[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06134559A - Method for preventing crack in cast slab in continuous casting for steel - Google Patents

Method for preventing crack in cast slab in continuous casting for steel

Info

Publication number
JPH06134559A
JPH06134559A JP28734892A JP28734892A JPH06134559A JP H06134559 A JPH06134559 A JP H06134559A JP 28734892 A JP28734892 A JP 28734892A JP 28734892 A JP28734892 A JP 28734892A JP H06134559 A JPH06134559 A JP H06134559A
Authority
JP
Japan
Prior art keywords
mold
particles
mold flux
flux
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28734892A
Other languages
Japanese (ja)
Inventor
Kenichi Miyazawa
憲一 宮沢
Satoshi Sugimaru
聡 杉丸
Junji Nakajima
潤二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28734892A priority Critical patent/JPH06134559A/en
Publication of JPH06134559A publication Critical patent/JPH06134559A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To disperse the stress caused by heat shrinkage, etc., of a solidified shell and to prevent the occurrence of longitudinal cracking in a cast slab by making the carrier gas flowing speed in a specific range, at the time of blowing particles having higher m.p. than molten flux to the upper part of the molten flux near mold surface together with the carrier gas. CONSTITUTION:The particles 7 having a higher m.p. than the mold flux 2 are blown to above the mold flux near the mold surface 1 together with the carrier gas 11. The particles are mixed into the mold flux in the condition of the flowing speed or more decided in the inequality U>=140(rhod)<-0.5> at the time of using U (cm/sec) for carrier gas flowing speed, where rho (g/cm<3>) is density of the particles and (d) (cm) is particle diameter, and also, the flowing speed or less decided in the inequality U<=1720h<0.5> at the time of using (h) (cm) for thickness of the mold flux above the meniscus of molten steel. By this method, the mold flux and the particles are flowed into gap between the mold 1 and the molten steel 4 and the solidified shell 6 is made to be grown in uneven condition and the deformed strain in the solidified shell is dispersed in plural positions and the crack of the cast slab is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼の連続鋳造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for molten steel.

【0002】[0002]

【従来の技術】鋼の連続鋳造においては、通常、微細振
動している内部水冷式の銅鋳型に注湯ノズルを通して溶
鋼を供給し、溶鋼のメニスカスにモールドフラックスを
連続供給している。鋳型内の溶鋼は、鋳型表面と溶鋼の
間隙に流入したモールドフラックス層を通して鋳型側に
抜熱されて凝固し始め、凝固シェルが成長する。この凝
固シェルには、主に凝固シェルの熱収縮に基づく熱応力
が鋳片の幅方向に作用して歪が生じ、この歪が過度の場
合には鋳片の縦割れの発生につながる。
2. Description of the Related Art In continuous casting of steel, molten steel is usually supplied to a finely vibrating internal water-cooled copper mold through a pouring nozzle, and mold flux is continuously supplied to a meniscus of molten steel. The molten steel in the mold is deheated to the mold side through the mold flux layer flowing into the gap between the surface of the mold and the molten steel, begins to solidify, and the solidified shell grows. Thermal stress mainly due to thermal contraction of the solidified shell acts on the solidified shell in the width direction of the slab to cause distortion, and when this distortion is excessive, it causes vertical cracking of the slab.

【0003】鋳片の縦割れは、鋳造後に割れ部を溶削し
て除去するなどの後作業が増して作業能率が低下するの
みならず、大きな割れの場合には、鋳造中に溶鋼が割れ
部から外に流出するというブレークアウトが発生して、
鋳造を停止しなければならないため、割れ発生を防止す
ることは極めて重要なものである。
Longitudinal cracking of a slab not only lowers work efficiency by increasing post-work such as fusing and removing the cracked portion after casting, but in the case of a large crack, the molten steel cracks during casting. There was a breakout that leaked out from the department,
Since the casting has to be stopped, it is extremely important to prevent the occurrence of cracks.

【0004】炭素濃度が約0.1〜0.2%の中炭素鋼は
特に縦割れを生じ易い。縦割れの発生原因として、鋳型
と溶鋼の間隙へのモールドフラックスの不均一流入が主
な原因の一つと考えられており、従来、文献1)で開示
されているように、モールドフラックスの成分を変える
ことにより、フラックスの融点、凝固温度、粘度などを
適性化し、均一流入するように技術開発がなされてき
た。文献1)小山邦夫、長野裕、中野武人:製鉄研究、
第324号、1987年、p39〜45。
[0004] Medium carbon steel having a carbon concentration of about 0.1 to 0.2% is particularly susceptible to vertical cracking. As the cause of vertical cracking, it is considered that one of the main causes is the non-uniform inflow of mold flux into the gap between the mold and molten steel. By changing the melting point, the melting point of the flux, the solidification temperature, the viscosity, etc. are optimized and the technology has been developed so that the flux can be uniformly introduced. Reference 1) Kunio Koyama, Yutaka Nagano, Taketo Nakano: Steelmaking Research,
No. 324, 1987, p39-45.

【0005】[0005]

【発明が解決しようとする課題】従来、連続鋳造用のモ
ールドフラックスとしては、SiO2とCaOを主成分と
して、これにAl23,MgO,MnO,Na2O,Li
2O,K2O,Fe23,B23,F,Cなどを添加した組
成からなり、粉末状または顆粒状のものが使われてい
る。このようなモールドフラックスを使って溶鋼を鋳造
すると、炭素濃度が約0.1〜0.2%の溶鋼の場合に
は、縦割れ防止に関連すると云われている湯面変動や鋳
型表面の疵発生などを無くしても、縦割れが発生するの
が現状である。鋳片に縦割れが発生すると、割れ部の溶
削などの後工程の増加、および縦割れが激しい場合には
ブレークアウトによる鋳造停止が問題となる。本発明
は、上記の問題点を解決し、中炭素鋼などの鋳片を安定
に製造する連続鋳造方法を提供する。
Conventionally, a mold flux for continuous casting is mainly composed of SiO 2 and CaO, and Al 2 O 3 , MgO, MnO, Na 2 O and Li are added to the main component.
2 O, K 2 O, Fe 2 O 3 , B 2 O 3 , F, C and the like are added, and powder or granules are used. When molten steel is cast using such a mold flux, when the molten steel has a carbon concentration of about 0.1 to 0.2%, it is said to be related to the prevention of vertical cracks and the fluctuation of the molten metal surface and the defects on the surface of the mold. The current situation is that vertical cracks occur even if the occurrence is eliminated. When vertical cracks occur in a slab, there are problems such as an increase in the number of post-processes such as fusing of the cracked portion, and if severe vertical cracks, suspension of casting due to breakout. The present invention solves the above problems and provides a continuous casting method for stably producing a slab of medium carbon steel or the like.

【0006】[0006]

【課題を解決するための手段】本発明は、鋼の連続鋳造
において、内部水冷式の鋳型の上部より溶鋼のメニスカ
スに向かって鋳造用モールドフラックスを連続供給して
溶鋼を鋳造する時に、該モールドフラックスよりも高融
点の粒子を鋳型面近傍のモールドフラックス上方に搬送
ガスと共に吹き付ける際、搬送ガス流速をU(cm/se
c)、粒子の密度をρ(g/cm3)、粒径をd(cm)とする
とき、搬送ガスの流速Uが U≧140(ρd)~0.5 の不等式でさだめられる速度以上で、かつ溶鋼メニスカ
ス上のモールドフラックス厚さをh(cm)とするとき、 U≦1720h0.5 の不等式で定められる速度以下で粒子をモールドフラッ
クス内へ混入させることによって、モールドフラックス
と粒子が鋳型と溶鋼の間隙に流入し、凝固シェルが成長
する時、凝固シェルを不均一に成長させ、凝固シェルの
変形歪を多数の場所に分散させることにより、鋳片の割
れを防止することを特徴とする連続鋳造方法である。
SUMMARY OF THE INVENTION In continuous casting of steel, the present invention is directed to casting molten steel by continuously supplying a casting mold flux from the upper part of an internal water-cooled mold toward a meniscus of molten steel. When the particles having a higher melting point than the flux are blown together with the carrier gas above the mold flux in the vicinity of the mold surface, the carrier gas flow rate is set to U (cm / se).
c), where the particle density is ρ (g / cm 3 ) and the particle size is d (cm), the carrier gas flow velocity U is equal to or higher than the speed determined by the inequality of U ≧ 140 (ρd) to 0.5 , and When the thickness of the mold flux on the molten steel meniscus is h (cm), the particles are mixed into the mold flux at a speed equal to or lower than the speed determined by the inequality of U ≦ 1720h 0.5. When the solidified shell grows, the solidified shell grows non-uniformly and the deformation strain of the solidified shell is dispersed in a number of places to prevent cracking of the cast slab. Is.

【0007】[0007]

【作用】図1は、連続鋳造の溶鋼メニスカスの近傍の状
態を示す図面である。一般に鋼の連続鋳造では、鉛直方
向8に微細振動している内部水冷式の銅鋳型1に、注湯
ノズルを通して溶鋼4を注入し、同時に鋳型上部よりモ
ールドフラックス2を連続供給する。供給されたモール
ドフラックスは溶鋼の熱により溶解し、鋳型1と溶鋼4
の間隙に流入する。溶鋼は、流入しているモールドフラ
ックス層5を介して鋳型へ熱が移動することにより凝固
するため、凝固シェル6を形成し、この凝固シェルは連
続的に引き抜き方向9の方向へ引き抜かれる。
FIG. 1 is a drawing showing a state in the vicinity of a continuously cast molten steel meniscus. Generally in continuous casting of steel, molten steel 4 is injected into an internal water-cooled copper mold 1 that vibrates finely in a vertical direction 8 through a pouring nozzle, and at the same time, mold flux 2 is continuously supplied from the upper part of the mold. The supplied mold flux is melted by the heat of molten steel, and the mold 1 and molten steel 4
Flows into the gap. The molten steel is solidified by heat moving to the mold through the inflowing mold flux layer 5, so that a solidified shell 6 is formed, and this solidified shell is continuously drawn in the drawing direction 9.

【0008】なお、鋳型内へ連続供給されているモール
ドフラックス2は、溶鋼の熱により加熱され、溶解する
ため、温度の高い溶鋼メニスカスから上部に向かって溶
融層、焼結層、未焼結層(すなわち、焼結していない添
加ままのモールドフラックス層)が存在し、また、鋳型
1と接する部分にはスラグリムと呼ばれるモールドフラ
ックスが凝集または溶解後凝固してできた固体塊3が通
常存在する。
Since the mold flux 2 continuously supplied into the mold is heated and melted by the heat of the molten steel, the molten layer, the sintered layer, and the unsintered layer are directed upward from the molten steel meniscus having a high temperature. (That is, the as-added mold flux layer that has not been sintered) exists, and the solid mass 3 called slugrim, which is formed by aggregating or melting and solidifying the mold flux, is usually present in the portion in contact with the mold 1. .

【0009】流入モールドフラックス層5の厚さは、鋳
型への熱移動にとって大きな影響を及ぼし、このフラッ
クス層が局所的に厚い場所では凝固シェルの成長が抑制
される。凝固シェルには、凝固シェルの熱収縮や相変
態、およびモールドフラックス層を介した凝固シェルと
鋳型との摩擦などによる応力が作用しているが、これら
の応力による歪が凝固の遅れた部分に集中的に発生する
ため、凝固遅れの部分が少ない場合には大きな歪量とな
り、歪がある臨界値を越えると縦割れが発生することに
なる。
The thickness of the inflow mold flux layer 5 has a great influence on the heat transfer to the mold, and the growth of the solidified shell is suppressed in the places where the flux layer is locally thick. The solidified shell is subjected to stress due to heat shrinkage and phase transformation of the solidified shell and friction between the solidified shell and the mold via the mold flux layer. Since they occur intensively, the amount of strain becomes large when the solidification delay portion is small, and vertical cracking occurs when the strain exceeds a certain critical value.

【0010】炭素濃度が約0.1〜0.2%の鋼は、冷却
の過程でのδ相からγ相への変態に伴う収縮が大きく、
発生する収縮応力が他の成分系の鋼の比べて大きいた
め、割れ易いと考えられる。このため、通常のモールド
フラックスを使って中炭素鋼を鋳造すると、鋳片の幅方
向の一ヶ所、または2〜3ヶ所に縦割れが発生する頻度
が高い。
Steel having a carbon concentration of about 0.1 to 0.2% has a large shrinkage due to the transformation from the δ phase to the γ phase during the cooling process,
Since the shrinkage stress that occurs is larger than that of steels of other component systems, it is considered that it is easily cracked. For this reason, when medium carbon steel is cast using normal mold flux, vertical cracks frequently occur at one or two or three places in the width direction of the slab.

【0011】図1に示すように、モールドフラックスよ
りも高融点の粒子7を、ガス11に搬送させて粒子噴射
装置10から噴射すると、モールドフラックスはガスの
衝突エネルギーによってくぼみ12を形成し、このくぼ
みから粒子がモールドフラックス内へ混入し、その後粒
子はモールドフラックスと一緒に鋳型1と溶鋼4の間隙
に流入する。
As shown in FIG. 1, when particles 7 having a melting point higher than that of the mold flux are conveyed to a gas 11 and injected from a particle injecting device 10, the mold flux forms a recess 12 due to the collision energy of the gas. Particles mix into the mold flux from the depression, and then the particles flow into the gap between the mold 1 and the molten steel 4 together with the mold flux.

【0012】図2は、モールドフラックスにモールドフ
ラックスよりも高融点の粒子を混ぜ、連続供給した場合
の凝固シェル成長の局所的な遅れ部分を示す模式図であ
る。モールドフラックスに高融点の粒子を混入すると、
一部のものはモールドフラックスに溶解するが、他は部
分溶解するかまたは溶解せずに固体状態でモールドフラ
ックス層に残留する。
FIG. 2 is a schematic diagram showing a locally delayed part of solidified shell growth when particles having a melting point higher than that of the mold flux are mixed and continuously supplied to the mold flux. If high melting point particles are mixed in the mold flux,
Some dissolve in the mold flux, while others partially dissolve or do not dissolve and remain in the mold flux layer in the solid state.

【0013】高融点の粒子7'がモールドフラックス層
5に固体状態で存在すると、モールドフラックス層が冷
却、凝固する際に、冷却に伴う粒子とモールドフラック
ス層の熱収縮率が一般に異なるため、粒子7'とモール
ドフラックス層5の境界に真空または気体から成る空隙
を生じ、この空隙の存在によって溶鋼4から鋳型1への
熱移動が局所的に遅れ、このため凝固シェル6の成長が
局所的に遅れ、凝固の遅れ部14が多数形成されること
になる。
When the high melting point particles 7'exist in the mold flux layer 5 in a solid state, when the mold flux layer is cooled and solidified, the particles due to cooling and the mold flux layer generally have different heat shrinkage rates. 7'and the mold flux layer 5 have a void formed of a vacuum or a gas, and the presence of this void locally delays the heat transfer from the molten steel 4 to the mold 1, so that the solidified shell 6 grows locally. Many delay and solidification delay portions 14 are formed.

【0014】なお、モールドフラックスよりも高融点か
つ低熱伝導率の粒子の場合、熱伝導率の小さな粒子7'
がモールドフラックス層5に存在すると、粒子の周囲で
の空隙の形成に加え、粒子自身が伝熱抵抗となり、溶鋼
4から鋳型1への熱移動が遅れ、このため凝固シェル6
の成長が局所的に遅れ、凝固の遅れ部10が多数形成さ
れるため、熱伝導率の低い粒子ほど、凝固遅れ部の形成
に取って有効である。
In the case of particles having a higher melting point and lower thermal conductivity than the mold flux, particles 7'having a small thermal conductivity.
Exists in the mold flux layer 5, in addition to the formation of voids around the particles, the particles themselves serve as heat transfer resistance, and the heat transfer from the molten steel 4 to the mold 1 is delayed.
Growth is locally delayed and a large number of delayed solidification portions 10 are formed. Therefore, particles having lower thermal conductivity are more effective in forming a delayed solidification portion.

【0015】図3は、鋳片の幅方向と鋳造方向における
凝固シェル成長の局所的遅れ部分の分布を示す模式図で
ある。鋳片縦割れは主に鋳片幅方向の応力によって生じ
るが、このように凝固遅れの部分を意図的に多数作るこ
とにより、応力の集中すなわち歪がある場所に集中する
ことを防止できる。鋳片幅方向の応力による歪を多数の
凝固遅れ部分に分散すると、一つの凝固遅れ部に発生す
る歪量は割れ発生の臨界歪量より小さなものとなり、縦
割れは発生しない。
FIG. 3 is a schematic view showing the distribution of the locally delayed portion of the solidified shell growth in the width direction of the slab and the casting direction. Vertical slab cracks are mainly caused by stress in the width direction of the slab, however, by intentionally forming a large number of solidification-delayed portions in this way, stress concentration, that is, concentration at strained locations, can be prevented. When the strain due to the stress in the width direction of the slab is dispersed in a large number of solidification delay portions, the amount of strain generated in one solidification delay portion becomes smaller than the critical strain amount for cracking, and vertical cracking does not occur.

【0016】なお、モールドフラックスに混ぜる粒子の
大きさとしては、鋳型と溶鋼との間隙に粒子が流入でき
るように、この間隙よりも小さい粒径のものがよい。ま
た、溶鋼から鋳型への熱移動の伝熱抵抗をできるだけ大
きくすることが望ましいため、熱伝導率がモールドフラ
ックスよりも出来るだけ小さい中実の粒子、または中空
の粒子がよい。
The size of the particles mixed in the mold flux is preferably smaller than the size of this gap so that the particles can flow into the gap between the mold and the molten steel. Since it is desirable to maximize the heat transfer resistance of heat transfer from the molten steel to the mold, solid particles or hollow particles having a thermal conductivity as small as possible than the mold flux are preferable.

【0017】[0017]

【実施例】炭素濃度が約0.1〜0.2%の中炭素鋼を使
って、厚さ240mm、幅1.6mのスラブ鋳片を製造す
る連続鋳造の試験をした。モールドフラックスとして
は、表1に示す主要成分を有する粉末状のものを用い、
表2に示す条件の下でZrO2,TiO2,中空MgOなど
の粒子を粒子噴射装置を使って内部冷却式鋳型の上部か
ら溶鋼メニスカスへ向かって連続的に供給した。
EXAMPLE A continuous casting test for producing a slab slab having a thickness of 240 mm and a width of 1.6 m was conducted by using a medium carbon steel having a carbon concentration of about 0.1 to 0.2%. As the mold flux, powdery ones having the main components shown in Table 1 were used.
Under the conditions shown in Table 2, particles such as ZrO 2 , TiO 2 and hollow MgO were continuously supplied from the upper part of the internally cooled mold to the molten steel meniscus by using a particle injection device.

【0018】粒子噴射装置は2台用い、鋳型の2つの長
辺面に沿って各々の噴射口を往復移動させ、鋳型から約
30〜60mm離れたモールドフラックス上に噴射した。
粒子の搬送ガスとしてアルゴンを用い、ガス流速は0.
5〜40m/secの範囲とした。なお、表1のモールド
フラックスの融点は約1273〜1423Kであった。
また、表2における粒子の供給体積率は、モールドフラ
ックス供給量と粒子供給量の体積割合である。参考のた
めに、供給粒子の融点を表3に示す。主要鋳造条件とし
ては、鋳造速度は1.8m/min、鋳型部以降の鋳片の2
次冷却には水スプレーを採用し、供給粒子の条件以外は
一定の条件下で実験をした。
Two particle jetting devices were used, each jetting port was reciprocally moved along the two long side faces of the casting mold, and jetting was carried out on the mold flux at a distance of about 30 to 60 mm from the casting mold.
Argon was used as the carrier gas for the particles, and the gas flow rate was 0.1.
The range was 5 to 40 m / sec. The melting point of the mold flux in Table 1 was about 1273-1423K.
Further, the particle supply volume ratio in Table 2 is the volume ratio of the mold flux supply amount and the particle supply amount. For reference, the melting points of the feed particles are shown in Table 3. As the main casting conditions, the casting speed is 1.8 m / min, and the slab after the casting mold is 2
Water spray was adopted for the subsequent cooling, and the experiment was conducted under constant conditions except for the conditions of the feed particles.

【0019】上記の実験の結果、粒子を噴射しなかった
Caseの場合、鋳片表面には幅方向に2〜3本程度の縦
割れが観察され、鋳片の両長辺面における鋳片1m当り
の縦割れ長さの和は約2〜7m/mであった。これに対
して、CaseのZrO2粒子の場合、縦割れ長さの和は約
0.05〜0.3m/mで、CaseのTiO2の場合には
0.1〜0.5m/mであり、Caseととも極まれに縦
割れが発生したが、縦割れの長さは短く、Caseに比べ
ると縦割れは少なく、縦割れ防止効果が大きいことがわ
かった。
As a result of the above experiment, no particles were ejected.
In the case of Case, about 2 to 3 vertical cracks were observed on the surface of the slab in the width direction, and the sum of the length of vertical cracks per 1 m of the slab on both long side surfaces was about 2 to 7 m / m. Met. On the other hand, in the case of ZrO 2 particles of Case, the sum of the lengths of longitudinal cracks is about 0.05 to 0.3 m / m, and in the case of TiO 2 of Case, it is 0.1 to 0.5 m / m. However, it was found that vertical cracks occurred extremely rarely with Case, but the length of vertical cracks was short, there were few vertical cracks compared to Case, and the effect of preventing vertical cracks was large.

【0020】Caseの場合、Caseよりは若干割れは多
いが、縦割れ長さの和は約0.1〜0.6m/mであり、
Caseよりは大幅に縦割れが少なかった。鋳造実験中に
採取したモールドフラックス層の内部組織を観察した結
果、添加した粒子は一部溶融しモールドフラックスに溶
解混合するものもあるが、溶解しないで添加前と同じ形
状を維持しているものも数多く存在し、鋳型と溶鋼の間
のモールドフラックス層内で伝熱抵抗として寄与するこ
とが判明した。
In the case of Case, although the number of cracks is slightly larger than that of Case, the sum of the lengths of vertical cracks is about 0.1 to 0.6 m / m,
There were significantly fewer vertical cracks than Case. As a result of observing the internal structure of the mold flux layer taken during the casting experiment, some of the added particles melt and mix with the mold flux, but they do not dissolve and maintain the same shape as before addition. It was found that there are a lot of them, and they contribute as heat transfer resistance in the mold flux layer between the mold and the molten steel.

【0021】粒子をモールドフラックス中に噴射する時
の搬送ガスの流速は、余りにも遅いと粒子がモールドフ
ラックスへ侵入せず、また余りにも速いとモールドフラ
ックスのくぼみが深くなりすぎて、溶鋼メニスカスが露
出するとともに、メニスカスの振動を誘発し、鋳片の割
れが多くなる。図4は、本実験の結果をまとめたもの
で、粒子がモールドフラックス中へ良好に侵入する良好
領域と、侵入せずモールドフラックス上に浮いてしまう
不良領域を示す。
If the flow velocity of the carrier gas at the time of injecting particles into the mold flux is too slow, the particles will not penetrate into the mold flux, and if too fast, the recess of the mold flux will be too deep and molten steel meniscus will be formed. As it is exposed, it induces vibration of the meniscus, resulting in more cracks in the slab. FIG. 4 is a summary of the results of this experiment, and shows a good region where particles satisfactorily penetrate into the mold flux and a defective region where particles do not penetrate and float on the mold flux.

【0022】良好領域と不良領域との境界を回帰式で整
理した結果、搬送ガス流速をU(cm/sec)、粒子の密度
をρ(g/cm3)、粒径をd(cm)とするとき、搬送ガス
の流速Uが U≧140(ρd)~0.5 の不等式で定められる速度以上であれば、噴射粒子がモ
ールドフラックス上に堆積することなく、中まで侵入す
ることがわかった。
As a result of rearranging the boundary between the good region and the bad region by the regression equation, the carrier gas flow velocity is U (cm / sec), the particle density is ρ (g / cm 3 ) and the particle size is d (cm) At that time, it was found that if the flow velocity U of the carrier gas is equal to or higher than the velocity defined by the inequality of U ≧ 140 (ρd) to 0.5 , the spray particles penetrate into the mold flux without being deposited on the mold flux.

【0023】[0023]

【表1】 実験に使用したモールドフラックスの成分
(mass%)
[Table 1] Components of the mold flux used in the experiment (mass%)

【0024】[0024]

【表2】 実験条件 [Table 2] Experimental conditions

【0025】一方、図5は、モールドフラックスのくぼ
みが深くなり過ぎて、溶鋼メニスカスが露出する不良領
域と、露出しない良好領域を示す。この不良領域では、
粒子を供給しても、メニスカスの振動が顕著であったた
め、鋳片の縦割れ発生が多かった。不良領域と良好領域
の境界を回帰式で整理した結果、溶鋼メニスカス上のモ
ールドフラックス厚さをh(cm)とするとき、 U≦1720h0.5 の不等式で定められる速度以下が良好領域で、溶鋼メニ
スカスの露出が無く、粒子供給の効果が現われることが
わかった。
On the other hand, FIG. 5 shows a defective region where the recess of the mold flux becomes too deep and the molten steel meniscus is exposed and a good region where it is not exposed. In this bad area,
Even when the particles were supplied, the meniscus vibrated remarkably, so that the vertical slabs were often cracked. As a result of rearranging the boundary between the bad area and the good area by the regression equation, when the mold flux thickness on the molten steel meniscus is h (cm), the speed equal to or lower than the speed determined by the inequality of U ≦ 1720h 0.5 is the good area, It was found that there was no exposure of the molten steel meniscus and the effect of particle supply appeared.

【0026】[0026]

【表3】 添加粒子の融点 [Table 3] Melting point of added particles

【0027】[0027]

【発明の効果】本発明を実施すれば、凝固シェルの熱収
縮や鋳型との摩擦による応力を凝固シェル成長の遅れ部
に集中させず、応力を多くの場所に分散させることによ
り、縦割れの発生を防止することが可能であり、中炭素
鋼などの割れ易い鋳片の製造を安定して行うことが出来
る。
According to the present invention, stress caused by thermal contraction of the solidified shell and friction with the mold is not concentrated in the delayed portion of the solidified shell growth, but the stress is dispersed in many places to prevent vertical cracking. It is possible to prevent the occurrence, and it is possible to stably produce a slab that is easily broken, such as medium carbon steel.

【図面の簡単な説明】[Brief description of drawings]

図1は連続鋳造の溶鋼メニスカスの近傍の状態を示す
図、図2は凝固シェル成長の局所的な遅れ部分を示す
図、図3は、鋳片の幅方向と鋳造方向における凝固シェ
ル成長の局所的遅れ部分の分布を示す図、図4は、適性
な搬送ガス流速の下限値に関し、モールドフラックス中
への粒子の供給が良好な搬送ガスの流域を示す図、図5
は適性な搬送ガス流速の上限値に関する良好領域を示す
図、である。
FIG. 1 is a diagram showing a state in the vicinity of a molten steel meniscus in continuous casting, FIG. 2 is a diagram showing a locally delayed portion of solidified shell growth, and FIG. 3 is a localized portion of solidified shell growth in a width direction and a casting direction of a slab. FIG. 4 is a diagram showing a distribution of a target delay portion, FIG. 4 is a diagram showing a carrier gas basin in which particles are favorably supplied into the mold flux with respect to an appropriate lower limit value of the carrier gas flow velocity.
FIG. 4 is a diagram showing a good region regarding an upper limit value of an appropriate carrier gas flow rate.

【符号の説明】[Explanation of symbols]

1:鋳型、 2:モールドフラックス、 3:スラグリ
ム、 4:溶鋼、 5:モールドフラックス層、 6:
凝固シェル、 7,7':粒子、 8:鋳型の振動方
向、 9:鋳片の引き抜き方向、 10:粒子噴射装
置、 11:ガス、12:溶鋼メニスカスのくぼみ、
13:溶鋼メニスカス、 14:凝固の遅れ部、 1
5:鋳片の幅方向。
1: Mold, 2: Mold flux, 3: Slugrim, 4: Molten steel, 5: Mold flux layer, 6:
Solidification shell, 7, 7 ': Particles, 8: Vibration direction of mold, 9: Direction of withdrawing slab, 10: Particle injection device, 11: Gas, 12: Indentation of molten steel meniscus,
13: molten steel meniscus, 14: delayed solidification portion, 1
5: Width direction of slab.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼の連続鋳造において、内部水冷式の鋳型
の上部より溶鋼のメニスカスに向かって鋳造用モールド
フラックスを連続供給して溶鋼を鋳造する時に、該モー
ルドフラックスよりも高融点の粒子を鋳型面近傍のモー
ルドフラックス上方に搬送ガスと共に吹き付ける際、搬
送ガス流速U(cm/sec)、粒子の密度をρ(g/cm3)、
粒径をd(cm)とするとき、搬送ガス流速Uが U≧140(ρd)~0.5 の不等式でさだめられる速度以上で、かつ、溶鋼メニス
カス上のモールドフラックス厚さをh(cm)とすると
き、 U≦1720h0.5 の不等式で定められる速度以下で粒子をモールドフラッ
クス内へ混入させることによって、モールドフラックス
と粒子が鋳型と溶鋼の間隙に流入し、凝固シェルが成長
する時、凝固シェルを不均一に成長させ、凝固シェルの
変形歪を多数の場所に分散させることにより、鋳片の割
れを防止することを特徴とする鋼の連続鋳造における鋳
片割れ防止方法。
1. In continuous casting of steel, when a casting mold flux is continuously supplied from the upper part of an internal water-cooled mold toward a meniscus of the molten steel to cast molten steel, particles having a melting point higher than that of the molding flux are produced. When spraying with the carrier gas above the mold flux near the mold surface, the carrier gas flow rate U (cm / sec), the particle density ρ (g / cm 3 ),
When the particle size is d (cm), the carrier gas flow velocity U is equal to or higher than the speed that can be reserved by the inequality of U ≧ 140 (ρd) to 0.5 , and the mold flux thickness on the molten steel meniscus is h (cm) At this time, by mixing the particles into the mold flux at a speed equal to or lower than the speed defined by the inequality of U ≦ 1720h 0.5 , the mold flux and the particles flow into the gap between the mold and the molten steel, and when the solidified shell grows, A method for preventing slab cracking in continuous casting of steel, characterized in that cracking of slab is prevented by uniformly growing and dispersing deformation strain of the solidified shell at a number of locations.
JP28734892A 1992-10-26 1992-10-26 Method for preventing crack in cast slab in continuous casting for steel Withdrawn JPH06134559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28734892A JPH06134559A (en) 1992-10-26 1992-10-26 Method for preventing crack in cast slab in continuous casting for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28734892A JPH06134559A (en) 1992-10-26 1992-10-26 Method for preventing crack in cast slab in continuous casting for steel

Publications (1)

Publication Number Publication Date
JPH06134559A true JPH06134559A (en) 1994-05-17

Family

ID=17716209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28734892A Withdrawn JPH06134559A (en) 1992-10-26 1992-10-26 Method for preventing crack in cast slab in continuous casting for steel

Country Status (1)

Country Link
JP (1) JPH06134559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112605360A (en) * 2020-11-27 2021-04-06 马鞍山钢铁股份有限公司 High-pulling-speed production method of sub-peritectic steel slab
CN118635289A (en) * 2024-08-16 2024-09-13 鞍钢股份有限公司 Production method for improving quality of silicon steel surface and edge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112605360A (en) * 2020-11-27 2021-04-06 马鞍山钢铁股份有限公司 High-pulling-speed production method of sub-peritectic steel slab
CN118635289A (en) * 2024-08-16 2024-09-13 鞍钢股份有限公司 Production method for improving quality of silicon steel surface and edge

Similar Documents

Publication Publication Date Title
JPH06134559A (en) Method for preventing crack in cast slab in continuous casting for steel
JP3380412B2 (en) Mold for continuous casting of molten steel
JPH06134560A (en) Method for preventing cracking of cast slab in continuous casting for steel
JPH06114517A (en) Method for preventing cracking in cast slab in continuous casting for steel
JPH0819842A (en) Method and device for continuous casting
JP2925846B2 (en) Method for producing a molded body made of a high-temperature crack-sensitive material and a mold for performing the method
KR101877460B1 (en) Mold flux and method of continuous casting of steel using the same
CA2999637C (en) Continuous casting process of metal
JP4113967B2 (en) Metal ingot casting apparatus and casting method
JP3336224B2 (en) Mold for continuous casting of molten steel
JPH06114518A (en) Method for preventing cracking in cast slab in continuous casting for steel
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
JP4036033B2 (en) High speed casting method for medium carbon steel
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JP4830240B2 (en) Method and apparatus for continuous casting of steel
JPS6281252A (en) Continuous casting method
JPH0543973Y2 (en)
US5040593A (en) Side feed tundish apparatus and method for the rapid solidification of molten materials
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH09192786A (en) Mold for continuously casting steel and continuous casting method
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JPH01271042A (en) Method for continuously casting double-layer cast slab
KR20160139636A (en) Mold flux and method of continuous casting of steel using the same
JPH0413471A (en) Method for preventing surface cracking of slab
JPS6313650A (en) Continuous casting for molten steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104