あるいはそれらの部分加水分解物を含
む溶液と、キレート配位子と錯体を形成したルテニウム
化合物を含んだ溶液を導電性酸化物の超微粒子分散液に
添加するのが好ましい。
Specifically, Si (OR) m R n , Ti
(OR) m L n , Zr (OR) m L n Al (OR) u L v
(However, m + n = 4, m = 1 to 4, n = 0 to 3, u
+ V = 3, u = 1-3, v = 0-3, R = C 1 -C 4 alkyl group, L = chelate ligand such as β-diketone,
At least one kind of ligand selected from acylate ligands such as stearic acid), or a solution containing at least one kind of these polymers or a partial hydrolyzate thereof, and a chelate ligand and a complex. It is preferable to add the formed solution containing the ruthenium compound to the ultrafine particle dispersion liquid of the conductive oxide.

【0017】これらの金属有機化合物は、バインダとし
て働くばかりでなく、コーティング液中で酸化物粒子表
面の水酸基と結合して酸化物粒子のまわりを覆うため
に、液中での酸化物粒子の分散性を高め、また被膜とな
ったときの高抵抗化に有効に働く。
These metal-organic compounds not only act as a binder, but also bind to the hydroxyl groups on the surface of the oxide particles in the coating solution to coat the oxide particles, so that the oxide particles are dispersed in the solution. It also increases the resistance and effectively works to increase the resistance when it becomes a film.

【0018】導電性酸化物超微粒子としてアンチモン含
有酸化錫を用いる場合、20KΩ/□以上の表面抵抗を
付与させて電波透過性能を持たせ、かつ熱線反射性能を
有する膜を形成するための好ましい膜組成比としては、
酸化物換算(重量%)でATO:RuO2 :MOx =5
0〜90:3〜10:10〜47(MOx はSiO2
iO2 ,ZrO2 、Al23 の合計を示す。)であ
る。導電性粒子がこの組成比より少ないと有効な熱線反
射性能を具備することができず、また多いと膜強度が低
下するので好ましくない。また、酸化ルテニウムがこれ
より少ないとルテニウムの吸収を日射透過率の低減に寄
与させることができず、これより多くなると表面抵抗値
の低下や膜強度の低下を招くおそれがある。
When antimony-containing tin oxide is used as the conductive oxide ultrafine particles, a preferable film for forming a film having a surface resistance of 20 KΩ / □ or more to have radio wave transmission performance and heat ray reflection performance. As the composition ratio,
ATO: RuO 2 : MO x = 5 in terms of oxide (% by weight)
0 to 90: 3 to 10:10 to 47 (MO x is SiO 2 T)
The total of iO 2 , ZrO 2 , and Al 2 O 3 is shown. ). If the conductive particles are less than this composition ratio, effective heat ray reflection performance cannot be provided, and if the conductive particles are more than this composition ratio, the film strength will be reduced, such being undesirable. Further, if the amount of ruthenium oxide is less than this, the absorption of ruthenium cannot be contributed to the reduction of the solar radiation transmittance, and if it is more than this, the surface resistance value and the film strength may be reduced.

【0019】また、電波透過熱線反射膜形成用のコーテ
ィング液には、総固形分量が溶媒に対して1〜30重量
%であることが好ましい。
In the coating liquid for forming the radio wave transmission heat ray reflective film, the total solid content is preferably 1 to 30% by weight based on the solvent.

【0020】本発明における基体ガラスとしては、自動
車用、建築用ガラスとして通常使用されているソーダラ
イムシリケートガラスからなる普通板ガラス、フロート
板ガラスなどが使用でき、またより熱線遮蔽性能を持た
せるために熱線吸収ガラスを使用することもできる。
As the base glass in the present invention, ordinary plate glass or float plate glass made of soda lime silicate glass, which is usually used as glass for automobiles and construction, can be used. Absorption glass can also be used.

【0021】本発明においては、上述の導電性酸化物の
超微粒子の分散液に、バインダ成分である金属有機化合
物を添加したコーティング液を塗布した後、加熱するこ
とによって電波透過性能を有する熱線反射膜を形成す
る。基体への塗布法は特に限定される物ではなく、スプ
レー法、ディップ法、ロールコート法、メニスカスコー
ト法、スピンコート法、スクリーン印刷法、フレキソ印
刷法等が利用できる。
In the present invention, a coating liquid containing a metal organic compound as a binder component is applied to a dispersion liquid of the above-mentioned ultrafine particles of a conductive oxide, and then heated to heat ray reflection having a radio wave transmitting performance. Form a film. The method of coating the substrate is not particularly limited, and a spray method, a dip method, a roll coating method, a meniscus coating method, a spin coating method, a screen printing method, a flexo printing method, etc. can be used.

【0022】また、熱線反射膜の膜厚は500Åから1
μmが好ましく、それ以下では熱線反射性能が劣り、そ
れ以上では被膜の可視光線透過率が減少し、透明性が損
なわれるので好ましくない。
The thickness of the heat ray reflective film is from 500Å to 1
μm is preferable, and if it is less than this range, the heat ray reflection performance is inferior, and if it is more than 100 μm, the visible light transmittance of the coating decreases and the transparency is impaired.

【0023】[0023]

【実施例】以下に実施例により本発明を具体的に説明す
るが本発明はこれらの実施例に限定される物ではない。
以下の実施例及び比較例において、得られた膜の評価方
法は次の通りである。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
In the following examples and comparative examples, the evaluation methods of the obtained films are as follows.

【0024】1)表面抵抗値 ハイレスタ抵抗測定器(三菱油化製)により膜表面の表
面抵抗値を測定。 2)電波透過性能 ネットワークアナライザー(ヒューレットパッカード社
製)を用いて45MHz〜1GHzの周波数帯での膜に
よる減衰率を測定。
1) Surface resistance value The surface resistance value of the film surface was measured with a Hiresta resistance measuring instrument (manufactured by Mitsubishi Yuka). 2) Radio wave transmission performance The attenuation factor due to the film in the frequency band of 45 MHz to 1 GHz was measured using a network analyzer (manufactured by Hewlett Packard).

【0025】3)熱線遮蔽性能 分光光度計(日立製作所製)により340〜1800n
mの透過率を測定し、JIS−R3106に従って日射
透過率(TE )、可視光透過率(TV )を算出し、基材
ガラスとの透過率の差(ΔTE 、ΔTV )、及びその比
(ΔTE /ΔTV )をもって評価した。
3) Heat ray shielding performance: 340-1800n by spectrophotometer (manufactured by Hitachi Ltd.)
The transmittance of m is measured, the solar radiation transmittance (T E ) and the visible light transmittance (T V ) are calculated according to JIS-R3106, and the difference in the transmittance with the base glass (ΔT E , ΔT V ), and The ratio (ΔT E / ΔT V ) was evaluated.

【0026】[実施例1]Sbを9mol %含有する酸化
錫超微粒子(ATOという、以下同じ。平均粒径10n
m)30gをKOH水溶液70g中に添加してサンドミ
ルで4時間撹拌分散させた後90℃で1時間加熱解膠
し、希釈後イオン交換したものを固形分20重量%まで
濃縮した(A液)。塩化ルテニウム結晶(ルテニウム含
有量:38%)にアセチルアセトンをルテニウムに対し
て2倍モル量添加して90℃で1時間加熱し、ルテニウ
ムキレート錯体を得た(B液)。
[Example 1] Tin oxide ultrafine particles containing 9 mol% of Sb (hereinafter referred to as ATO; the same applies hereinafter; average particle size: 10 n)
m) 30 g was added to 70 g of KOH aqueous solution, stirred and dispersed in a sand mill for 4 hours, then deflocculated by heating at 90 ° C. for 1 hour, and after dilution, ion-exchanged was concentrated to a solid content of 20% by weight (solution A). . Acetylacetone was added to a ruthenium chloride crystal (ruthenium content: 38%) in an amount of twice the molar amount of ruthenium, and the mixture was heated at 90 ° C. for 1 hour to obtain a ruthenium chelate complex (solution B).

【0027】けい酸エチル重合物(多摩化学工業社製、
商品名シリケート40)10重量部にエタノール(61
重量部)、H2 O(9重量部)、HCl(0.02重量
部)を加えて加水分解を行った(C液)。A液、B液、
C液をATO:RuO2 :SiO2 =60:7:33
(重量比)となるように混合し、エタノールで酸化物換
算総固形分量で5重量%となるように希釈してコーティ
ング液を得た。
Ethyl silicate polymer (manufactured by Tama Chemical Industry,
Trade name: Silicate 40) 10 parts by weight of ethanol (61
(Parts by weight), H 2 O (9 parts by weight), and HCl (0.02 parts by weight) were added for hydrolysis (solution C). A liquid, B liquid,
Liquid C is ATO: RuO 2 : SiO 2 = 60: 7: 33
The mixture was mixed so as to have a (weight ratio), and diluted with ethanol to a total solid content of oxides of 5% by weight to obtain a coating liquid.

【0028】このコーティング液を厚さ2mmのフロー
トガラス板にスピンコーターを用いて500rpm、3
0秒で塗布した後180℃の乾燥器で10分乾燥し、5
00℃の電気炉で30分間焼き付けてコート膜を得た。
得られたコート膜の膜厚は2200Å、表面抵抗値は4
MΩ/□、ΔTE =22%、ΔTV =11%であった
(ΔTE /ΔTV =2.0)。また、電波透過性は、4
5MHz〜1GHzでの減衰率を測定したところ、全帯
域にわたって0dBであった。
This coating solution was applied to a float glass plate having a thickness of 2 mm using a spin coater at 500 rpm and 3
After applying for 0 seconds, it is dried in a dryer at 180 ℃ for 10 minutes, and
A coat film was obtained by baking in an electric furnace at 00 ° C for 30 minutes.
The thickness of the obtained coating film is 2200Å and the surface resistance value is 4
MΩ / □, ΔT E = 22%, ΔT V = 11% (ΔT E / ΔT V = 2.0). In addition, the radio wave permeability is 4
When the attenuation rate at 5 MHz to 1 GHz was measured, it was 0 dB over the entire band.

【0029】[実施例2〜5]A液を限外濾過装置によ
って固形分40%にまで濃縮した(D液)。ジルコニウ
ムアセチルアセトンブトキシド(Zr(C572
2 (OC492 のエタノール溶液にH2 OをZrに
対して16mol比、HCl(36.5%)をZrO2
に対して5重量%添加してZrO2 換算で10重量%の
溶液とした(E液)。
Examples 2 to 5 Solution A was concentrated to a solid content of 40% by an ultrafiltration device (solution D). Zirconium acetylacetonate butoxide (Zr (C 5 H 7 O 2)
In an ethanol solution of 2 (OC 4 H 9 ) 2 , H 2 O was added to Zr in a 16 mol ratio, and HCl (36.5%) was added to ZrO 2
5% by weight was added to prepare a solution of 10% by weight in terms of ZrO 2 (solution E).

【0030】実施例1に示されるB、C液、及びD液、
E液を用いて、ATO:RuO2 ZrO2 :SiO2
重量比で表1の組成となるように混合し、イソプロパノ
ールで固形分10重量%となるように希釈してコーティ
ング液とした。得られたコーティング液を用いて、図1
に示すようなディップコーティング装置で、片面をマス
キングした厚さ4mmのフロート板ガラス上に20cm
/分の速度で引き上げ塗布し、150℃の乾燥器で5分
間乾燥させた後600℃で5分間焼き付けを行った。結
果を表2に示す。
Liquids B, C, and D shown in Example 1,
A liquid E was mixed with ATO: RuO 2 ZrO 2 : SiO 2 so as to have a composition shown in Table 1 and diluted with isopropanol to a solid content of 10% by weight to obtain a coating liquid. Using the obtained coating liquid, FIG.
20 cm on a float glass plate with a thickness of 4 mm with one side masked by a dip coating device as shown in
The coating was pulled up at a speed of / min, dried in a dryer at 150 ° C. for 5 minutes, and then baked at 600 ° C. for 5 minutes. The results are shown in Table 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[実施例6]チタニウムアセチルアセトン
イソプロポキシド(Ti(C5722 (OC3
72 とアルミニウムエチルアセトアセテートジイソプ
ロポキシドAl(C693 )(OC372 をT
i/Al=1/4(モル比)となるように混合しエタノ
ールで希釈した後、H2 OをTi+Alに対して8モル
比、HCl(36.5%)をTiO2 +Al23 に対
して20重量%添加して酸化物換算固形分10重量%の
溶液とした(F液)。実施例2に示されるE液のかわり
にF液を用いる以外は実施例2と同様に行った。
Example 6 Titanium acetylacetone isopropoxide (Ti (C 5 H 7 O 2 ) 2 (OC 3 H
7 ) 2 and aluminum ethyl acetoacetate diisopropoxide Al (C 6 H 9 O 3 ) (OC 3 H 7 ) 2
After mixing so that i / Al = 1/4 (molar ratio) and diluting with ethanol, H 2 O was converted to Ti + Al in an 8 molar ratio, and HCl (36.5%) was converted to TiO 2 + Al 2 O 3 . On the other hand, 20% by weight was added to obtain a solution having a solid content of oxide of 10% by weight (F liquid). The same procedure as in Example 2 was performed except that the F liquid was used instead of the E liquid shown in the 2nd embodiment.

【0033】得られたコート膜の膜厚は2000Å、表
面抵抗は2MΩ/□、熱線遮蔽性能はΔTE =25%、
ΔTV =12%であった(ΔTE /ΔTV =2.1)。
電波透過性は、測定した45MHz〜1GHzの全帯域
にわたって減衰率は0dBであった(表2参照)。
The coating film thus obtained had a thickness of 2000Å, a surface resistance of 2 MΩ / □, a heat ray shielding performance of ΔT E = 25%,
ΔT V = 12% (ΔT E / ΔT V = 2.1).
Regarding the radio wave permeability, the attenuation rate was 0 dB over the entire measured band of 45 MHz to 1 GHz (see Table 2).

【0034】[比較例1]窒素/Ar雰囲気中でチタン
ターゲットを用いて反応性スパッタリングによりTiN
膜を形成した。得られた膜の膜厚は200Å、表面抵抗
は500Ω/□、熱線遮蔽性能はΔTE =14%、ΔT
V =13%であった(ΔTE /ΔTV =1.1)。電波
透過性は、80MHz(FMラジオ波帯)、220MH
z(VHFテレビ波帯)、620MHz(UHFテレビ
波帯)、900MHz(携帯電話使用帯)での減衰率を
測定したところ、それぞれ−0.5dB、−1.0d
B、−2.5dB、−4.0dBであった(表2参
照)。
Comparative Example 1 TiN is formed by reactive sputtering using a titanium target in a nitrogen / Ar atmosphere.
A film was formed. The thickness of the obtained film is 200Å, the surface resistance is 500Ω / □, the heat ray shielding performance is ΔT E = 14%, ΔT
V = 13% (ΔT E / ΔT V = 1.1). Radio wave permeability is 80MHz (FM radio wave band), 220MH
The attenuation rates at z (VHF TV wave band), 620 MHz (UHF TV wave band) and 900 MHz (cell phone band) were measured to be -0.5 dB and -1.0 d, respectively.
B, -2.5 dB, -4.0 dB (see Table 2).

【0035】[比較例2]実施例2に示されるコーティ
ング液で、ルテニウム源のB液のかわりに塩化ルテニウ
ムをエタノールに溶解した溶液(ルテニウム含有量10
%)を用いる以外は実施例2と同様に行った。得られた
コート膜は肉眼で判別できるくらいに可視光の透過率に
ムラが生じ、その膜厚は2000Å、表面抵抗は25M
Ω/□、熱線遮蔽性能はΔTE =5〜8%、ΔTV =3
〜5%であった(ΔTE /ΔTV =1.6〜1.7)
(表2参照)。
[Comparative Example 2] A solution prepared by dissolving ruthenium chloride in ethanol instead of the solution B as a ruthenium source in the coating solution shown in Example 2 (ruthenium content: 10).
%) Was performed in the same manner as in Example 2. The obtained coating film has uneven visible light transmittance so that it can be visually discerned, the film thickness is 2000Å, and the surface resistance is 25M.
Ω / □, heat ray shielding performance ΔT E = 5-8%, ΔT V = 3
Was ˜5% (ΔT E / ΔT V = 1.6 to 1.7)
(See Table 2).

【0036】[0036]

【表2】 [Table 2]

【0037】上記試験結果からも明らかなように、本発
明による熱線反射膜によれば、表面抵抗値を下げること
なく熱線を有効に遮蔽することができる。また、可視光
線透過率は日射透過率に比較して低下しないため、可視
光線透過率を確保したい部位(例えば、自動車用窓ガラ
ス等)への適用も可能となる。
As is clear from the above test results, the heat ray reflective film according to the present invention can effectively shield heat rays without lowering the surface resistance value. Further, since the visible light transmittance does not decrease as compared with the solar radiation transmittance, it can be applied to a portion where the visible light transmittance is desired to be secured (for example, window glass for an automobile).

【0038】[0038]

【発明の効果】以上述べたように本発明によれば、高い
表面抵抗を有する熱線反射膜を形成させることができる
ため、それにより電波透過特性を具備させられる。した
がって、熱線反射膜の影響による電波受信体(アンテナ
など)の利得の低下を防止することができ、室内での通
信機器の使用を妨げることなく、かつ熱線の室内への入
射を有効に減じることができる。
As described above, according to the present invention, it is possible to form a heat ray reflective film having a high surface resistance, so that radio wave transmission characteristics can be provided. Therefore, it is possible to prevent a decrease in the gain of the radio wave receiver (antenna, etc.) due to the influence of the heat ray reflective film, and to effectively reduce the incidence of heat rays into the room without hindering the use of indoor communication equipment. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2〜5に用いたディップコーティング装
FIG. 1 is a dip coating apparatus used in Examples 2 to 5.

【符号の説明】[Explanation of symbols]

1:ガラス基板 2:液だめ 3:塗布液 4:フード 5:プーリー 1: Glass substrate 2: Liquid reservoir 3: Coating liquid 4: Hood 5: Pulley

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】導電性酸化物の超微粒子と、酸化ルテニウ
ムと、さらに、酸化珪素、酸化チタン、酸化ジルコニウ
ム、及び酸化アルミニウムの中から選ばれる少なくとも
1種の金属酸化物とを主成分とする熱線反射膜であっ
て、表面抵抗が20KΩ/□以上であることを特徴とす
る熱線反射膜。
1. Main components are ultrafine particles of a conductive oxide, ruthenium oxide, and at least one metal oxide selected from silicon oxide, titanium oxide, zirconium oxide, and aluminum oxide. A heat ray reflective film having a surface resistance of 20 KΩ / □ or more.
【請求項2】導電性酸化物の超微粒子として、100n
m以下の平均粒径を有する、アンチモン含有酸化錫微粒
子または/かつ錫含有酸化インジウム微粒子を含み、酸
化物換算で、アンチモン含有酸化錫または/かつ錫含有
酸化インジウムを50重量%以上、酸化ルテニウムを3
重量%以上、酸化珪素、酸化チタン、酸化ジルコニウ
ム、酸化アルミニウムの合計を10重量%以上含むこと
を特徴とする請求項1記載の熱線反射膜。
2. An ultrafine particle of a conductive oxide is 100 n.
Antimony-containing tin oxide fine particles or / and tin-containing indium oxide fine particles having an average particle size of m or less, and in terms of oxide, antimony-containing tin oxide or / and tin-containing indium oxide are contained in an amount of 50% by weight or more and ruthenium oxide. Three
The heat ray reflective film according to claim 1, wherein the heat ray reflective film contains 10% by weight or more of a total of silicon oxide, titanium oxide, zirconium oxide, and aluminum oxide in an amount of 10% by weight or more.
【請求項3】導電性酸化物の超微粒子と、ルテニウム化
合物と、さらに、珪素化合物、チタン化合物、ジルコニ
ウム化合物、アルミニウム化合物の中から選ばれる少な
くとも1種とを主成分とするコーティング液を塗布した
後、加熱することによって熱線反射膜を製造することを
特徴とする熱線反射膜の製造方法。
3. A coating liquid containing ultrafine particles of a conductive oxide, a ruthenium compound, and at least one selected from a silicon compound, a titanium compound, a zirconium compound, and an aluminum compound as main components. After that, the heat ray reflective film is produced by heating, which is a method for producing the heat ray reflective film.
【請求項4】ルテニウム化合物として、キレート配位子
と錯体を形成したルテニウム塩を含むことを特徴とする
請求項3記載の熱線反射膜の製造方法。
4. The method for producing a heat ray reflective film according to claim 3, wherein the ruthenium compound contains a ruthenium salt complexed with a chelate ligand.
【請求項5】コ−ティング液が、Si(OR)mn
Ti(OR)mn 、Zr(OR)mn 、Al(O
R)uv (ただし、m+n=4、m=1〜4、n=0
〜3、u+v=3、u=1〜3、v=0〜3、R=C1
〜C4 のアルキル基、L=配位子)、あるいはこれらの
重合体のうち少なくとも1種を含むことを特徴とする請
求項3記載の熱線反射膜の製造方法。
5. The coating liquid is Si (OR) m R n ,
Ti (OR) m L n , Zr (OR) m L n , Al (O
R) u L v (where m + n = 4, m = 1 to 4, n = 0
˜3, u + v = 3, u = 1 to 3, v = 0 to 3, R = C 1
To C 4 alkyl group, L = ligand), or at least one kind of these polymers, The method for producing a heat ray reflective film according to claim 3.
【請求項6】表面に請求項1または2記載の熱線反射膜
が施されたガラス物品。
6. A glass article having a surface coated with the heat ray reflective film according to claim 1 or 2.
JP31621492A 1992-10-30 1992-10-30 Heat ray reflective film and its production Withdrawn JPH06144874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31621492A JPH06144874A (en) 1992-10-30 1992-10-30 Heat ray reflective film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31621492A JPH06144874A (en) 1992-10-30 1992-10-30 Heat ray reflective film and its production

Publications (1)

Publication Number Publication Date
JPH06144874A true JPH06144874A (en) 1994-05-24

Family

ID=18074577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31621492A Withdrawn JPH06144874A (en) 1992-10-30 1992-10-30 Heat ray reflective film and its production

Country Status (1)

Country Link
JP (1) JPH06144874A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302284A (en) * 1996-05-14 1997-11-25 Sumitomo Metal Mining Co Ltd Coating fluid for sunlight-screening film and sunlight-screening film made by using the same
EP0779343A3 (en) * 1995-12-12 1998-04-22 Sumitomo Metal Mining Company Limited Coating solution for a heat-ray shielding film and a process for forming a heat-ray shielding film by employing the same
JPH11181336A (en) * 1997-09-30 1999-07-06 Sumitomo Metal Mining Co Ltd Coating fluid for permselective membrane, permselective membrane, and multi layered permselective membrane
JP2000096034A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2000169765A (en) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
EP1674433A1 (en) * 2003-09-17 2006-06-28 Central Glass Company, Limited Laminated glass
WO2007016069A2 (en) * 2005-07-26 2007-02-08 Pilkington North America, Inc. Silver-free low-e solar control coating
JP2007176771A (en) * 2005-12-28 2007-07-12 Nippon Sheet Glass Co Ltd Window glass for vehicle and method for manufacturing same
EP2947179A1 (en) * 2014-05-21 2015-11-25 Areva Renouvelables Method of fabricating a coated substrate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779343A3 (en) * 1995-12-12 1998-04-22 Sumitomo Metal Mining Company Limited Coating solution for a heat-ray shielding film and a process for forming a heat-ray shielding film by employing the same
JPH09302284A (en) * 1996-05-14 1997-11-25 Sumitomo Metal Mining Co Ltd Coating fluid for sunlight-screening film and sunlight-screening film made by using the same
JPH11181336A (en) * 1997-09-30 1999-07-06 Sumitomo Metal Mining Co Ltd Coating fluid for permselective membrane, permselective membrane, and multi layered permselective membrane
JP2000096034A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2000169765A (en) * 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
EP1674433A4 (en) * 2003-09-17 2007-06-13 Central Glass Co Ltd Laminated glass
EP1674433A1 (en) * 2003-09-17 2006-06-28 Central Glass Company, Limited Laminated glass
US7517583B2 (en) 2003-09-17 2009-04-14 Central Glass Company, Limited Laminated glass
WO2007016069A2 (en) * 2005-07-26 2007-02-08 Pilkington North America, Inc. Silver-free low-e solar control coating
WO2007016069A3 (en) * 2005-07-26 2007-03-29 Pilkington North America Inc Silver-free low-e solar control coating
US7875357B2 (en) 2005-07-26 2011-01-25 Pilkington North America, Inc. Silver-free low-e solar control coating
USRE43388E1 (en) * 2005-07-26 2012-05-15 Pilkington North America, Inc. Silver-free low-E solar control coating
JP2007176771A (en) * 2005-12-28 2007-07-12 Nippon Sheet Glass Co Ltd Window glass for vehicle and method for manufacturing same
US7754335B2 (en) 2005-12-28 2010-07-13 Nippon Sheet Glass Company, Limited Vehicle window glass and process for manufacturing the same
JP4524249B2 (en) * 2005-12-28 2010-08-11 日本板硝子株式会社 WINDOW GLASS AND MANUFACTURING METHOD THEREOF
EP2947179A1 (en) * 2014-05-21 2015-11-25 Areva Renouvelables Method of fabricating a coated substrate

Similar Documents

Publication Publication Date Title
KR100621050B1 (en) Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
EP0943587B1 (en) Near infra-red shielding single or multilayer film and a coating liquid for forming the same
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
KR19990036350A (en) Paint for forming transparent conductive layer
EP1020890A1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
WO2004011381A1 (en) Infrared shielding glass
JPH06144874A (en) Heat ray reflective film and its production
KR100471098B1 (en) Coating solution for heat shield film and how to manufacture the heat shield film using it
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JPH0570178A (en) Heat ray-reflecting film and its production
JPH10110123A (en) Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane
JP3266323B2 (en) Composite functional materials
JP3399270B2 (en) Transparent conductive film and composition for forming the same
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JPH10101375A (en) Solar radiation shielding coating solution and solar radiation shielding film using the same
JP2002194291A (en) Method for preparing coating fluid for forming insolation shielding film
JPH09115438A (en) Conductive film, low-reflection conductive film and its forming method
JP3399268B2 (en) Transparent black conductive film
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JPH0953030A (en) Clear conductive coating material and clear conductive film
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
KR20040007576A (en) Coating solution for forming colored transparent conductive film, base body having colored transparent conductive film and manufacturing method thereof, and display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104