[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06138495A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH06138495A
JPH06138495A JP28796792A JP28796792A JPH06138495A JP H06138495 A JPH06138495 A JP H06138495A JP 28796792 A JP28796792 A JP 28796792A JP 28796792 A JP28796792 A JP 28796792A JP H06138495 A JPH06138495 A JP H06138495A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
electrodes
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28796792A
Other languages
Japanese (ja)
Inventor
Makoto Oue
誠 大植
Hiroshi Morimoto
弘 森本
Shinji Shimada
伸二 島田
Masahiro Adachi
昌浩 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP28796792A priority Critical patent/JPH06138495A/en
Publication of JPH06138495A publication Critical patent/JPH06138495A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To inexpensively produce the liquid crystal display device of an active matrix type having a high display contrast and good responsiveness. CONSTITUTION:Plural sets of first electrodes 2 and second electrodes 3 are disposed at <=1mum intervals in parallel with each other on a base substrate 1 and pixel electrodes 4 are formed by superposing the ends on one side thereof on the second electrodes 3. A ferroelectric high-polymer liquid crystal infitrates the spacings 9 between the first electrodes 2 and the second electrodes 3 from the display region. The spontaneous polarization of the ferroelectric high- polymer liquid crystal is inverted by the polarity inversion of the voltage impressed between both electrodes 2 and 3, by which the switching operation is executed. As a result, the pixel electrodes 4 connected to the second electrodes 3 are selected and are then subjected to display driving.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばコンピューター
等のディスプレイに用いられる液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device used for a display such as a computer.

【0002】[0002]

【従来の技術】近年、マトリクス状に配列された画素で
画面が構成されるフラットパネル状の表示装置が、動画
像、静止画像等の大量の情報を効率良く伝達する手段と
して広く用いられている。このような表示装置の代表的
なものとして、一対の基板の間に封じ込めた液晶層に電
圧を印加し、液晶層の状態を変化させることにより、表
示を行うマトリクス型液晶表示装置を挙げることができ
る。
2. Description of the Related Art In recent years, a flat panel display device having a screen composed of pixels arranged in a matrix has been widely used as a means for efficiently transmitting a large amount of information such as moving images and still images. . A typical example of such a display device is a matrix-type liquid crystal display device which performs display by applying a voltage to a liquid crystal layer enclosed between a pair of substrates to change the state of the liquid crystal layer. it can.

【0003】このマトリクス型液晶表示装置の一例とし
て単純マトリクス方式のものがある。
An example of this matrix type liquid crystal display device is a simple matrix type.

【0004】図4に従来の単純マトリクス型液晶表示装
置を示す。この液晶表示装置はベース基板21と、これ
に対向する対向基板24との間に液晶層25を挟持し、
ベース基板21には互いに平行な複数の走査電極22…
を設ける一方、対向基板24にはこの電極22に直交す
る方向に複数の表示電極23…を設ける構成をとる。こ
の種の単純マトリクス型液晶表示装置の一従来例とし
て、表示媒体に強誘電性高分子液晶あるいは強誘電性液
晶を用いたものがある。これらは液晶分子が強誘電体特
有の自発分極をもち、外部印加電界により液晶分子を1
80゜反転させることができるので、この自発分極の反
転を利用して画面表示が行える。しかも、この自発分極
は電界と直接作用するので、自発分極を持たないネマテ
ィック液晶に比べて応答が格段に高速である。この内、
強誘電性高分子液晶はフレキシブルで耐衝撃性も強く、
装置の基板に透明フィルムのような薄形で軽量のものを
用いることができるので薄形軽量のディスプレイ用とし
ては最適な材料である。ただし、強誘電性高分子液晶
は、液晶分子が高分子側鎖に結合しているため、同じ強
誘電体の強誘電液晶に比べると、分極反転速度が遅いと
いう欠点がある。一方、強誘電液晶は強誘電性高分子液
晶に比べ、機械的強度などの構造物性の点では劣るもの
の、強誘電体のもつ前記の高速応答特性には非常にすぐ
れている。
FIG. 4 shows a conventional simple matrix type liquid crystal display device. In this liquid crystal display device, a liquid crystal layer 25 is sandwiched between a base substrate 21 and a counter substrate 24 facing the base substrate 21,
The base substrate 21 has a plurality of scanning electrodes 22 ...
On the other hand, the counter substrate 24 is provided with a plurality of display electrodes 23 in a direction orthogonal to the electrodes 22. As a conventional example of this type of simple matrix type liquid crystal display device, there is one using a ferroelectric polymer liquid crystal or a ferroelectric liquid crystal as a display medium. In these, the liquid crystal molecules have spontaneous polarization peculiar to the ferroelectric substance, and the liquid crystal molecules are
Since it can be inverted by 80 °, screen display can be performed by utilizing this inversion of spontaneous polarization. Moreover, since the spontaneous polarization directly acts on the electric field, the response is significantly faster than that of the nematic liquid crystal having no spontaneous polarization. Of this,
Ferroelectric polymer liquid crystal is flexible and strong in impact resistance,
Since a thin and lightweight material such as a transparent film can be used for the substrate of the device, it is an optimal material for thin and lightweight displays. However, the ferroelectric polymer liquid crystal has a drawback that the polarization inversion speed is slower than that of the ferroelectric liquid crystal having the same ferroelectric substance because liquid crystal molecules are bonded to polymer side chains. On the other hand, the ferroelectric liquid crystal is inferior to the ferroelectric polymer liquid crystal in structural physical properties such as mechanical strength, but is extremely excellent in the above-mentioned high-speed response characteristic of the ferroelectric substance.

【0005】[0005]

【発明が解決しようとする課題】ところで、強誘電性高
分子液晶や強誘電性液晶には以上のような利点があるも
のの、これらを単純マトリクス型の構造の液晶表示装置
に用いると、時分割駆動を行った場合、非選択期間にお
ける電圧変動が大きいため強誘電性高分子液晶又は強誘
電性液晶が部分的に分極反転を起こしコントラストが下
がるという問題がある。
Although the ferroelectric polymer liquid crystal and the ferroelectric liquid crystal have the above advantages, when they are used in a liquid crystal display device of a simple matrix type, they are time-shared. When driven, there is a problem that the ferroelectric polymer liquid crystal or the ferroelectric liquid crystal partly undergoes polarization reversal due to large voltage fluctuation during the non-selection period and the contrast is lowered.

【0006】上記の問題点は、TFT(薄膜トランジス
タ)を備えたアクティブマトリクス方式の液晶表示装置
を適用することによって解消できる。この方式は、時分
割駆動は行わず、画面の各画素のそれぞれにTFTを対
応させ、各画素をこのTFTによって独立に駆動する。
従って、応答性も速く、非選択画素領域での電圧変動が
ないので、コントラストの高い表示が可能となる。
The above problems can be solved by applying an active matrix type liquid crystal display device having a TFT (thin film transistor). In this method, time division driving is not performed, and a TFT is associated with each pixel of the screen, and each pixel is independently driven by this TFT.
Therefore, the responsiveness is fast, and there is no voltage fluctuation in the non-selected pixel region, so that high-contrast display is possible.

【0007】しかし、TFTの実装はマスク数も多く、
パターン形成においても高密度な加工が必要であるの
で、歩留りが悪く、非常にコスト高になるという新たな
問題が生ずる。
However, the number of masks for mounting the TFT is large,
Since high-density processing is required also in pattern formation, a new problem arises that the yield is poor and the cost is very high.

【0008】本発明はこのような従来技術の課題を解決
するためになされたものであり、TFTを設けなくとも
コントラストの高い表示ができ、かつ安価なアクティブ
マトリクス方式の液晶表示装置を提供することを目的と
する。
The present invention has been made in order to solve the problems of the prior art, and provides an inexpensive active matrix type liquid crystal display device capable of high-contrast display without providing a TFT. With the goal.

【0009】本発明の他の目的としては、表示媒体とし
て強誘電性高分子液晶を用いて、軽量化、薄形化の液晶
表示装置を提供することにある。
Another object of the present invention is to provide a liquid crystal display device which uses a ferroelectric polymer liquid crystal as a display medium and which is lightweight and thin.

【0010】また、本発明の他の目的としては、表示媒
体として強誘電性液晶を用い、コントラストが高く、高
速応答の表示が可能な液晶表示装置を提供することにあ
る。
Another object of the present invention is to provide a liquid crystal display device which uses ferroelectric liquid crystal as a display medium and has a high contrast and is capable of high-speed response display.

【0011】[0011]

【課題を解決するための手段】本発明の液晶表示装置
は、第1の電極および第2の電極が僅かな間隔をあけ
て、互いに平行に複数組配設された絶縁性のベース基板
と、該ベース基板との間に強誘電性を有する光変調材料
を挟持して対向配置される絶縁性の対向基板と、該対向
基板上に該第1の電極および第2の電極に交差する方向
に複数本配設された複数の対向電極と、該ベース基板上
の、該対向電極の対向する部分に、複数個設けられ、そ
の一部が各第2の電極の一部に重畳された絵素電極とを
有し、該第1の電極と該第2の電極の間に介在する該光
変調材料をスイッチング素子として機能させる液晶表示
装置であって、そのことにより、上記目的が達成され
る。
A liquid crystal display device according to the present invention comprises an insulating base substrate in which a plurality of sets of first electrodes and second electrodes are arranged in parallel with each other with a slight gap therebetween. An insulative counter substrate that is arranged to face the base substrate with a light modulating material having ferroelectricity sandwiched between the base substrate and the base substrate in a direction intersecting the first electrode and the second electrode. A plurality of counter electrodes arranged in a plurality, and a plurality of picture elements provided on the base substrate at a portion where the counter electrodes face each other, a part of which is overlapped with a part of each second electrode. A liquid crystal display device having an electrode, wherein the light modulation material interposed between the first electrode and the second electrode functions as a switching element, whereby the above object is achieved.

【0012】また好ましくは、前記第1の電極、第2の
電極および前記絵素電極を覆うように、かつ前記間隔内
に入り込むようにして配向膜を設ける。
Further, preferably, an alignment film is provided so as to cover the first electrode, the second electrode and the picture element electrode and to enter the space.

【0013】また好ましくは、前記光変調材料として強
誘電性高分子液晶を用いる。
Preferably, a ferroelectric polymer liquid crystal is used as the light modulating material.

【0014】また好ましくは、前記光変調材料として強
誘電性液晶を用いる。
Further, preferably, a ferroelectric liquid crystal is used as the light modulating material.

【0015】また好ましくは、前記第1の電極および前
記第2の電極を同一の材料で形成する。
Further preferably, the first electrode and the second electrode are made of the same material.

【0016】[0016]

【作用】上記構成において、第1の電極に信号電圧を印
加すると第1の電極と第2の電極との間に介在させた強
誘電性高分子液晶あるいは強誘電性液晶の液晶分子がス
イッチング動作を行い、それぞれの絵素電極が選択駆動
される。すなわち、強誘電性高分子液晶又は強誘電性液
晶がアクティブスイッチング素子として機能し、いわゆ
る、アクティブマトリクス方式の駆動が行われる。
In the above structure, when a signal voltage is applied to the first electrode, the ferroelectric polymer liquid crystal or the liquid crystal molecules of the ferroelectric liquid crystal interposed between the first electrode and the second electrode performs a switching operation. Then, each picture element electrode is selectively driven. That is, the ferroelectric polymer liquid crystal or the ferroelectric liquid crystal functions as an active switching element, and so-called active matrix driving is performed.

【0017】[0017]

【実施例】【Example】

(実施例1)以下に本発明の実施例を説明する。図1
(a)、(b)に示すように、この液晶表示装置は透明
絶縁性のフィルムからなるベース基板1と、これに対向
する絶縁性の対向基板7との間に液晶層5を挟持する構
成になっている。この液晶層5は、強誘電性高分子液晶
からなる。ベース基板1の液晶層5に接する面の上に
は、Alからなる第1の電極2(信号電極)と第2の電
極3とが互いに平行に交互に複数配設されている。第1
の電極2と第2の電極3との間の距離は1μm、両電極
2、3の膜厚は200nmに設定されている。対向基板
7の内面上には、上記第1の電極2に交差する方向に複
数の対向電極6…が互いに平行に設けられている。
Example 1 An example of the present invention will be described below. Figure 1
As shown in (a) and (b), this liquid crystal display device has a structure in which a liquid crystal layer 5 is sandwiched between a base substrate 1 made of a transparent insulating film and an insulating counter substrate 7 facing the base substrate 1. It has become. The liquid crystal layer 5 is made of ferroelectric polymer liquid crystal. On the surface of the base substrate 1 in contact with the liquid crystal layer 5, a plurality of first electrodes 2 (signal electrodes) and second electrodes 3 made of Al are alternately arranged in parallel with each other. First
The distance between the electrode 2 and the second electrode 3 is set to 1 μm, and the film thickness of both electrodes 2 and 3 is set to 200 nm. On the inner surface of the counter substrate 7, a plurality of counter electrodes 6 ... Are provided in parallel to each other in a direction intersecting the first electrode 2.

【0018】また、ベース基板1の液晶層5に接する面
上において、各対向電極6の下に、この対向電極6の線
幅より小さい幅で、かつ隣接する第1の電極2、2に挟
まれた領域のそれぞれに、ITO等の透明導電膜からな
る絵素電極4が設けられている。この絵素電極4はその
一端が第2の電極3の上に重畳され、他端をベース基板
1の面上に接して形成されている。上記の第1の電極
2、第2の電極3および絵素電極4を覆ってベース基板
1の全表面に強誘電性高分子液晶が塗布され、かつ配向
処理され、このベース基板1と対向基板7とがシール樹
脂を用いて貼り合わされている。この時、第1の電極2
と第2の電極3との間の間隙9内に強誘電性高分子液晶
が浸入している。上記基板材料としては他にガラス、石
英などを用いてもよい。
Further, on the surface of the base substrate 1 which is in contact with the liquid crystal layer 5, under each counter electrode 6, it is sandwiched between the first electrodes 2 and 2 which are adjacent to each other and have a width smaller than the line width of the counter electrode 6. A pixel electrode 4 made of a transparent conductive film such as ITO is provided in each of the separated regions. The pixel electrode 4 is formed such that one end thereof is superposed on the second electrode 3 and the other end is in contact with the surface of the base substrate 1. A ferroelectric polymer liquid crystal is applied to the entire surface of the base substrate 1 so as to cover the first electrode 2, the second electrode 3 and the pixel electrode 4 and is subjected to an alignment treatment. 7 and 7 are attached to each other by using a sealing resin. At this time, the first electrode 2
Ferroelectric polymer liquid crystal penetrates into the gap 9 between the second electrode 3 and the second electrode 3. Alternatively, glass, quartz, or the like may be used as the substrate material.

【0019】また、第1の電極2と第2の電極3とは同
時にパターン形成するので、第1の電極2と絵素電極4
とを同一の材料で形成する場合は、第2の電極3と絵素
電極4は同一のものとなるが、例えば、反射型で用いる
場合は、両電極3、4ともAl等の金属で形成してもよ
い。また、透過型で用いる場合は、両電極3、4ともに
ITO等の透明電極で形成してもよい。こうして、第1
の電極2、第2の電極3および絵素電極4とを同一材料
で形成することにより、成膜工程の簡略化並びに効率化
が図れる。
Further, since the first electrode 2 and the second electrode 3 are simultaneously patterned, the first electrode 2 and the pixel electrode 4 are formed.
The second electrode 3 and the pixel electrode 4 are the same when both are formed of the same material. For example, in the case of a reflective type, both electrodes 3 and 4 are formed of a metal such as Al. You may. When used as a transmissive type, both electrodes 3 and 4 may be formed of transparent electrodes such as ITO. Thus, the first
By forming the electrode 2, the second electrode 3 and the pixel electrode 4 of the same material, the film forming process can be simplified and made more efficient.

【0020】さて、本発明においては、強誘電性高分子
液晶の自発分極特性を利用し、強誘電性高分子液晶に2
端子非線形素子の役割を行わせるものであるが、その原
理は以下のようである。
In the present invention, the spontaneous polarization characteristic of the ferroelectric polymer liquid crystal is utilized to obtain the ferroelectric polymer liquid crystal.
The function of the terminal non-linear element is to be performed, and its principle is as follows.

【0021】強誘電性高分子液晶のらせん構造のらせん
のピッチは通常数ミクロンであるが、電極間の距離を1
μm程度に設定することにより、この距離の電極間に強
誘電性高分子液晶を介在させると、強誘電性高分子液晶
のらせん構造がほどけ、液晶分子が一方向に揃うように
なる。この状態でこの電極間の液晶に電圧を印加する
と、電圧の正または負の極性により、液晶分子の向きを
切り換えることができる。
The pitch of the spiral of the spiral structure of the ferroelectric polymer liquid crystal is usually several microns, but the distance between the electrodes is 1
By setting the thickness to about μm, when the ferroelectric polymer liquid crystal is interposed between the electrodes at this distance, the helical structure of the ferroelectric polymer liquid crystal is unraveled and the liquid crystal molecules are aligned in one direction. When a voltage is applied to the liquid crystal between the electrodes in this state, the orientation of the liquid crystal molecules can be switched depending on the positive or negative polarity of the voltage.

【0022】また、向きが切り換えられた液晶分子は印
加電圧をオフにしても反対向きの電界が印加されるまで
分子の向きが維持される。すなわち、メモリー性があ
り、電圧の極性を反転して印加すれば、また分子の向き
が反転できる。
Further, the liquid crystal molecules whose orientation has been switched are maintained in orientation even when the applied voltage is turned off until an electric field in the opposite direction is applied. That is, it has a memory property, and if the polarity of the voltage is reversed and then applied, the direction of the molecule can be reversed again.

【0023】このような挙動を有する強誘電性高分子液
晶を非線形素子に備えた本発明の液晶表示装置は以下の
ように動作する。図2(a)、(b)に本発明の液晶表
示装置の等価回路を示す。本実施例においては、図2
(a)に示すように第1の電極2と第2の電極3との間
の間隙9に浸入した強誘電性高分子液晶の液晶容量CF
と絵素電極4と対向電極6との間の液晶容量CLCとが直
列に継ながれた回路を成している。この内、液晶容量C
Fが2端子非線形素子として動作する。
The liquid crystal display device of the present invention provided with the ferroelectric polymer liquid crystal having such a behavior in the non-linear element operates as follows. 2A and 2B show equivalent circuits of the liquid crystal display device of the present invention. In this embodiment, FIG.
As shown in (a), the liquid crystal capacitance C F of the ferroelectric polymer liquid crystal that has penetrated into the gap 9 between the first electrode 2 and the second electrode 3.
And a liquid crystal capacitance C LC between the pixel electrode 4 and the counter electrode 6 form a circuit connected in series. Of this, the liquid crystal capacitance C
F operates as a two-terminal nonlinear element.

【0024】一本の第1の電極2と一本の対向電極6が
選択され、これらのそれぞれに電圧が印加されると、両
電極2、6の電位差の電圧VSが第1の電極2と対向電
極6とを直接結ぶ経路の液晶容量CSと第1の電極2か
ら第2の電極3および絵素電極4を経て対向電極6に達
する経路の途中に介在する液晶容量CF、CLCに印加さ
れる。後者の経路においては、電圧VSは図2(a)に
示すように第1の電極2と第2の電極3との間の液晶容
量CFと、絵素電極4と対向電極6との間の液晶容量C
LCとに容量分割され、VSの分圧VFと分圧VLCがそれぞ
れ液晶容量CFと液晶容量CL Cにかかる。この時、第1
の電極2と第2の電極3との間の液晶容量CFにかかる
分圧VFはVF=CLC・VS/(CLC+CF)で表され、液
晶容量CFの液晶分子は分圧VFの極性に基づいて一方向
に並ぶ。また、絵素電極4と対向電極6との間の液晶容
量CLCにかかる分圧VLCはVLC=CF・VS/(CLC+C
F)となる。CFをCLCの1/20程度に設定することで
印加電圧VSのほとんどを絵素電極4と対向電極6との
間の液晶容量CLCにかけることができる。この分圧VLC
が信号電圧として液晶容量CLCに書き込まれ、液晶容量
LCが表示素子として働く。
When one first electrode 2 and one counter electrode 6 are selected and a voltage is applied to each of them, the voltage V S of the potential difference between the two electrodes 2 and 6 is changed to the first electrode 2. And a counter electrode 6 and a liquid crystal capacitor C S in a path directly connecting the counter electrode 6 and liquid crystal capacitors C F and C interposed in the path from the first electrode 2 to the counter electrode 6 through the second electrode 3 and the pixel electrode 4. Applied to LC . In the latter route, the voltage V S is divided between the liquid crystal capacitance C F between the first electrode 2 and the second electrode 3 and the pixel electrode 4 and the counter electrode 6 as shown in FIG. Liquid crystal capacity C between
It is capacitively divided and LC, partial pressures V F and the divided V LC of V S is applied to the liquid crystal capacitance C F and the liquid crystal capacitance C L C, respectively. At this time, the first
The partial pressure V F applied to the liquid crystal capacitance C F between the electrode 2 and the second electrode 3 is expressed by V F = C LC · V S / (C LC + C F ), and the liquid crystal molecule of the liquid crystal capacitance C F Are arranged in one direction based on the polarity of the partial pressure V F. Further, the partial pressure V LC applied to the liquid crystal capacitance C LC between the picture element electrode 4 and the counter electrode 6 is V LC = C F · V S / (C LC + C
F ). By setting C F to about 1/20 of C LC , most of the applied voltage V S can be applied to the liquid crystal capacitance C LC between the pixel electrode 4 and the counter electrode 6. This partial pressure V LC
There is written as the signal voltage to the liquid crystal capacitance C LC, the liquid crystal capacitance C LC acts as a display element.

【0025】さて、この状態で印加電圧VSをオフにす
ると、液晶容量CFの液晶分子の方向は印加電圧VSがオ
ンの時の方向に保持されたままで、液晶容量CLCには図
2(b)に示すように印加電圧VSがオンの時に回路に
蓄積された電荷によってV'LCの大きさの電圧が保持さ
れる。この時のV'LCはV'LC=ーSf×Pr/(CLC+C
F)となる。(ここで、Sfは第1の電極2と第2の電極
3とが相対して液晶容量CFに電圧を印加する領域の両
電極2、3の断面積であり、Prは単位面積当りの残存
電荷密度である。)ここまでが第1フィールドの液晶容
量CFと液晶容量CLCの挙動である。
Now, when the applied voltage V S is turned off in this state, the direction of the liquid crystal molecules of the liquid crystal capacitance C F is kept in the direction when the applied voltage V S is on, and the liquid crystal capacitance C LC is shown in FIG. As shown in 2 (b), when the applied voltage V S is on, the electric charge accumulated in the circuit holds the voltage of V ′ LC . At this time, V'LC is V'LC = -S f × P r / (C LC + C
F ). (Here, S f is a cross-sectional area of both electrodes 2 and 3 in a region where the first electrode 2 and the second electrode 3 face each other and apply a voltage to the liquid crystal capacitance C F , and P r is a unit area. The above is the behavior of the liquid crystal capacitance C F and the liquid crystal capacitance C LC in the first field.

【0026】次の選択時(第2フィールド)に逆の極性
の電圧ーVSが印加されると、電圧ーVSの分圧ーVF
ーVLCがそれぞれ液晶容量CFと液晶容量CLCに印加さ
れる。この時、液晶容量CFの自発分極は反転し、液晶
容量CLCには分圧ーVLCが印加され、映像信号が書き込
まれる。この状態で印加電圧ーVSをオフにしても、液
晶容量CFの液晶分子の方向は印加電圧ーVSがオンの時
の方向に保持されたままであり、液晶容量CLCには印加
電圧ーVSがオンの時に回路に蓄積された電荷によって
ーV'LCの大きさの電圧が保持される。以上のようにし
て、1フレーム(2フィールド)にわたって液晶が交流
駆動される。
[0026] during the next selection voltage over V S of opposite polarity to the (second field) is applied, the partial pressure over V F of the voltage over V S,
-V LC is applied to the liquid crystal capacitance C F and the liquid crystal capacitance C LC , respectively. At this time, the spontaneous polarization of the liquid crystal capacitance C F is inverted, and a partial voltage −V LC is applied to the liquid crystal capacitance C LC to write the video signal. Even if the applied voltage −V S is turned off in this state, the direction of the liquid crystal molecules of the liquid crystal capacitance C F is still held in the direction when the applied voltage −V S is on, and the applied voltage −V S is applied to the liquid crystal capacitance C LC. over V S is the voltage of the magnitude of over V 'LC by the charges accumulated in the circuit when the oN is maintained. As described above, the liquid crystal is AC-driven over one frame (two fields).

【0027】一方、第1の電極2と対向電極6とを直接
結ぶ経路の液晶容量CSは、第1の電極2の線幅が小さ
く、絵素電極4の面積よりも充分に小さいため、液晶容
量CLCと比較して無視することができる。従って、これ
がクロストークの原因となるおそれも無く、液晶容量C
LCに高電界を印加することができるので強誘電性高分子
液晶の分極反転速度の遅さを補うことができる。
On the other hand, the liquid crystal capacitance C S of the path directly connecting the first electrode 2 and the counter electrode 6 has a small line width of the first electrode 2 and is sufficiently smaller than the area of the pixel electrode 4, It can be ignored as compared with the liquid crystal capacitance C LC . Therefore, there is no possibility that this will cause crosstalk, and the liquid crystal capacitance C
Since a high electric field can be applied to the LC , it is possible to compensate for the slow polarization inversion speed of the ferroelectric polymer liquid crystal.

【0028】以上、本実施例によれば、選択画素部に蓄
積された電荷によって選択画素部の液晶を直接に駆動す
るので、非選択画素部での強誘電性高分子液晶分子の反
転の発生を抑制することができ、全画面にわたってコン
トラストの高い表示が大容量ディスプレイにおいても実
現できる。また、強誘電性高分子液晶は応答速度が1〜
10msと比較的遅いが、本実施例の構成によれば、強
誘電性高分子液晶の分極反転速度の遅さを補うことがで
きるので、強誘電性高分子液晶のフレキシブルで耐衝撃
性の強い物性を生かすことができ、薄形軽量の液晶表示
装置を安価に作製することができる。
As described above, according to the present embodiment, since the liquid crystal in the selected pixel portion is directly driven by the electric charge accumulated in the selected pixel portion, the inversion of the ferroelectric polymer liquid crystal molecules occurs in the non-selected pixel portion. Can be suppressed, and high-contrast display over the entire screen can be realized even in a large-capacity display. Moreover, the response speed of the ferroelectric polymer liquid crystal is 1 to
Although it is relatively slow as 10 ms, the structure of this embodiment can compensate for the slow polarization reversal speed of the ferroelectric polymer liquid crystal, so that the ferroelectric polymer liquid crystal is flexible and has high impact resistance. It is possible to make full use of the physical properties and to manufacture a thin and lightweight liquid crystal display device at low cost.

【0029】(実施例2)実施例2を図3に示す。この
実施例2の液晶表示装置においては、ベース基板1の上
の第1の電極2、第2の電極3および絵素電極4の上
と、対向基板7の対向電極6の上に配向膜8を形成し、
表示媒体に強誘電性液晶を用いる以外は上述の実施例1
と同様である。従って、対応する部分に同一の番号を付
し、異なる部分についてのみ説明する。
(Embodiment 2) Embodiment 2 is shown in FIG. In the liquid crystal display device of Example 2, the alignment film 8 is formed on the first electrode 2, the second electrode 3 and the pixel electrode 4 on the base substrate 1 and on the counter electrode 6 of the counter substrate 7. To form
Example 1 described above except that a ferroelectric liquid crystal is used as the display medium.
Is the same as. Therefore, the same numbers are given to corresponding parts, and only different parts will be described.

【0030】前記配向膜8の形成はスピンコート法で行
うが、この際、配向膜8の厚みは60nm程度であり、
第1の電極2と第2の電極3の間隔が1μmであること
や、両電極2、3の厚みが200nmであることに比べ
て充分小さいので、配向膜8がこの間隙9を埋めること
は無い。従って、この第1の電極2と第2の電極3との
間の間隙9には配向膜8の形成後、ベース基板1と対向
基板7との間に注入される強誘電性液晶が浸入し、実施
例1と同様に、この間隙9の液晶容量CFがスイッチン
グ素子として動作する。
The alignment film 8 is formed by a spin coating method. At this time, the thickness of the alignment film 8 is about 60 nm.
Since the gap between the first electrode 2 and the second electrode 3 is 1 μm and the thickness of both electrodes 2 and 3 is 200 nm, it is sufficiently small that the alignment film 8 does not fill the gap 9. There is no. Therefore, in the gap 9 between the first electrode 2 and the second electrode 3, the ferroelectric liquid crystal injected between the base substrate 1 and the counter substrate 7 enters after the alignment film 8 is formed. As in the first embodiment, the liquid crystal capacitance C F in the gap 9 operates as a switching element.

【0031】強誘電性液晶は応答性が格段に速く、実施
例2においては表示コントラストが高いことに加え、応
答が高速である液晶表示装置が安価に実現できる。
The ferroelectric liquid crystal has a remarkably fast response, and in Example 2, a liquid crystal display device having a high display contrast and a high response can be realized at low cost.

【0032】[0032]

【発明の効果】以上の液晶表示装置によれば、第1の電
極と第2の電極との間に介在する強誘電性の光変調材料
にスイッチング動作を行わせ、各絵素電極を独立して駆
動するので、大画面にわたって表示のコントラストが高
く、応答性も良好なアクティブマトリクス方式の液晶表
示装置を歩留り高く、安価に製造できる。
According to the above-described liquid crystal display device, the ferroelectric light modulating material interposed between the first electrode and the second electrode is caused to perform the switching operation, and each pixel electrode is made independent. Since it is driven by the liquid crystal display device, an active matrix type liquid crystal display device having a high display contrast over a large screen and a good response can be manufactured at a high yield and at a low cost.

【0033】また、特に請求項2に記載の液晶表示装置
によれば、表示媒体に強誘電性高分子液晶を用いるの
で、強誘電性高分子液晶のフレキシブルで耐衝撃性にす
ぐれた物性を生かして基板材料に薄形のフィルムを使用
できるので、軽量薄形で、かつ、大画面にわたって表示
のコントラストが高く、応答性も良好なアクティブマト
リクス方式の液晶表示装置を歩留り高く、安価に製造す
ることができる。
Further, according to the liquid crystal display device of the second aspect, since the ferroelectric polymer liquid crystal is used as the display medium, the physical properties of the ferroelectric polymer liquid crystal which are flexible and have excellent impact resistance are utilized. Since a thin film can be used as the substrate material, it is possible to manufacture an active matrix type liquid crystal display device that is lightweight and thin, has high display contrast over a large screen, and has good responsiveness at high yield and at low cost. You can

【0034】また、特に請求項4に記載の液晶表示装置
によれば、表示媒体に強誘電性液晶を用い、強誘電性液
晶には高速応答性があるので、高速応答で、かつ、大画
面にわたって表示のコントラストが高いアクティブマト
リクス方式の液晶表示装置を歩留り高く、安価に製造す
ることができる。
Further, according to the liquid crystal display device of the fourth aspect, since the ferroelectric liquid crystal is used as the display medium and the ferroelectric liquid crystal has a high-speed response, a high-speed response and a large screen are obtained. Therefore, an active matrix type liquid crystal display device having a high display contrast can be manufactured at a high yield and at a low cost.

【0035】また、特に請求項5に記載の液晶表示装置
によれば、第1の電極2、第2の電極3および絵素電極
4とを同一材料で形成することにより、成膜工程の簡略
化並びに効率化が図れる。
Further, according to the liquid crystal display device of the fifth aspect, the first electrode 2, the second electrode 3 and the pixel electrode 4 are formed of the same material, so that the film forming process is simplified. Efficiency and efficiency can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明液晶表示装置の第1実施例を示
す断面図、(b)は平面図。
1A is a sectional view showing a first embodiment of a liquid crystal display device of the present invention, and FIG. 1B is a plan view.

【図2】(a)はスイッチON状態における本発明液晶
表示装置の等価回路図。(b)はスイッチOFF状態に
おける本発明液晶表示装置の等価回路図。
FIG. 2A is an equivalent circuit diagram of the liquid crystal display device of the present invention in a switch ON state. FIG. 6B is an equivalent circuit diagram of the liquid crystal display device of the present invention in a switch OFF state.

【図3】(a)は本発明液晶表示装置の第2実施例を示
す断面図、(b)は平面図。
3A is a sectional view showing a second embodiment of the liquid crystal display device of the present invention, and FIG. 3B is a plan view.

【図4】(a)は従来の単純マトリクス型液表示装置を
示す断面図、(b)は平面図。
4A is a cross-sectional view showing a conventional simple matrix liquid crystal display device, and FIG. 4B is a plan view.

【符号の説明】[Explanation of symbols]

1 ベース基板 2 第1の電極 3 第2の電極 4 絵素電極 5 液晶層 6 対向電極 7 対向基板 8 配向膜 9 間隙 1 Base Substrate 2 First Electrode 3 Second Electrode 4 Pixel Electrode 5 Liquid Crystal Layer 6 Counter Electrode 7 Counter Substrate 8 Alignment Film 9 Gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 昌浩 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Adachi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の電極および第2の電極が僅かな間隔
をあけて、互いに平行に複数組配設された絶縁性のベー
ス基板と、 該ベース基板との間に強誘電性を有する光変調材料を挟
持して対向配置される絶縁性の対向基板と、 該対向基板上に該第1の電極および第2の電極に交差す
る方向に複数本配設された複数の対向電極と、 該ベース基板上の、該対向電極の対向する部分に複数個
設けられ、その一部が各第2の電極の一部に重畳された
絵素電極とを有し、 該第1の電極と該第2の電極の間に介在する該光変調材
料をスイッチング素子として機能させる液晶表示装置。
1. An insulative base substrate in which a plurality of first electrodes and a plurality of second electrodes are arranged in parallel with each other at a slight interval, and has ferroelectricity between the base substrate. An insulative counter substrate which is disposed to face each other with a light modulation material interposed therebetween; and a plurality of counter electrodes disposed on the counter substrate in a direction intersecting with the first electrode and the second electrode. A plurality of pixel electrodes are provided on the base substrate at opposite portions of the counter electrode, a part of which is overlapped with a portion of each second electrode. A liquid crystal display device in which the light modulation material interposed between the second electrodes functions as a switching element.
【請求項2】前記第1の電極、第2の電極および前記絵
素電極を覆うようにかつ前記間隔内に入り込むようにし
て配向膜が設けられている請求項1に記載の液晶表示装
置。
2. The liquid crystal display device according to claim 1, wherein an alignment film is provided so as to cover the first electrode, the second electrode and the picture element electrode and to enter the space.
【請求項3】前記光変調材料が強誘電性高分子液晶であ
る請求項1又は2に記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the light modulation material is a ferroelectric polymer liquid crystal.
【請求項4】前記光変調材料が強誘電性液晶である請求
項2に記載の液晶表示装置。
4. The liquid crystal display device according to claim 2, wherein the light modulation material is a ferroelectric liquid crystal.
【請求項5】前記第1の電極および前記第2の電極が同
一の材料で形成されている請求項1、2、3又は4に記
載の液晶表示装置。
5. The liquid crystal display device according to claim 1, 2, 3, or 4, wherein the first electrode and the second electrode are formed of the same material.
JP28796792A 1992-10-26 1992-10-26 Liquid crystal display device Withdrawn JPH06138495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28796792A JPH06138495A (en) 1992-10-26 1992-10-26 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28796792A JPH06138495A (en) 1992-10-26 1992-10-26 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH06138495A true JPH06138495A (en) 1994-05-20

Family

ID=17724075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28796792A Withdrawn JPH06138495A (en) 1992-10-26 1992-10-26 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH06138495A (en)

Similar Documents

Publication Publication Date Title
JP3634249B2 (en) Liquid crystal display device and display method thereof
EP0542518A2 (en) Liquid crystal element and driving method thereof
JP3194873B2 (en) Active matrix type liquid crystal display device and driving method thereof
JPH11258573A (en) Method and device for driving liquid crystal display element
JP3054520B2 (en) Driving method of active matrix cell
JP3724163B2 (en) Liquid crystal display element and liquid crystal display device
JPH02212887A (en) Display device
JP3164987B2 (en) Active matrix type liquid crystal display
JP3332863B2 (en) Optical modulator
JPS63311235A (en) Manufacture of liquid crystal electrooptical device
JPH06138495A (en) Liquid crystal display device
JPH0414766B2 (en)
JPH0822033A (en) Liquid crystal display device
JPS63316024A (en) Optical modulating element
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
RU2017184C1 (en) Multielement electrooptic transducer and method for controlling the same
JPS60262136A (en) Driving method of liquid-crystal element
JP2000147462A (en) Active matrix type liquid crystal display element
RU2017183C1 (en) Multielement electrooptic transducer and method for controlling the same
JP2551343B2 (en) Liquid crystal display
JP2739147B2 (en) Liquid crystal electro-optical device
JPS60262134A (en) Driving method of liquid-crystal element
JPS619623A (en) Driving method of liquid crystal element
JP3359956B2 (en) Active matrix display device, method for manufacturing the same, and method for manufacturing liquid crystal display device
JPH075433A (en) Method for driving liquid crystal electrooptic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104