JPH06135221A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH06135221A JPH06135221A JP4288457A JP28845792A JPH06135221A JP H06135221 A JPH06135221 A JP H06135221A JP 4288457 A JP4288457 A JP 4288457A JP 28845792 A JP28845792 A JP 28845792A JP H06135221 A JPH06135221 A JP H06135221A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- heat
- compressor
- refrigerant
- hot gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/02—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
- B60H1/03—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
- B60H1/039—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、車両に搭載するのに好
適な空調装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner suitable for mounting on a vehicle.
【0002】[0002]
【従来の技術】例えば、車両に搭載される空調装置にお
ける暖房装置としては、車両走行用のエンジンの廃熱を
利用するものが主流となってきており、具体的には、エ
ンジンを冷却する冷却水が流通される温水ヒータを用い
て、この温水ヒータを、車室内に導かれる空気の流れに
対して、冷房用の冷凍サイクルの熱交換器の下流側に配
設した構成である。2. Description of the Related Art For example, as a heating device in an air conditioner mounted on a vehicle, a device utilizing waste heat of an engine for driving the vehicle has become mainstream, and more specifically, a cooling device for cooling the engine. A hot water heater in which water flows is used, and the hot water heater is arranged downstream of the heat exchanger of the refrigerating cycle for cooling with respect to the flow of air introduced into the vehicle interior.
【0003】ところが、エンジンの発熱量が少なくてエ
ンジンを冷却する冷却水が充分に加熱されない場合に
は、主暖房装置たる温水ヒータのみでは暖房能力が不足
するので、これを補足するために、従来より、補助暖房
装置として、電気ヒータ,燃焼ヒータ或いはヒートポン
プ等を併用することが考えられている。However, when the amount of heat generated by the engine is low and the cooling water for cooling the engine is not sufficiently heated, the heating capacity is insufficient with only the hot water heater as the main heating device. Therefore, it is considered to use an electric heater, a combustion heater, a heat pump, or the like as the auxiliary heating device.
【0004】[0004]
【発明が解決しようとする課題】従来の補助暖房装置と
して電気ヒータを用いる構成では、電力不足が生ずる問
題があり、又、燃焼ヒータを用いる構成では、安全性が
低下し易い問題があり、更に、ヒートポンプを用いる構
成では、低温環境下での使用が困難になる問題がある。The conventional structure using an electric heater as an auxiliary heating device has a problem of power shortage, and the structure using a combustion heater has a problem that safety is apt to be lowered. The configuration using the heat pump has a problem that it is difficult to use it in a low temperature environment.
【0005】本発明は上記事情に鑑みてなされたもので
あり、その目的は、主暖房装置の暖房能力を補足する場
合に、電力不足及び安全性の低下を来たすことがなく、
低温環境下でも充分に使用することができる簡易な空調
装置を提供するにある。The present invention has been made in view of the above circumstances, and an object thereof is to prevent power shortage and decrease in safety when supplementing the heating capacity of a main heating device.
It is to provide a simple air conditioner that can be sufficiently used even in a low temperature environment.
【0006】[0006]
【課題を解決するための手段】本発明の空調装置は、主
暖房装置を設け、冷房運転時において、圧縮機で圧縮し
た冷媒を、凝縮器で凝縮して熱交換機器に供給し、ここ
で蒸発させた後、前記圧縮機に戻すようにした冷凍サイ
クルを設け、暖房運転時において、前記圧縮機で圧縮さ
れた冷媒を、前記凝縮器をバイパスして前記熱交換機器
に供給し、ここで放熱させた後、前記圧縮機に戻すよう
にしたホットガス供給機構を前記冷凍サイクルに設け、
このホットガス供給機構に外部の熱と熱交換する吸熱部
を設ける構成に特徴を有する。The air conditioner of the present invention is provided with a main heating device, and during cooling operation, the refrigerant compressed by the compressor is condensed by the condenser and supplied to the heat exchange equipment. After evaporation, a refrigeration cycle is provided so as to be returned to the compressor, and during heating operation, the refrigerant compressed by the compressor is supplied to the heat exchange device by bypassing the condenser, After radiating heat, a hot gas supply mechanism for returning to the compressor is provided in the refrigeration cycle,
The hot gas supply mechanism is characterized in that it is provided with an endothermic portion that exchanges heat with external heat.
【0007】[0007]
【作用】本発明の空調装置によれば、暖房運転時には、
圧縮機で圧縮された高温高圧の冷媒即ちホットガスが熱
交換器に供給されるので、熱交換器は放熱して主暖房装
置の暖房能力を補足する。この場合、ホットガス供給機
構には外部の熱と熱交換する吸熱部が設けられているの
で、ホットガス供給機構内の冷媒は加熱されるようにな
り、熱交換器の放熱量が増大する。According to the air conditioner of the present invention, during heating operation,
Since the high-temperature and high-pressure refrigerant or hot gas compressed by the compressor is supplied to the heat exchanger, the heat exchanger radiates heat to supplement the heating capacity of the main heating device. In this case, since the hot gas supply mechanism is provided with the heat absorbing portion that exchanges heat with the external heat, the refrigerant in the hot gas supply mechanism is heated, and the amount of heat released by the heat exchanger is increased.
【0008】[0008]
【実施例】以下、本発明の第1の実施例につき、図1乃
至図5を参照して説明する。先ず、図1及び図2に従っ
て、全体の構成につき述べる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. First, the overall configuration will be described with reference to FIGS.
【0009】冷凍サイクル1は、圧縮機2,凝縮器3,
レシーバ4,膨張弁5,熱交換器6及びアキュームレー
タ7を備えている。そして、圧縮機2の吐出口部は電磁
弁8を介して凝縮器3の流入端部に連結され、凝縮器3
の流出端部はレシーバ4及び膨張弁5を介して熱交換器
6の流入端部に連結され、熱交換器6の流出端部は電磁
弁9及びアキュームレータ7を介して圧縮機2の吸入口
部に連結されている。この場合、冷凍サイクル1の熱交
換器6は、図1に示すように、車両たる自動車の車室1
0内に送風するダクト11内に配設されている。又、膨
張弁5の感熱筒5aは熱交換器6の流出端部側に配設さ
れている。The refrigeration cycle 1 comprises a compressor 2, a condenser 3,
A receiver 4, an expansion valve 5, a heat exchanger 6 and an accumulator 7 are provided. The discharge port of the compressor 2 is connected to the inflow end of the condenser 3 via the solenoid valve 8 and the condenser 3
Is connected to the inflow end of the heat exchanger 6 via the receiver 4 and the expansion valve 5, and the outflow end of the heat exchanger 6 is connected to the suction port of the compressor 2 via the solenoid valve 9 and the accumulator 7. Connected to the department. In this case, the heat exchanger 6 of the refrigeration cycle 1 is, as shown in FIG.
It is arranged in a duct 11 that blows air into the air. The heat-sensitive cylinder 5 a of the expansion valve 5 is arranged on the outflow end side of the heat exchanger 6.
【0010】冷凍サイクル1の圧縮機2は、図2に示す
ように、自動車走行用のエンジン12によって駆動され
るようになっている。又、前記ダクト11内には、熱交
換器6の下流側に位置して主暖房装置としての温水ヒー
タ13が配設されている。そして、エンジン12の冷却
水流出口部はウォータバルブ14を有する配管15を介
して温水ヒータ13の流入端部に連結され、その温水ヒ
ータ13の流出端部は配管16を介してエンジン12の
冷却水流入口部に連結されている。As shown in FIG. 2, the compressor 2 of the refrigeration cycle 1 is driven by an engine 12 for driving a vehicle. A hot water heater 13 as a main heating device is arranged in the duct 11 at a position downstream of the heat exchanger 6. The cooling water outlet of the engine 12 is connected to the inflow end of the warm water heater 13 via a pipe 15 having a water valve 14, and the outflow end of the warm water heater 13 is connected to the cooling water flow of the engine 12 via a pipe 16. It is connected to the entrance.
【0011】ホットガス供給機構17は、熱交換器6に
圧縮機2から高温高圧の冷媒即ちホットガスを供給する
ためのものであり、次のように構成されている。即ち、
圧縮機2の吐出口部は電磁弁18を介してバイパス管1
9の一端部に連結され、このバイパス管19の他端部は
減圧弁20の流入口部に連結され、減圧弁20の流出口
部はバイパス管21を介して熱交換器6の流入端部に連
結されている。そして、電磁弁9に並列に、電磁弁22
と吸熱部たる吸熱用熱交換器23とを直列にしたものが
接続されている。この場合、ホットガス供給機構17の
吸熱用熱交換器23は、図2に示すように、車室10内
の空気を排出する排気口24部分に配設されている。The hot gas supply mechanism 17 is for supplying a high temperature and high pressure refrigerant, that is, hot gas from the compressor 2 to the heat exchanger 6, and is constructed as follows. That is,
The discharge port of the compressor 2 is connected to the bypass pipe 1 via the solenoid valve 18.
9, the other end of the bypass pipe 19 is connected to the inlet of the pressure reducing valve 20, and the outlet of the pressure reducing valve 20 is connected to the inlet end of the heat exchanger 6 via the bypass pipe 21. Are linked to. Then, in parallel with the solenoid valve 9, the solenoid valve 22
An endothermic heat exchanger 23, which is an endothermic portion, is connected in series. In this case, the heat absorbing heat exchanger 23 of the hot gas supply mechanism 17 is arranged at the exhaust port 24 portion for discharging the air in the vehicle interior 10, as shown in FIG.
【0012】さて、図3に従って、電気的構成につき述
べる。操作部25は、冷房運転の開始信号,停止信号及
び暖房運転の開始信号,停止信号等を制御手段たるEC
U26に入力するようになっている。そして、ECU2
6は、この操作部25からの信号に基いて、後述するよ
うに、前記電磁弁8,9,ウォータバルブ14,電磁弁
18,22及び電磁クラッチ2aを通断電制御するよう
になっている。尚、電磁クラッチ2aは、圧縮機2に内
蔵されたもので、通電されるとエンジン12の駆動力を
圧縮機2に伝達してその圧縮機2を運転させるようにな
っている。Now, the electrical configuration will be described with reference to FIG. The operation unit 25 is an EC which is a control means for controlling a start signal and a stop signal of the cooling operation and a start signal and a stop signal of the heating operation.
It is designed to be input to U26. And the ECU 2
Based on a signal from the operation section 25, 6 controls the solenoid valves 8 and 9, the water valve 14, the solenoid valves 18 and 22, and the electromagnetic clutch 2a to switch on and off, as will be described later. . The electromagnetic clutch 2a is built in the compressor 2, and when energized, the driving force of the engine 12 is transmitted to the compressor 2 to operate the compressor 2.
【0013】次に、本実施例の作用につき、図4及び図
5をも参照しながら説明する。この場合、図5に示すモ
リエル線図における各点a乃至eは、図2に示す冷凍サ
イクル1及びホットガス供給機構17における各点a乃
至eと同一位置を示す。Next, the operation of this embodiment will be described with reference to FIGS. 4 and 5. In this case, points a to e in the Mollier diagram shown in FIG. 5 indicate the same positions as points a to e in the refrigeration cycle 1 and the hot gas supply mechanism 17 shown in FIG.
【0014】今、操作部25から冷房運転の開始信号が
ECU26に与えられた場合には、ECU26は、電磁
弁8及び9に通電して開放させるとともに(図4参
照)、電磁クラッチ2aに通電して圧縮機2の運転を開
始させる。これにより、圧縮機2で圧縮された高温高圧
の気体冷媒は(図5破線の点a)、電磁弁8を経て凝縮
器3に供給され、ここで凝縮されて高温高圧の液体冷媒
となり(図5破線の点a´)、この液体冷媒は、レシー
バ4を経て膨張弁5に供給されて、ここで低圧低温の気
液混合冷媒となる(図5破線の点c)。When the cooling operation start signal is given to the ECU 26 from the operation unit 25, the ECU 26 energizes the solenoid valves 8 and 9 to open them (see FIG. 4) and energizes the electromagnetic clutch 2a. Then, the operation of the compressor 2 is started. As a result, the high-temperature and high-pressure gas refrigerant compressed by the compressor 2 (point a in the broken line in FIG. 5) is supplied to the condenser 3 via the solenoid valve 8 and condensed there to become the high-temperature and high-pressure liquid refrigerant (see FIG. 5 point a ') of the broken line, this liquid refrigerant is supplied to the expansion valve 5 via the receiver 4 and becomes a low-pressure low-temperature gas-liquid mixed refrigerant here (point c of the broken line in FIG. 5).
【0015】更に、膨張弁5からの気液混合冷媒は、熱
交換器(蒸発器)6内で蒸発して低温低圧の気体冷媒と
なり(図5破線の点d)、この気体冷媒は、電磁弁9を
経た後(図5破線の点e)、アキュームレータ7を経て
圧縮機2に戻るようになる。従って、この場合の冷媒の
挙動は、図5破線の線図Aに示すようになる。Further, the gas-liquid mixed refrigerant from the expansion valve 5 evaporates in the heat exchanger (evaporator) 6 to become a low-temperature low-pressure gas refrigerant (point d of the broken line in FIG. 5). After passing through the valve 9 (point e of the broken line in FIG. 5), it returns to the compressor 2 via the accumulator 7. Therefore, the behavior of the refrigerant in this case is as shown in the diagram A of the broken line in FIG.
【0016】尚、このような冷暖運転中においては、E
CU26はウォータバルブ14に通電して開放させるよ
うになっており、従って、エンジン12を冷却した冷却
水が温水ヒータ13に供給されるようになる。そして、
図1に示すように、ダクト11内にはエアミックスダン
パ27が配設されていて、このエアミックスダンパ27
が回動調節されることにより、熱交換器6を通って吹出
口11aに向かう冷風と温水ヒータ13を通って吹出口
11aに向かう温風との割合が調節され、以て、吹出口
11aから吹出される風の温度調節が行なわれる。又、
エアミックスダンパ27が「最大冷房運転」に調節され
た場合には、ECU26はウォータバルブ14を断電し
て閉塞させるようになっており、温水ヒータ13にはエ
ンジン12の冷却水は供給されない。During such cooling and heating operation, E
The CU 26 energizes the water valve 14 to open it, so that the cooling water that has cooled the engine 12 is supplied to the hot water heater 13. And
As shown in FIG. 1, an air mix damper 27 is provided in the duct 11, and the air mix damper 27 is provided.
Is adjusted to adjust the ratio between the cool air flowing through the heat exchanger 6 toward the air outlet 11a and the hot air flowing through the hot water heater 13 toward the air outlet 11a. The temperature of the blown air is adjusted. or,
When the air mix damper 27 is adjusted to the "maximum cooling operation", the ECU 26 disconnects the water valve 14 so as to close it, and the cooling water for the engine 12 is not supplied to the hot water heater 13.
【0017】さて、操作部25から暖房運転の開始信号
がECU26に与えられた場合には、ECU26は、電
磁弁18及び22に通電して開放させるとともに(図4
参照)、電磁クラッチ2aに通電して圧縮機2の運転を
開始させ、更に、ウォータバルブ14に通電して開放さ
せる。従って、ウォータバルブ14の開放により、エン
ジン12を冷却する冷却水が温水ヒータ13に供給され
る。When a heating operation start signal is given to the ECU 26 from the operation unit 25, the ECU 26 energizes and opens the solenoid valves 18 and 22 (see FIG. 4).
), The electromagnetic clutch 2a is energized to start the operation of the compressor 2, and further, the water valve 14 is energized to open. Therefore, by opening the water valve 14, the cooling water for cooling the engine 12 is supplied to the hot water heater 13.
【0018】又、圧縮機2の運転により、圧縮機2から
の高温高圧の気体冷媒即ちホットガスは(図5実線の点
a)、電磁弁18を経て減圧弁20に供給されて減圧さ
れ、比較的低圧で高温の気体冷媒となる(図5実線の点
b,c)。この減圧弁20からの気体冷媒は、熱交換器
(放熱器)6で放熱されて若干液体分を含んだ低温の気
体冷媒となる(図5実線の点d)。以上のことから理解
されるように、圧縮機2からのホットガスは、凝縮器
3,レシーバ4及び膨張弁5をバイパスして熱交換器6
に供給されるのである。Further, by operating the compressor 2, the high-temperature and high-pressure gas refrigerant, that is, the hot gas from the compressor 2 (point a in the solid line in FIG. 5) is supplied to the pressure reducing valve 20 via the solenoid valve 18 and is reduced in pressure. It becomes a high temperature gas refrigerant at a relatively low pressure (points b and c in the solid line in FIG. 5). The gas refrigerant from the pressure reducing valve 20 is radiated by the heat exchanger (radiator) 6 and becomes a low-temperature gas refrigerant containing a small amount of liquid (point d in the solid line in FIG. 5). As understood from the above, the hot gas from the compressor 2 bypasses the condenser 3, the receiver 4 and the expansion valve 5, and the heat exchanger 6
Will be supplied to.
【0019】而して、ダクト11内を吹出口11aに向
かって流れる風は、熱交換器6からの放熱によって加熱
され、しかる後、温水ヒータ13によって加熱されて吹
出口11aから車室10内に吹出される。尚、車室10
内の空気の一部は吸気用熱交換器23を通って排気口2
4から外部に排気として放出される。The air flowing through the duct 11 toward the air outlet 11a is heated by the heat radiation from the heat exchanger 6, and then is heated by the hot water heater 13 to be blown into the vehicle interior 10 from the air outlet 11a. To be blown out. The passenger compartment 10
Part of the air inside passes through the intake heat exchanger 23 and the exhaust port 2
It is discharged from the outside as exhaust gas.
【0020】一方、熱交換器6を経た気体冷媒は、電磁
弁22を経て吸熱用熱交換器23に供給される。この吸
気熱用熱交換器23においては、冷媒は、排気口24を
経て外部に放出される車室10内からの排気の熱と熱交
換される。この結果、吸熱用熱交換器23を経た冷媒は
(図5実線の点e)、点d時の冷媒よりも若干圧力が低
く且つ温度が高いものとなり、これがアキュームレータ
7を経て圧縮機2に戻されるようになる。従って、この
場合の冷媒の挙動は、図5実線の線図Cに示すようにな
る。On the other hand, the gaseous refrigerant passing through the heat exchanger 6 is supplied to the heat absorbing heat exchanger 23 through the electromagnetic valve 22. In the intake heat heat exchanger 23, the refrigerant exchanges heat with the heat of the exhaust gas from the inside of the vehicle interior 10 that is discharged to the outside through the exhaust port 24. As a result, the refrigerant passing through the heat absorbing heat exchanger 23 (point e in the solid line in FIG. 5) has a slightly lower pressure and a higher temperature than the refrigerant at the point d, and this is returned to the compressor 2 via the accumulator 7. Will be Therefore, the behavior of the refrigerant in this case is as shown in the solid line C in FIG.
【0021】ところで、上述したような暖房運転におい
て、電磁弁22を閉塞させ、代りに電磁弁9を開放させ
た場合(図4参照)について考えてみる。圧縮機2から
のホットガスは(図5一点鎖線の点a)、減圧弁22に
より減圧されて低圧の気体冷媒となり(図5一点鎖線の
点b,c)、この気体冷媒は、熱交換器6で放熱されて
低温低圧の気体冷媒となり(図5一点鎖線の点d,
e)、これがアキュームレータ7を経て圧縮機2に戻さ
れるようになる。従って、この場合の冷媒の挙動は、図
5一点鎖線の線図Bに示すようになる。Now, consider the case where the solenoid valve 22 is closed and the solenoid valve 9 is opened instead (see FIG. 4) in the heating operation as described above. The hot gas from the compressor 2 (point a in the alternate long and short dash line in FIG. 5) is decompressed by the pressure reducing valve 22 to become a low pressure gas refrigerant (points b and c in the alternate long and short dash line in FIG. 5). The heat is dissipated in 6 and becomes a low-temperature low-pressure gas refrigerant (point d of the chain line in FIG.
e), this will be returned to the compressor 2 via the accumulator 7. Therefore, the behavior of the refrigerant in this case is as shown by the dashed line B in FIG.
【0022】この図5から明らかなように、ホットガス
供給機構17に吸熱用熱交換器23を用いない場合に
は、線図Bに示すように、圧縮機2の仕事Wbに対して
熱交換器6の放熱量Qbは小となるが、吸熱用熱交換器
23を用いた場合には、線図Cで示すように、圧縮機2
の仕事Wcに対して熱交換器6の放熱量Qcは大となる
ものであり、それだけ、線図Bの場合に比し、圧縮機2
の仕事に対する暖房能力の効率が良いことになる。As is apparent from FIG. 5, when the heat absorbing heat exchanger 23 is not used in the hot gas supply mechanism 17, heat is exchanged for the work Wb of the compressor 2 as shown in the diagram B. Although the heat radiation amount Qb of the container 6 is small, when the heat absorbing heat exchanger 23 is used, as shown in the diagram C, the compressor 2
The heat radiation amount Qc of the heat exchanger 6 is large with respect to the work Wc of the compressor 2 as compared with the case of the diagram B.
The efficiency of the heating capacity for the job will be high.
【0023】尚、ホットガス供給機構17に吸熱用熱交
換器23を用いない線図Bの場合には、圧縮機2の仕事
を直接熱に変換するだけであるので、−20℃付近の極
低温環境下では、冷媒の温度,圧力が下がって比容積が
大きくなることから、圧縮機2の吸い込む冷媒量(重
量)が小さくなり、従って、圧縮機2は充分な仕事を行
なわないことになって、補助暖房能力が不足することが
考えられる。In the case of the diagram B in which the heat absorbing heat exchanger 23 is not used in the hot gas supply mechanism 17, the work of the compressor 2 is only directly converted into heat, so that the temperature in the vicinity of -20.degree. In a low temperature environment, the temperature and pressure of the refrigerant decrease and the specific volume increases, so the amount (weight) of the refrigerant sucked by the compressor 2 decreases, and therefore the compressor 2 does not perform sufficient work. Therefore, the auxiliary heating capacity may be insufficient.
【0024】これに対して、ホットガス供給機構17に
吸熱用熱交換器23を用いた線図Cの場合には、吸熱用
熱交換器23の吸熱作用によって、冷媒の温度,圧力を
上げることができ、従って、−20℃付近の極低温環境
下においても圧縮機2の吸い込む冷媒量に不足が生ずる
ことはなく、圧縮機2は充分に仕事を行なって、補助暖
房能力を充分に発揮することができるようになる。On the other hand, in the case of the diagram C using the heat absorbing heat exchanger 23 in the hot gas supply mechanism 17, the temperature and pressure of the refrigerant are increased by the heat absorbing action of the heat absorbing heat exchanger 23. Therefore, even in an extremely low temperature environment near -20 ° C, the amount of refrigerant sucked into the compressor 2 will not be insufficient, and the compressor 2 will perform its work sufficiently and fully exert its auxiliary heating capacity. Will be able to.
【0025】このように本実施例によれば、補助暖房装
置として冷凍サイクル1を利用したホットガス供給機構
17を設けるようにしたので、従来のように補助暖房装
置として電気ヒータを用いる場合とは異なり、電力不足
を生ずることはなく、又、燃焼ヒータを用いる場合とは
異なり、安全性が低下することはなく、更に、ヒートポ
ンプを用いる場合とは異なり、低温環境下での使用が困
難になることもない。そして、冷凍サイクル1に、電磁
弁18,バイパス管19,減圧弁20及びバイパス管2
1を設ける構成であるので、簡易な構成で実現すること
ができる。As described above, according to this embodiment, since the hot gas supply mechanism 17 utilizing the refrigeration cycle 1 is provided as the auxiliary heating device, it is different from the conventional case where the electric heater is used as the auxiliary heating device. Unlike the case where a combustion heater is used, there is no power shortage, and the safety is not reduced. Furthermore, unlike the case where a heat pump is used, it is difficult to use in a low temperature environment. Nothing. Then, in the refrigeration cycle 1, the solenoid valve 18, the bypass pipe 19, the pressure reducing valve 20, and the bypass pipe 2
Since 1 is provided, it can be realized with a simple configuration.
【0026】特に、本実施例によれば、ホットガス供給
機構17に車室10内からの排気の熱と熱交換して吸熱
する吸熱用熱交換器23を設けて、この吸熱用熱交換器
23により熱交換器6からの冷媒を加熱するようにした
ので、冷媒の温度及び圧力を上げることができ、従っ
て、−20℃付近の極低温環境下においても、圧縮機2
は、冷媒量の吸込み不足を生ずることがなくて、充分に
仕事を行なうことができ、補助暖房能力を充分に発揮す
ることができる。In particular, according to this embodiment, the hot gas supply mechanism 17 is provided with an endothermic heat exchanger 23 for exchanging heat with the heat of the exhaust gas from the passenger compartment 10, and this endothermic heat exchanger. Since the refrigerant from the heat exchanger 6 is heated by 23, the temperature and pressure of the refrigerant can be increased. Therefore, even in an extremely low temperature environment near -20 ° C, the compressor 2
Can perform its work sufficiently without causing insufficient suction of the amount of refrigerant, and can fully exert its auxiliary heating capacity.
【0027】尚、上記実施例において、熱交換器6から
の風の温度を検出する温度センサを設けて、暖房運転時
にこの温度センサの検出温度に応じて電磁弁22及び9
を選択的に通電開放させることも可能である。In the above embodiment, a temperature sensor for detecting the temperature of the wind from the heat exchanger 6 is provided, and the solenoid valves 22 and 9 are operated according to the temperature detected by the temperature sensor during heating operation.
It is also possible to selectively turn off the power.
【0028】図6は本発明の第2の実施例であり、第1
の実施例と同一部分には同一符号を付して示し、以下、
異なる部分について説明する。FIG. 6 shows the second embodiment of the present invention.
The same parts as those of the embodiment of
The different parts will be described.
【0029】即ち、電磁弁9に並列に電磁弁22と吸熱
部たる吸熱用配管28とを直列にしたものを接続し、こ
の吸熱用配管28を、エンジン12からの排気を外部に
放出させる排気管29にこれと熱交換可能に沿わせるよ
うにしたものである。従って、この第2の実施例によっ
ても前記第1の実施例と同様の作用効果が得られるもの
である。That is, the electromagnetic valve 9 is connected in parallel with the electromagnetic valve 22 and the heat absorbing pipe 28 serving as a heat absorbing portion in series, and the heat absorbing pipe 28 discharges the exhaust gas from the engine 12 to the outside. The pipe 29 is arranged so as to be able to exchange heat therewith. Therefore, the second embodiment can also obtain the same operational effect as the first embodiment.
【0030】図7及び図8は本発明の第3の実施例であ
り、第1の実施例と同一部分には同一符号を付して示
し、以下、異なる部分について説明する。7 and 8 show a third embodiment of the present invention. The same parts as those of the first embodiment are designated by the same reference numerals, and different parts will be described below.
【0031】即ち、図7において、熱交換器6の流出端
部は配管30を介してアキュームレータ7の流入端部に
連結され、図2に示すバイパス管21の代りに、エンジ
ン12(図1参照)からの排気の熱と熱交換可能に吸熱
部たる吸熱用熱交換器31が配設されている。That is, in FIG. 7, the outflow end of the heat exchanger 6 is connected to the inflow end of the accumulator 7 via the pipe 30, and instead of the bypass pipe 21 shown in FIG. 2, the engine 12 (see FIG. 1). ) Is provided with an endothermic heat exchanger 31 which is an endothermic part capable of exchanging heat with the heat of the exhaust gas.
【0032】而して、暖房運転時においては、圧縮機2
からのホットガスは(図8実線の点a)、減圧弁20に
より減圧されて高温で比較的低圧の気体冷媒となり(図
8実線の点b)、この気体冷媒は、吸熱用熱交換器31
に供給されて、ここでエンジン12(図1参照)からの
排気の熱により加熱され、以て、点bの時点よりも高温
で低圧の気体冷媒となる(図8実線の点c)。Thus, during the heating operation, the compressor 2
Hot gas from (a in solid line in FIG. 8) is decompressed by the pressure reducing valve 20 to become a high temperature and relatively low pressure gas refrigerant (in solid line, b in FIG. 8), which is the heat absorbing heat exchanger 31.
And is heated here by the heat of the exhaust gas from the engine 12 (see FIG. 1), so that it becomes a gas refrigerant at a higher temperature and a lower pressure than at the point b (point c in FIG. 8).
【0033】そして、吸熱用熱交換器31からの気体冷
媒は、熱交換器(放熱器)6に供給されて放熱し、低温
低圧の気体冷媒となり(図8実線の点e)、これが配管
30及びアキュームレータ7を経て圧縮機2に戻される
ようになる。従って、この場合の冷媒の挙動は、図8実
線で示す線図Dのようになる。The gas refrigerant from the heat-absorbing heat exchanger 31 is supplied to the heat exchanger (radiator) 6 and radiates heat to become a low-temperature low-pressure gas refrigerant (point e in FIG. 8), which is the pipe 30. Then, it is returned to the compressor 2 via the accumulator 7. Therefore, the behavior of the refrigerant in this case is as shown by the line D in FIG.
【0034】この第3の実施例によれば、第1の実施例
では吸熱用熱交換器23は冷媒の流れに対して熱交換器
6の下流側に位置するのに対し、吸熱用熱交換器31は
冷媒の流れに対して熱交換器6の上流側に位置する点で
第1の実施例と異なるだけで、第1の実施例同様の効果
を得ることができる。According to the third embodiment, in the first embodiment, the heat absorbing heat exchanger 23 is located on the downstream side of the heat exchanger 6 with respect to the flow of the refrigerant, while in the heat absorbing heat exchange. The container 31 is located upstream of the heat exchanger 6 with respect to the flow of the refrigerant, and is different from the first embodiment only, and the same effect as the first embodiment can be obtained.
【0035】図9は本発明の第4の実施例であり、第1
の実施例と同一部分には同一符号を付して示し、以下、
異なる部分について説明する。FIG. 9 shows the fourth embodiment of the present invention.
The same parts as those of the embodiment of
The different parts will be described.
【0036】即ち、熱交換器6とアキュームレータ7と
の間には、電磁弁9,22及び吸熱用熱交換器23の代
りに、車室10(図1参照)からの排気若しくはエンジ
ン12(図1参照)からの排気の熱と熱交換可能な吸熱
部たる吸熱用熱交換器32が配設されている。That is, between the heat exchanger 6 and the accumulator 7, instead of the solenoid valves 9 and 22 and the heat absorbing heat exchanger 23, exhaust gas from the passenger compartment 10 (see FIG. 1) or the engine 12 (see FIG. 1) is used. A heat-absorption heat exchanger 32, which is a heat-absorbing portion capable of exchanging heat with the exhaust gas from the air conditioner 1), is provided.
【0037】而して、この第4の実施例においては、吸
熱用熱交換器32は、暖房運転時には吸熱器として作用
し、冷房運転時には蒸発器として作用するものである。
従って、この第4の実施例によっても第1の実施例同様
の効果を得ることができる。尚、本発明は上記各実施例
に限定されるものではなく、例えば、車両用空調装置に
限らず、主暖房装置と冷凍サイクルとを備えた空調装置
全般に適用し得る等、要旨を逸脱しない範囲内で適宜変
形して実施し得ることは勿論である。Thus, in the fourth embodiment, the heat exchanger 32 for heat absorption functions as a heat absorber during heating operation and as an evaporator during cooling operation.
Therefore, the effect similar to that of the first embodiment can be obtained by the fourth embodiment. It should be noted that the present invention is not limited to the above-described respective embodiments, and is not limited to, for example, a vehicle air conditioner, and can be applied to all air conditioners including a main heating device and a refrigeration cycle, which do not deviate from the gist. Needless to say, it can be appropriately modified within the range.
【0038】[0038]
【発明の効果】本発明の空調装置は、以上説明したよう
に、補助暖房装置として冷凍サイクルを利用して圧縮機
からのホットガスを熱交換器に供給するホットガス供給
機構を設け、このホットガス供給機構に外部の熱と熱交
換する吸熱部を設けるようにしたので、電力不足及び安
全性の低下を来たすことがなく、更に、低温環境下では
勿論のこと極低温環境下でも充分に使用することがで
き、しかも、簡易な構成で実現できるという優れた効果
を奏するものである。As described above, the air conditioner of the present invention is provided with the hot gas supply mechanism for supplying the hot gas from the compressor to the heat exchanger by utilizing the refrigeration cycle as the auxiliary heating device. Since the gas supply mechanism is equipped with an endotherm that exchanges heat with the outside heat, it does not cause power shortage or decrease in safety, and it can be used not only in low temperature environments but also in extremely low temperature environments. It has an excellent effect that it can be realized and can be realized with a simple structure.
【図1】本発明の第1の実施例を示す全体の概略的構成
図FIG. 1 is an overall schematic configuration diagram showing a first embodiment of the present invention.
【図2】冷凍サイクル及びホットガス供給機構の構成図FIG. 2 is a configuration diagram of a refrigeration cycle and a hot gas supply mechanism.
【図3】電気回路の構成図FIG. 3 is a configuration diagram of an electric circuit
【図4】電磁弁の開閉状態を示す図FIG. 4 is a diagram showing an open / closed state of a solenoid valve.
【図5】モリエル線図[Figure 5] Mollier diagram
【図6】本発明の第2の実施例を示す図2相当図FIG. 6 is a view corresponding to FIG. 2 showing a second embodiment of the present invention.
【図7】本発明の第3の実施例を示す図2相当図FIG. 7 is a diagram corresponding to FIG. 2 showing a third embodiment of the present invention.
【図8】図5相当図FIG. 8 is a view corresponding to FIG.
【図9】本発明の第4の実施例を示す図2相当図FIG. 9 is a diagram corresponding to FIG. 2 showing a fourth embodiment of the present invention.
図面中、1は冷凍サイクル、2は圧縮機、3は凝縮器、
5は膨張弁、6は熱交換器、8は電磁弁、12はエンジ
ン、13は温水ヒータ(主暖房装置)、17はホットガ
ス供給機構(補助暖房装置)、18は電磁弁、20は減
圧弁、23は吸熱用熱交換器(吸熱部)、26はEC
U、28は吸熱用配管(吸熱部)、31及び32は吸熱
用熱交換器(吸熱部)を示す。In the drawing, 1 is a refrigeration cycle, 2 is a compressor, 3 is a condenser,
5 is an expansion valve, 6 is a heat exchanger, 8 is a solenoid valve, 12 is an engine, 13 is a hot water heater (main heating device), 17 is a hot gas supply mechanism (auxiliary heating device), 18 is a solenoid valve, and 20 is decompression. Valve, 23 is a heat exchanger for heat absorption (heat absorption part), 26 is EC
U and 28 are heat absorbing pipes (heat absorbing parts), and 31 and 32 are heat absorbing heat exchangers (heat absorbing parts).
Claims (1)
で凝縮して熱交換器に供給し、ここで蒸発させた後、前
記圧縮機に戻すようにした冷凍サイクルと、 この冷凍サイクルに設けられ、暖房運転時において、前
記圧縮機で圧縮された冷媒を、前記凝縮器をバイパスし
て前記熱交換器に供給し、ここで放熱させた後、前記圧
縮機に戻すようにしたホットガス供給機構と、 このホットガス供給機構に設けられ、外部の熱と熱交換
する吸熱部とを具備してなる空調装置。1. A main heating device, and in a cooling operation, a refrigerant compressed by a compressor is condensed by a condenser and supplied to a heat exchanger, where it is evaporated and then returned to the compressor. And a refrigerating cycle provided in this refrigerating cycle, during heating operation, the refrigerant compressed by the compressor is supplied to the heat exchanger by bypassing the condenser, and after radiating heat there, An air conditioner comprising: a hot gas supply mechanism that is returned to the compressor; and a heat absorbing unit that is provided in the hot gas supply mechanism and exchanges heat with external heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4288457A JPH06135221A (en) | 1992-10-27 | 1992-10-27 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4288457A JPH06135221A (en) | 1992-10-27 | 1992-10-27 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06135221A true JPH06135221A (en) | 1994-05-17 |
Family
ID=17730461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4288457A Pending JPH06135221A (en) | 1992-10-27 | 1992-10-27 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06135221A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6079218A (en) * | 1995-04-06 | 2000-06-27 | Sanden Corporation | Air conditioner for vehicles |
WO2006059410A1 (en) * | 2004-12-02 | 2006-06-08 | Valeo Thermal Systems Japan Corporation | Air conditioner for vehicle |
JP2007191057A (en) * | 2006-01-19 | 2007-08-02 | Sanden Corp | Refrigeration system, and air conditioner for vehicle |
JP2009113610A (en) * | 2007-11-06 | 2009-05-28 | Honda Motor Co Ltd | Air conditioning system for vehicle |
JP2010069947A (en) * | 2008-09-16 | 2010-04-02 | Calsonic Kansei Corp | Air-conditioning system for vehicle |
JP2010083223A (en) * | 2008-09-30 | 2010-04-15 | Hitachi Ltd | Vehicular air conditioner |
JP2011051466A (en) * | 2009-09-01 | 2011-03-17 | Honda Motor Co Ltd | Vehicular air conditioning system and method of starting of heater in the system |
WO2011087001A1 (en) * | 2010-01-12 | 2011-07-21 | 本田技研工業株式会社 | Air conditioning system for vehicle |
WO2011118483A1 (en) * | 2010-03-23 | 2011-09-29 | 本田技研工業株式会社 | Operation method of heat pump-type vehicle air conditioning system |
JP2011235857A (en) * | 2010-05-13 | 2011-11-24 | Honda Motor Co Ltd | Air conditioner for vehicle |
US20140117104A1 (en) * | 2011-07-05 | 2014-05-01 | Denso Corporation | Air conditioner for vehicle |
-
1992
- 1992-10-27 JP JP4288457A patent/JPH06135221A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6079218A (en) * | 1995-04-06 | 2000-06-27 | Sanden Corporation | Air conditioner for vehicles |
WO2006059410A1 (en) * | 2004-12-02 | 2006-06-08 | Valeo Thermal Systems Japan Corporation | Air conditioner for vehicle |
JP2006182344A (en) * | 2004-12-02 | 2006-07-13 | Valeo Thermal Systems Japan Corp | Air conditioner for vehicle |
JP2007191057A (en) * | 2006-01-19 | 2007-08-02 | Sanden Corp | Refrigeration system, and air conditioner for vehicle |
US8528354B2 (en) | 2007-11-06 | 2013-09-10 | Honda Motor Co., Ltd. | Vehicle air-conditioning system |
JP2009113610A (en) * | 2007-11-06 | 2009-05-28 | Honda Motor Co Ltd | Air conditioning system for vehicle |
JP4597180B2 (en) * | 2007-11-06 | 2010-12-15 | 本田技研工業株式会社 | Vehicle air conditioning system |
JP2010069947A (en) * | 2008-09-16 | 2010-04-02 | Calsonic Kansei Corp | Air-conditioning system for vehicle |
JP2010083223A (en) * | 2008-09-30 | 2010-04-15 | Hitachi Ltd | Vehicular air conditioner |
JP2011051466A (en) * | 2009-09-01 | 2011-03-17 | Honda Motor Co Ltd | Vehicular air conditioning system and method of starting of heater in the system |
JPWO2011087001A1 (en) * | 2010-01-12 | 2013-05-20 | 本田技研工業株式会社 | Vehicle air conditioning system |
WO2011087001A1 (en) * | 2010-01-12 | 2011-07-21 | 本田技研工業株式会社 | Air conditioning system for vehicle |
WO2011118483A1 (en) * | 2010-03-23 | 2011-09-29 | 本田技研工業株式会社 | Operation method of heat pump-type vehicle air conditioning system |
CN102802976A (en) * | 2010-03-23 | 2012-11-28 | 本田技研工业株式会社 | Operation method of heat pump-type vehicle air conditioning system |
JPWO2011118483A1 (en) * | 2010-03-23 | 2013-07-04 | 本田技研工業株式会社 | Operation method of heat pump type vehicle air conditioning system |
JP2011235857A (en) * | 2010-05-13 | 2011-11-24 | Honda Motor Co Ltd | Air conditioner for vehicle |
US20140117104A1 (en) * | 2011-07-05 | 2014-05-01 | Denso Corporation | Air conditioner for vehicle |
US9539880B2 (en) * | 2011-07-05 | 2017-01-10 | Denso Corporation | Air conditioner for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2497662B1 (en) | Heat pump system for vehicle | |
US5291941A (en) | Airconditioner having selectively operated condenser bypass control | |
TWI262864B (en) | Vapor compression system for heating and cooling of vehicles | |
WO2010079818A1 (en) | Air conditioning device for vehicle | |
KR101811762B1 (en) | Heat Pump For a Vehicle | |
KR20190057770A (en) | Heat Pump For a Vehicle | |
JPH06135221A (en) | Air conditioner | |
JP3762007B2 (en) | Air conditioner for vehicles | |
JPH07329544A (en) | Air conditioner for automobile | |
JPH09240266A (en) | Air conditioner | |
CN111251809B (en) | Thermal management system of vehicle and vehicle | |
JP2010159006A (en) | Air conditioner for vehicle | |
KR101903140B1 (en) | Heat Pump For a Vehicle | |
JP2011225174A (en) | Vehicular air conditioner | |
JPH0692136A (en) | Heat regenerative air conditioner for electric automobile | |
CN217495782U (en) | Heat pump air conditioning system and vehicle | |
JPH0478613A (en) | Heat pump type air conditioner | |
JP3275415B2 (en) | Vehicle air conditioner | |
CN111251812A (en) | Thermal management system of vehicle and vehicle | |
JPH05178072A (en) | Air conditioner for automobile | |
CN111251810B (en) | Thermal management system of vehicle and vehicle | |
US20070271943A1 (en) | Air-Conditioning System Provided With a Heat Pump | |
JP5465520B2 (en) | Air conditioner for vehicles | |
JP2698735B2 (en) | Engine heat pump system | |
JPH0241917A (en) | Heat pump type air conditioning device for vehicle |