[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06137268A - Pressure regulating method for vacuum pump - Google Patents

Pressure regulating method for vacuum pump

Info

Publication number
JPH06137268A
JPH06137268A JP29047492A JP29047492A JPH06137268A JP H06137268 A JPH06137268 A JP H06137268A JP 29047492 A JP29047492 A JP 29047492A JP 29047492 A JP29047492 A JP 29047492A JP H06137268 A JPH06137268 A JP H06137268A
Authority
JP
Japan
Prior art keywords
pressure
vacuum pump
reaction chamber
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29047492A
Other languages
Japanese (ja)
Inventor
Tomoji Kawai
智司 川合
Yoshihisa Suzuki
好久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29047492A priority Critical patent/JPH06137268A/en
Publication of JPH06137268A publication Critical patent/JPH06137268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To perform regulation of the pressure of a system even under a condition, such as a low flow rate and a high pressure, by enlarging the pressure regulation range of the system. CONSTITUTION:In a method to regulate a pressure in a reaction chamber 11 which is brought into a pressure reduced state with the aid of a vacuum pump 14 and in which reaction gas is continuously introduced, gas difference from the reaction gas is introduced in the vacuum pump and through control of an amount of the introduced gas, the pressure in the reaction chamber 11 is regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空ポンプによって減圧
状態に導かれるとともに、反応気体が連続的に導入され
る系における圧力調整を行う真空ポンプにおける圧力調
整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure adjusting method in a vacuum pump for controlling the pressure in a system in which a reaction gas is continuously introduced while the pressure is reduced by a vacuum pump.

【0002】[0002]

【従来の技術】真空ポンプによって減圧状態に導かれる
とともに、反応気体が連続的に導入される系としては、
光ファイバ用母材を製造する場合の減圧CVD法やプラ
ズマCVD法における系などが挙げられる。
2. Description of the Related Art A system in which a reaction gas is continuously introduced while being introduced into a depressurized state by a vacuum pump,
Examples include a system in a low pressure CVD method and a plasma CVD method when manufacturing an optical fiber preform.

【0003】従来、前記の系における圧力を真空ポンプ
によって調整する方法のひとつとして、図3に示す方法
が挙げられる。
Conventionally, as one of the methods for adjusting the pressure in the above system by a vacuum pump, there is a method shown in FIG.

【0004】反応室1には給気管2と排気管3が接続さ
れて系が構成される。排気管3には、電動機5によって
回転駆動される真空ポンプ4例えば油回転ポンプと、例
えば電動機7によって駆動されるコンダクタンス可変バ
ルブ6が接続されている。真空ポンプ4はコンダクタン
ス可変バルブ6を介して反応室1に接続されることにな
る。
An air supply pipe 2 and an exhaust pipe 3 are connected to the reaction chamber 1 to form a system. The exhaust pipe 3 is connected to a vacuum pump 4 which is rotationally driven by an electric motor 5, such as an oil rotary pump, and a conductance variable valve 6 which is driven by, for example, an electric motor 7. The vacuum pump 4 is connected to the reaction chamber 1 via the conductance variable valve 6.

【0005】真空ポンプ4の回転により排気管3を介し
て反応室1を減圧状態に導くとともに、給気管2から反
応気体を連続的に反応室1に導入する。反応室1の圧力
は、排気管3を開閉するコンダクタンス可変バルブ6の
開度に応じて調整される。
The reaction chamber 1 is depressurized through the exhaust pipe 3 by the rotation of the vacuum pump 4, and the reaction gas is continuously introduced into the reaction chamber 1 through the air supply pipe 2. The pressure of the reaction chamber 1 is adjusted according to the opening degree of the conductance variable valve 6 that opens and closes the exhaust pipe 3.

【0006】また、他に図4に示す方法がある。図4に
おいて図3と同じ部分は同じ符号を付して示す。
Another method is shown in FIG. 4, the same parts as those in FIG. 3 are designated by the same reference numerals.

【0007】この方法では真空ポンプ4がコンダクタン
ス可変バルブ6を介さずに反応室1に直接接続される。
反応室1の圧力は、真空ポンプ4の排気能力すなわち真
空ポンプ4の回転数を調整することにより行う。具体的
には、真空ポンプ4を回転駆動する電動機5に電源周波
数を制御して電動機5の回転数を調節し、これにより真
空ポンプ4の回転数を制御する。
In this method, the vacuum pump 4 is directly connected to the reaction chamber 1 without the conductance variable valve 6.
The pressure in the reaction chamber 1 is controlled by adjusting the exhaust capacity of the vacuum pump 4, that is, the rotation speed of the vacuum pump 4. Specifically, the power supply frequency of the electric motor 5 that rotationally drives the vacuum pump 4 is controlled to adjust the rotational speed of the electric motor 5, and thus the rotational speed of the vacuum pump 4 is controlled.

【0008】[0008]

【発明が解決しようとする課題】しかし、前者の方法で
は次に述べる問題がある。
However, the former method has the following problems.

【0009】排気管3系において、コンダクタンスの低
下は荒引きに要する時間を長くすることになり、従って
コンダクタンスの低下をもたらす要素を系に持ち込むこ
とは必要最小限に止めるべきであって、この点からして
コンダクタンス可変バルブ6の導入は好ましいことでは
なく、しかも反応気体の導入量が真空ポンプ4の排気能
力以下の場合にしか圧力調整を行うことができない。
In the exhaust pipe 3 system, the decrease in conductance lengthens the time required for roughing. Therefore, it is necessary to bring the element that causes the decrease in conductance into the system to the minimum necessary. Therefore, the introduction of the variable conductance valve 6 is not preferable, and the pressure adjustment can be performed only when the introduction amount of the reaction gas is less than the exhaust capacity of the vacuum pump 4.

【0010】このことから上記の系におけるコンダクタ
ンスを小さくするには限界があり、反応室に導入される
反応気体の導入量が少なく、且つ反応室圧力が高い場合
には圧力調整が困難となり、図5の線図における右下の
白部分では圧力調整が不可能となる。そして、図5の線
図でわかるように圧力調整が可能な範囲に上限と下限が
あり、その調整範囲が狭くなっている。図5の線図は縦
軸に反応気体の導入量をとり、横軸に反応室の圧力をと
って示すものである。
Therefore, there is a limit to reducing the conductance in the above system, and it becomes difficult to adjust the pressure when the amount of the reaction gas introduced into the reaction chamber is small and the pressure in the reaction chamber is high. In the lower right white part of the diagram of Fig. 5, pressure adjustment becomes impossible. Then, as can be seen from the diagram of FIG. 5, the range in which the pressure can be adjusted has an upper limit and a lower limit, and the adjustment range is narrow. In the diagram of FIG. 5, the vertical axis represents the amount of reaction gas introduced, and the horizontal axis represents the pressure in the reaction chamber.

【0011】また、コンダクタンス可変バルブ6に反応
気体に含まれる未生成生成物が付着し、目づまりが生じ
やすく制御性が悪い。
In addition, unproduced products contained in the reaction gas adhere to the conductance variable valve 6, which easily causes clogging, resulting in poor controllability.

【0012】後者の方法には次に述べる問題がある。The latter method has the following problems.

【0013】この方法は真空ポンプ4の回転数を変化さ
せることによって真空ポンプ4の排気能力を連続的に変
えている。しかし、真空ポンプ4の回転には定トルクが
必要で、電源の周波数を減少し過ぎると、真空ポンプ4
の回転が不安定となり停止する。
In this method, the exhaust capacity of the vacuum pump 4 is continuously changed by changing the rotation speed of the vacuum pump 4. However, a constant torque is required to rotate the vacuum pump 4, and if the frequency of the power supply is reduced too much, the vacuum pump 4
Rotation becomes unstable and stops.

【0014】よって、真空ポンプ4を安定して回転させ
るための電動機5の電源周波数の限界値が存在し、その
時の圧力が制御できる限界圧力となる。このため、反応
室に導入される反応気体の導入量が少なく、且つ反応室
1の圧力が高い場合には圧力調整が困難となり、図5の
線図における右下の白部分では圧力調整が不可能とな
る。
Therefore, there is a limit value of the power supply frequency of the electric motor 5 for stably rotating the vacuum pump 4, and the pressure at that time is the limit pressure that can be controlled. For this reason, when the amount of the reaction gas introduced into the reaction chamber is small and the pressure in the reaction chamber 1 is high, it becomes difficult to adjust the pressure, and the white portion in the lower right part of the diagram in FIG. It will be possible.

【0015】本発明は前記事情に基づいてなされたもの
で、系における圧力調整が可能な範囲を拡大し、系に導
入される気体が低流量で、系が高圧力という条件下にお
いても系の圧力調整を可能にした真空ポンプにおける圧
力調整方法を提供することを目的とする。
The present invention has been made based on the above circumstances, and expands the range in which the pressure can be adjusted in the system so that the gas introduced into the system has a low flow rate and the system is under high pressure. An object of the present invention is to provide a pressure adjustment method in a vacuum pump that enables pressure adjustment.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
に本発明の真空ポンプにおける圧力調整方法は、真空ポ
ンプによって減圧状態に導かれるとともに、反応気体が
連続的に導入される系の圧力を調整する方法において、
前記真空ポンプと前記系との間に前記反応気体とは別の
気体を導入し、この気体の導入量を制御して前記反応室
の圧力を調整することを特徴とする。
In order to achieve the above-mentioned object, a pressure adjusting method in a vacuum pump of the present invention is directed to a reduced pressure state by a vacuum pump, and the pressure of a system into which a reaction gas is continuously introduced is adjusted. In the method of adjusting,
It is characterized in that a gas other than the reaction gas is introduced between the vacuum pump and the system, and the pressure of the reaction chamber is adjusted by controlling the introduction amount of this gas.

【0017】[0017]

【作用】真空ポンプと系との間に前記反応気体とは別の
気体を導入し、この気体の導入量を制御するに際して、
真空ポンプと系との間に導入する反応気体の導入量には
制限がないので、系に導入する反応気体の導入量を一定
に保ちながら系の圧力を増大させることが可能である。
When a gas other than the reaction gas is introduced between the vacuum pump and the system and the amount of this gas introduced is controlled,
Since the amount of the reaction gas introduced between the vacuum pump and the system is not limited, it is possible to increase the pressure of the system while keeping the amount of the reaction gas introduced into the system constant.

【0018】従って、系における圧力調整が可能な範囲
を拡大し、系に導入される気体が低流量で系が高圧力と
いう条件下においても圧力調整を可能である。
Therefore, the range in which the pressure can be adjusted in the system is expanded, and the pressure can be adjusted even under the condition that the gas introduced into the system has a low flow rate and the system has a high pressure.

【0019】[0019]

【実施例】図1は本発明の圧力調整方法の実施例を説明
する図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining an embodiment of the pressure adjusting method of the present invention.

【0020】本発明の圧力調整方法が対象とする系およ
び関連する設備の構成について述べる。
The configuration of the system and related equipment to which the pressure adjusting method of the present invention is applied will be described.

【0021】反応室11には給気管12と排気管13が
接続され、これら反応室11、給気管12および排気管
13で系が構成されている。排気管13には、電動機1
5によって回転駆動される真空ポンプ14例えば油回転
ポンプと、コンダクタンス可変バルブ16が介在して接
続されている。
An air supply pipe 12 and an exhaust pipe 13 are connected to the reaction chamber 11, and the reaction chamber 11, the air supply pipe 12 and the exhaust pipe 13 constitute a system. In the exhaust pipe 13, the electric motor 1
A vacuum pump 14 that is driven to rotate by means of 5, for example, an oil rotary pump, is connected via a conductance variable valve 16.

【0022】また、排気管13における反応室11と真
空ポンプ14との間の箇所には空気導入管17が接続さ
れ、この空気導入管17にはコントローラ19によって
駆動される流量調節器18が介在して接続されている。
An air introducing pipe 17 is connected to the exhaust pipe 13 between the reaction chamber 11 and the vacuum pump 14, and a flow rate controller 18 driven by a controller 19 is interposed in the air introducing pipe 17. Then connected.

【0023】なお、図中20は給気管12に介在された
可変流量バルブである。
In the figure, 20 is a variable flow valve interposed in the air supply pipe 12.

【0024】反応室11における圧力を調整する方法に
ついて説明する。
A method of adjusting the pressure in the reaction chamber 11 will be described.

【0025】電動機15によって真空ポンプ14を回転
させ、排気管13を介して反応室11の内部の気体を引
いて反応室11を減圧状態に導くとともに、反応気体A
を給気管12を介して反応室11に連続的に導入する。
The vacuum pump 14 is rotated by the electric motor 15, and the gas inside the reaction chamber 11 is drawn through the exhaust pipe 13 to bring the reaction chamber 11 into a depressurized state and the reaction gas A
Is continuously introduced into the reaction chamber 11 through the air supply pipe 12.

【0026】ここで、反応室11への反応気体Aの導入
量Qr 、真空ポンプ14の排気能力(回転数)をSo 、
配管のコンダクタンスをC、コンダクタンス可変バルブ
16のコンダクタンスをCv 、反応気体以外の気体の導
入量をQv 、反応室11の中央部の圧力をPとし、反応
気体Aの導入量と有効排気能力との間で平衡状態が保た
れているとすると、 P=(1/C+1/Cv +1/So )×(Qr +Qv ) という関係が成り立つ。
Here, the introduction amount Qr of the reaction gas A into the reaction chamber 11 and the exhaust capacity (rotation speed) of the vacuum pump 14 are So,
Let C be the conductance of the pipe, Cv be the conductance of the conductance variable valve 16, Qv be the introduction amount of a gas other than the reaction gas, and P be the pressure in the central portion of the reaction chamber 11, and the introduction amount of the reaction gas A and the effective evacuation capacity. Assuming that the equilibrium state is maintained between them, the following relationship holds: P = (1 / C + 1 / Cv + 1 / So) × (Qr + Qv).

【0027】なお、この式において配管のコンダクタン
スCはほとんど定数とみなす事ができる。
In this equation, the conductance C of the pipe can be regarded as a constant.

【0028】反応室11に導入される反応気体の導入量
Qr が小さく、且つ反応室11の圧力Pが高い場合に
は、真空ポンプ14の排気能力(回転数)So を小さく
する必要がある。しかし、真空ポンプ14の排気能力
(回転数)So には下限があるので、反応室11の圧力
Pに限界値が存在することになる。
When the amount Qr of the reaction gas introduced into the reaction chamber 11 is small and the pressure P in the reaction chamber 11 is high, it is necessary to reduce the exhaust capacity (rotation speed) So of the vacuum pump 14. However, since the exhaust capacity (rotation speed) So of the vacuum pump 14 has a lower limit, the pressure P in the reaction chamber 11 has a limit value.

【0029】本発明では反応室11と真空ポンプ14と
の間の排気管13に、反応気体以外の気体Bを導入して
圧力Po を加えることによって、反応気体の導入量Qr
が少ない低流量、反応室11の圧力が高い高圧力の条件
下でも反応室11の平衡を保ちながら反応室11の圧力
を調整することができる。
In the present invention, a gas B other than the reaction gas is introduced into the exhaust pipe 13 between the reaction chamber 11 and the vacuum pump 14 and a pressure Po is applied to the exhaust gas 13 to introduce the reaction gas Qr.
It is possible to adjust the pressure of the reaction chamber 11 while maintaining the equilibrium of the reaction chamber 11 even under conditions of a low flow rate and a high pressure of the reaction chamber 11 that is high.

【0030】具体的には、空気導入管17から反応室1
1と真空ポンプ14との間に導入される気体Bの流量を
流量調節器18で制御することにより、反応室11の圧
力Pを調節する。
Specifically, from the air introduction pipe 17 to the reaction chamber 1
The pressure P of the reaction chamber 11 is adjusted by controlling the flow rate of the gas B introduced between 1 and the vacuum pump 14 by the flow rate controller 18.

【0031】流量調節器18の調節は次に述べる方法に
よって行う。
The flow controller 18 is adjusted by the method described below.

【0032】反応室11の圧力は圧力計21によって検
出する。圧力計21は検出情報を直流信号に変換して比
較回路22に出力する。比較回路22には予め必要とす
る反応室11の圧力を設定して入力しておく。
The pressure in the reaction chamber 11 is detected by the pressure gauge 21. The pressure gauge 21 converts the detection information into a DC signal and outputs it to the comparison circuit 22. The required pressure of the reaction chamber 11 is set and input to the comparison circuit 22 in advance.

【0033】比較回路22では圧力計21からの検出圧
力直流信号と予め入力した設定圧力直流信号とを比較し
て差信号を検出し、この差信号を制御回路23に出力す
る。制御回路23は差信号が零になるようにコントロー
ラ19を操作する。コントローラ19は差信号が零にな
るまで流量調節器18を駆動する。これによって反応室
11の圧力を調整する。
The comparison circuit 22 compares the detected pressure DC signal from the pressure gauge 21 with the preset pressure DC signal input in advance to detect a difference signal, and outputs this difference signal to the control circuit 23. The control circuit 23 operates the controller 19 so that the difference signal becomes zero. The controller 19 drives the flow controller 18 until the difference signal becomes zero. Thereby, the pressure of the reaction chamber 11 is adjusted.

【0034】次に具体例について説明する。Next, a specific example will be described.

【0035】反応室11に、真空ポンプ14である排気
速度167リットル/分の油回転ポンプと、隔膜式静電
容量型の圧力計21を夫々接続する。反応室11と真空
ポンプ14との間に、フルスケール30SLM の流量調節
器18を介在した空気導入管17を接続する。気体Bに
は窒素ガスを用いた。
To the reaction chamber 11, an oil rotary pump, which is an evacuation speed of 167 liters / minute, which is a vacuum pump 14, and a diaphragm type capacitance type pressure gauge 21 are connected. Between the reaction chamber 11 and the vacuum pump 14, an air introduction pipe 17 having a flow controller 18 of full scale 30 SLM is connected. Nitrogen gas was used as the gas B.

【0036】反応室11には反応気体Aとして水素を導
入量10SCCMで導入し、設定圧力を10Torrにしたとこ
ろ、気体Bの窒素の流量が7.3SLM で反応室11の圧
力Pがほぼ一定となった。また、水素を導入量10SCCM
で導入し、設定圧力を100Torrにしたところ、気体B
の窒素の流量が26.1SLM で反応室11の圧力がほぼ
一定となった。
When hydrogen was introduced into the reaction chamber 11 as the reaction gas A at an introduction amount of 10 SCCM and the set pressure was set to 10 Torr, the flow rate of nitrogen of the gas B was 7.3 SLM and the pressure P in the reaction chamber 11 was almost constant. became. Also, the amount of hydrogen introduced is 10 SCCM
Introduced at, setting the pressure to 100 Torr, gas B
At a nitrogen flow rate of 26.1 SLM, the pressure in the reaction chamber 11 became almost constant.

【0037】次に気体Aとしてメタンを導入量1SCCMで
反応室11に導入し、設定圧力を5Torrにしたところ、
気体Bの窒素の流量が5.2SLM で反応室11の圧力が
ほぼ一定となった。
Next, when methane was introduced as the gas A into the reaction chamber 11 at an introduction amount of 1 SCCM and the set pressure was set to 5 Torr,
When the flow rate of nitrogen of the gas B was 5.2 SLM, the pressure in the reaction chamber 11 became almost constant.

【0038】このように本発明では図2の線図でもわか
るように従来困難であった反応気体の導入量が10SCC
M、反応室11の圧力が10Torrなどの低流量、高圧力
の条件下においても反応室11の圧力を調整することが
できる。
As described above, according to the present invention, as can be seen from the diagram of FIG.
M, the pressure of the reaction chamber 11 can be adjusted even under conditions of low flow rate and high pressure such as 10 Torr.

【0039】図2の線図は縦軸に反応気体の導入量をと
り、横軸に反応室の圧力をとって示すものである。
In the diagram of FIG. 2, the vertical axis represents the amount of reaction gas introduced, and the horizontal axis represents the pressure in the reaction chamber.

【0040】従来例においてコンダクタンス可変バルブ
により反応室の圧力を調節する方法(図3参照)では、
反応室の圧力Pの下限は約0.5〜8Torrであって、こ
れ以上高い圧力にすることができない。
In the conventional method of adjusting the pressure in the reaction chamber by the conductance variable valve (see FIG. 3),
The lower limit of the pressure P in the reaction chamber is about 0.5 to 8 Torr, and a higher pressure cannot be achieved.

【0041】また、従来例において真空ポンプの排気能
力を調節して反応室の圧力を調節する方法(図4参照)
では、反応気体の導入量が300SCCMで反応室の圧力が
10Torrであり、反応気体の導入量が50SCCMで反応室
の圧力が2Torrであり、反応気体の導入量が111SCCM
で反応室の圧力が8Torrであるという報告があり、これ
以上高い圧力の調整を行うことができないといえる。
In addition, in the conventional example, a method of adjusting the exhaust capacity of the vacuum pump to adjust the pressure of the reaction chamber (see FIG. 4).
Then, the introduction amount of the reaction gas is 300 SCCM, the pressure of the reaction chamber is 10 Torr, the introduction amount of the reaction gas is 50 SCCM, the pressure of the reaction chamber is 2 Torr, the introduction amount of the reaction gas is 111 SCCM.
There is a report that the pressure in the reaction chamber is 8 Torr, and it can be said that the pressure cannot be adjusted higher than this.

【0042】なお、反応室と真空ポンプとの間に導入す
る気体としては、窒素に限定されない。すなわち、この
気体は反応室での反応には何等影響を及ぼさないので、
どのような気体を用いても良い。
The gas introduced between the reaction chamber and the vacuum pump is not limited to nitrogen. That is, this gas has no effect on the reaction in the reaction chamber,
Any gas may be used.

【0043】[0043]

【発明の効果】以上説明したように本発明の真空ポンプ
における圧力調整方法によれば、真空ポンプと系との間
に反応気体とは別の気体を導入し、この気体の導入量を
制御することによって系の圧力を調整するので、系にお
ける圧力調整が可能な範囲を拡大し、従来困難であった
系へ導入される反応気体が低流量で系が高圧力という条
件下においても系の圧力調整を可能にすることができ
る。
As described above, according to the pressure adjusting method for the vacuum pump of the present invention, a gas other than the reaction gas is introduced between the vacuum pump and the system, and the introduction amount of this gas is controlled. Since the pressure of the system is adjusted by expanding the system pressure, the range in which the pressure can be adjusted in the system is expanded. Adjustments can be made possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧力調整方法の一実施例を説明する
図。
FIG. 1 is a diagram illustrating an embodiment of a pressure adjusting method of the present invention.

【図2】同じ実施例における圧力調整が可能な範囲を示
す線図。
FIG. 2 is a diagram showing a range in which pressure adjustment is possible in the same embodiment.

【図3】従来の圧力調整方法の一例を説明する図。FIG. 3 is a diagram illustrating an example of a conventional pressure adjusting method.

【図4】従来の圧力調整方法の他の例を説明する図。FIG. 4 is a diagram illustrating another example of a conventional pressure adjusting method.

【図5】従来の圧力調整方法における圧力調整が可能な
範囲を示す線図。
FIG. 5 is a diagram showing a range in which pressure can be adjusted by a conventional pressure adjusting method.

【符号の説明】[Explanation of symbols]

11…反応室、14…真空ポンプ、17…空気導入管、
18…流量調節器。
11 ... Reaction chamber, 14 ... Vacuum pump, 17 ... Air introduction pipe,
18 ... Flow controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空ポンプによって減圧状態に導かれる
とともに、反応気体が連続的に導入される系の圧力を調
整する方法において、前記真空ポンプと前記系との間に
前記反応気体とは別の気体を導入し、この気体の導入量
を制御して前記系の圧力を調整することを特徴とする真
空ポンプにおける圧力調整方法。
1. A method for adjusting the pressure of a system in which a reaction gas is continuously introduced while being introduced into a decompressed state by a vacuum pump, wherein a reaction gas different from the reaction gas is provided between the vacuum pump and the system. A pressure adjusting method in a vacuum pump, characterized in that gas is introduced and the amount of this gas introduced is controlled to adjust the pressure of the system.
JP29047492A 1992-10-28 1992-10-28 Pressure regulating method for vacuum pump Pending JPH06137268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29047492A JPH06137268A (en) 1992-10-28 1992-10-28 Pressure regulating method for vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29047492A JPH06137268A (en) 1992-10-28 1992-10-28 Pressure regulating method for vacuum pump

Publications (1)

Publication Number Publication Date
JPH06137268A true JPH06137268A (en) 1994-05-17

Family

ID=17756483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29047492A Pending JPH06137268A (en) 1992-10-28 1992-10-28 Pressure regulating method for vacuum pump

Country Status (1)

Country Link
JP (1) JPH06137268A (en)

Similar Documents

Publication Publication Date Title
US5488967A (en) Method and apparatus for feeding gas into a chamber
KR101255873B1 (en) Ozone system for multi-chamber tools
US5746581A (en) Method and apparatus for evacuating vacuum system
JP2011008804A (en) System for regulating pressure in vacuum chamber, and vacuum pumping unit equipped with the same
KR20010070418A (en) Low pressure ratio vpsa plant tuning and balancing system
KR20010043839A (en) Method and apparatus for stabilising a plasma
JPS6318414A (en) Apparatus and method for regulating and controlling pressureof vacuum chamber
JPH06137268A (en) Pressure regulating method for vacuum pump
US6051072A (en) Method and apparatus for semiconductor filming
JPH06137269A (en) Pressure regulating method for vacuum pump
JP2760331B2 (en) Vacuum exhaust device
JPS62224685A (en) Vacuum pressure control device
JPS62169416A (en) Method and equipment for controlling pressure of vacuum apparatus
JPH0855769A (en) Automatic regulator of inside and outside pressure difference
JPH0745492A (en) Pressure controller for vacuum chamber
JPS60156984A (en) Automatic control device in vacuum atmosphere
JPH06266446A (en) Pressure controller for vacuum chamber
JPH0232352B2 (en)
JPH0321454B2 (en)
JPH04349195A (en) Vacuum apparatus
KR20020068770A (en) Apparatus and method for controlling pressure of process chamber
JPH03140471A (en) Production equipment of semiconductor device
JP2002363755A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
JPH01245301A (en) Control device
JPH0225017A (en) Resist coating device