JPH06120630A - Copper foil for printed wiring board - Google Patents
Copper foil for printed wiring boardInfo
- Publication number
- JPH06120630A JPH06120630A JP26885892A JP26885892A JPH06120630A JP H06120630 A JPH06120630 A JP H06120630A JP 26885892 A JP26885892 A JP 26885892A JP 26885892 A JP26885892 A JP 26885892A JP H06120630 A JPH06120630 A JP H06120630A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- copper
- supporting substrate
- copper foil
- copper layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title abstract 14
- 239000011889 copper foil Substances 0.000 title abstract 3
- 229910052802 copper Inorganic materials 0.000 abstract 11
- 239000010949 copper Substances 0.000 abstract 11
- 229910018487 Ni—Cr Inorganic materials 0.000 abstract 6
- 239000000758 substrate Substances 0.000 abstract 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract 2
- 239000011651 chromium Substances 0.000 abstract 2
- 229910052804 chromium Inorganic materials 0.000 abstract 2
- 229910052751 metal Inorganic materials 0.000 abstract 2
- 239000002184 metal Substances 0.000 abstract 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 229910000423 chromium oxide Inorganic materials 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000005530 etching Methods 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 abstract 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、プリント配線基板用の
銅箔に関し、更に詳しくは、配線パターンを形成するた
めのエッチング処理を容易に行うことが出来、支持基板
に対して優れた密着性を有するプリント配線基板用の銅
箔に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper foil for a printed wiring board, and more specifically, it can be easily etched for forming a wiring pattern and has excellent adhesion to a supporting substrate. And a copper foil for a printed wiring board.
【0002】[0002]
【従来の技術】従来、プリント配線用の銅箔を被覆する
ための支持基板としては、テープ自動ボンデイング(T
AB)用、フレキシブルプリント配線板(FPC)用に
は、配線パターンと素子をハンダ付けを必要とする場合
は耐熱性の要求性からポリイミド、ポリアミド等の耐熱
性の高分子フィルムが、またハンダ付けを必要としない
場合はポリエチレンテレフタレート、ポリエチレンナフ
タレート等の高分子フィルムが知られており、また、リ
ジット配線用にはアルミナ(Al2O3)、ガラスエポキ
シ等のセラミックが知られている。そしてこれらの支持
基板に厚さ12〜50μm程度の圧延銅箔或いは電解銅
箔を接着剤で貼着してプリント配線基板用の銅箔とし、
該銅箔に配線パターンを施していた。2. Description of the Related Art Conventionally, a tape automatic bonding (T) has been used as a supporting substrate for coating a copper foil for printed wiring.
For AB) and flexible printed wiring boards (FPC), heat resistant polymer films such as polyimide and polyamide are also required for soldering when wiring patterns and elements need to be soldered. Polymer films made of polyethylene terephthalate, polyethylene naphthalate, etc. are known in the case where the above is not required, and ceramics such as alumina (Al 2 O 3 ) and glass epoxy are known for rigid wiring. Then, a rolled copper foil or an electrolytic copper foil having a thickness of about 12 to 50 μm is attached to these supporting substrates with an adhesive to form a copper foil for a printed wiring board,
A wiring pattern was applied to the copper foil.
【0003】最近、機器の小型化に伴い、配線パターン
のファイン化に対応するため、従来の貼り合せ銅箔より
も更に薄い銅箔が要求されている。With the recent miniaturization of equipment, there is a demand for a copper foil which is thinner than the conventional laminated copper foil in order to cope with finer wiring patterns.
【0004】この要求を満たすために、従来の貼り合せ
銅箔の代わりにより薄膜化が可能なスパッタ法とメッキ
法を組み合わせて支持基板上に成膜した銅箔が現在主流
の位置を占めつつある。In order to meet this requirement, a copper foil formed on a supporting substrate by combining a sputtering method and a plating method, which can be thinned by replacing the conventional laminated copper foil, is now in the mainstream position. .
【0005】また、高分子フィルム、セラミック等の支
持基板と、その表面に被覆せる銅層との密着性は、その
界面に酸化銅(CuO,Cu2O)等の脆弱層が発生す
るために非常に弱く、プリント配線基板に要求される銅
層との密着強度1000g/cmを維持するために通常、
支持基板と銅層との間に中間層としてクロム層を設けて
いた。Further, the adhesion between a support substrate such as a polymer film and ceramics and a copper layer coated on the surface is due to the formation of a brittle layer such as copper oxide (CuO, Cu 2 O) at the interface. It is very weak, and it is usually required to maintain the adhesion strength of 1000g / cm with the copper layer required for printed wiring boards.
A chromium layer was provided as an intermediate layer between the supporting substrate and the copper layer.
【0006】そして、中間層として設けたクロムは酸化
物、即ち酸化クロムとなって緻密な層を形成し、クロム
層とその上に形成された銅層との界面は金属−金属の接
合であるため、支持基板と銅層の間に酸化銅の脆弱層が
発生することがない。The chromium provided as the intermediate layer becomes an oxide, that is, chromium oxide to form a dense layer, and the interface between the chromium layer and the copper layer formed thereon is a metal-metal bond. Therefore, a brittle layer of copper oxide does not occur between the supporting substrate and the copper layer.
【0007】従って、支持基板と銅層との間に中間層と
してクロム層を介在させることによりクロム層は厚さが
200Åと薄いにもかかわらず両者間は1000g/cm
の高い密着強度を得ることが出来る。Therefore, by interposing a chromium layer as an intermediate layer between the supporting substrate and the copper layer, the chromium layer is as thin as 200Å, but the gap between them is 1000 g / cm 2.
It is possible to obtain a high adhesion strength.
【0008】その構成の1例を図4に基づき説明する。
ポリイミド、アルミナ等の支持基板a上に銅層との密着
性を確保するために厚さ200Å程度のクロム層bがス
パッタ法で形成されている。また、クロム層bが形成さ
れた支持基板aをメッキ浴中で配線パターンとなる厚膜
の銅層を電解メッキする際の初期電極となる厚さ200
0Å程度の下地銅層cがスパッタ法で形成されている。
更に、クロム層bと下地銅層cが形成された支持基板a
をメッキ浴中で電解メッキ法により厚さ20μm前後の
メッキ銅層dが下地銅層c上に形成されている。An example of the configuration will be described with reference to FIG.
A chromium layer b having a thickness of about 200 Å is formed on a supporting substrate a of polyimide, alumina, or the like by a sputtering method in order to secure adhesion with a copper layer. Further, the supporting substrate a on which the chrome layer b is formed has a thickness of 200 as an initial electrode when electrolytically plating a thick copper layer to be a wiring pattern in a plating bath.
The underlying copper layer c having a thickness of about 0Å is formed by the sputtering method.
Further, a supporting substrate a on which a chrome layer b and a base copper layer c are formed
A plated copper layer d having a thickness of about 20 μm is formed on the base copper layer c by electrolytic plating in a plating bath.
【0009】そして、銅層c,dを所望の配線パターン
に形成するために、銅層c,d上にレジスト材の塗布
と、露光処理と、エッチング溶液中でのエッチング処理
と、洗浄処理を行って該銅層c,dをプリント配線基板
用の配線膜として使用する。Then, in order to form the copper layers c and d in a desired wiring pattern, application of a resist material on the copper layers c and d, exposure treatment, etching treatment in an etching solution, and cleaning treatment are performed. Then, the copper layers c and d are used as a wiring film for a printed wiring board.
【0010】通常、銅層c,dのエッチング溶液として
は、塩化第2鉄系を用い、クロム層bのエッチング溶液
としてはクロムの耐食性の良さから塩化第2鉄と塩酸の
混合液が用いられている。そして、エンチッグ処理を施
す場合は、最初に塩化第2鉄液で銅層c,dのエッチン
グ処理を行い、続いて塩化第2鉄と塩酸の混合液でクロ
ム層bのエッチング処理を行う。Usually, a ferric chloride-based solution is used as the etching solution for the copper layers c and d, and a mixed solution of ferric chloride and hydrochloric acid is used as the etching solution for the chromium layer b because of the good corrosion resistance of chromium. ing. Then, when performing the etching treatment, first, the copper layers c and d are etched with a ferric chloride solution, and subsequently, the chromium layer b is etched with a mixed solution of ferric chloride and hydrochloric acid.
【0011】[0011]
【発明が解決しようとする課題】前記構成の支持基板a
上に被覆された銅層c,d(銅箔)およびクロム層bに
配線パターンを形成するために、レジスト材の塗布、パ
ターン露光、エッチング処理、洗浄処理を行うが、銅層
c,dは塩化第2鉄系のエッチング溶液で容易に配線パ
ターンを形成することが出来る。The supporting substrate a having the above-mentioned structure
In order to form a wiring pattern on the copper layers c and d (copper foil) and the chromium layer b coated on the resist layer, resist material coating, pattern exposure, etching treatment, and cleaning treatment are performed. A wiring pattern can be easily formed with a ferric chloride-based etching solution.
【0012】しかしながら、クロムは耐食性に優れてい
るから銅層と同じエッチング溶液ではパターンを形成す
ることが出来ず、塩化第2鉄と塩酸との混合液で行うよ
うにしているので、1種類のエッチング溶液で銅箔とク
ロム層のエッチング処理を連続的に行えず、従って、エ
ッチング処理が2工程となり、しかもクロム層へのエッ
チング処理は短時間で行わなければならないから、エッ
チング処理は複雑となるばかりではなく、全体のエッチ
ング処理が長時間となるため、クロム層bへのエッチン
グ処理時に既にエッチングされている銅層c,dの側壁
にオーバーエッチングが進行して配線パターンに欠陥部
が生じて断線に至るという問題がある。However, since chromium is excellent in corrosion resistance, a pattern cannot be formed with the same etching solution as the copper layer, and since it is performed with a mixed solution of ferric chloride and hydrochloric acid, one type of chromium is used. Since the etching treatment of the copper foil and the chrome layer cannot be performed continuously with the etching solution, and therefore the etching treatment has two steps, and the etching treatment to the chrome layer must be performed in a short time, the etching treatment becomes complicated. Not only that, since the entire etching process takes a long time, over-etching progresses on the sidewalls of the copper layers c and d that have already been etched during the etching process on the chromium layer b, causing a defect in the wiring pattern. There is a problem that leads to disconnection.
【0013】また、支持基板と銅層との密着性を確保す
るために中間層としてクロム層を介在させる必要不可欠
なことから、製品の歩留まりの低下と、コストアップの
原因となっていた。In addition, since it is essential to interpose a chromium layer as an intermediate layer in order to secure the adhesion between the supporting substrate and the copper layer, it has been a cause of lowering the product yield and increasing the cost.
【0014】本発明はかかる問題点を解消し、1種類の
エッチング溶液で配線パターンを形成することが出来、
中間層としてクロム層を介在させた場合と同等の密着強
度を有するプリント配線基板用の銅箔を提供することを
目的とする。The present invention solves such a problem and can form a wiring pattern with one kind of etching solution,
An object of the present invention is to provide a copper foil for a printed wiring board, which has an adhesion strength equivalent to that when a chromium layer is interposed as an intermediate layer.
【0015】[0015]
【課題を解決するための手段】本発明らは前記目的を達
成すべく鋭意検討した結果、支持基板と銅層との中間層
としてクロム層の代わりにクロムにニッケルを添加した
Ni−Cr合金層を用いることにより、1種類のエッチ
ング溶液で銅層とNi−Cr合金層を連続してエッチン
グ処理することが出来、従来のクロム層を中間層とした
場合と同等の密着性を有することを知見した。DISCLOSURE OF THE INVENTION As a result of intensive studies to achieve the above object, the present invention has revealed that a Ni--Cr alloy layer in which nickel is added to chromium instead of a chromium layer as an intermediate layer between a supporting substrate and a copper layer. It was found that the copper layer and the Ni-Cr alloy layer can be continuously etched with one type of etching solution by using, and the adhesiveness is equivalent to that when a conventional chromium layer is used as an intermediate layer. did.
【0016】本発明のプリント配線基板用の銅箔は前記
知見に基づいてなされたものであり、プリント配線基板
用の銅箔において、支持基板と銅層との間に中間層とし
てNiが5at%〜80at%のNi−Cr合金層を設けた
ことを特徴とする。The copper foil for a printed wiring board of the present invention is made on the basis of the above findings, and in the copper foil for a printed wiring board, Ni is 5 at% as an intermediate layer between the support substrate and the copper layer. It is characterized in that a Ni-Cr alloy layer of -80 at% is provided.
【0017】[0017]
【作用】支持基板と銅層との間に中間層としてNi−C
r合金層が存在するため、支持基板と銅層との密着強度
は1000g/cmが得られ、また、1回のエッチング処
理工程で銅層とNi−Cr合金層のエッチングを行えて
配線パターンの形成が容易となる。Function: Ni-C is provided as an intermediate layer between the support substrate and the copper layer.
Since the r-alloy layer is present, the adhesion strength between the supporting substrate and the copper layer is 1000 g / cm, and the copper layer and the Ni-Cr alloy layer can be etched in one etching process to form the wiring pattern. Easy to form.
【0018】[0018]
【実施例】以下添付図面により本発明のプリント配線基
板用の銅箔を説明する。図1は本発明のプリント配線基
板用の銅箔の1実施例を示し、図中、1はポリイミド、
ポリアミド、ポリエチレンテレフタレート、ポリエチレ
ンナフタレート等の高分子材、或いはアルミナ、ガラス
エポキシ等のセラミック材から成る支持基板を示す。The copper foil for printed wiring boards of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows one embodiment of a copper foil for a printed wiring board of the present invention, in which 1 is polyimide,
A supporting substrate made of a polymer material such as polyamide, polyethylene terephthalate, or polyethylene naphthalate, or a ceramic material such as alumina or glass epoxy is shown.
【0019】支持基板1はその表面に例えばNiが70
at%のNi−Cr合金をターゲット材とし、DCマグネ
トロンスパッタ法で成膜した厚さ200ÅのNi−Cr
合金層2が形成されている。また、Ni−Cr合金層2
上に例えば99.99%の無酸素銅をターゲット材と
し、DCマグネトロンスパッタ法で成膜した厚さ200
0Åの銅層3が形成されている。更に、銅層3上には2
0wt%硫酸銅溶液中で電解メッキ法でメッキした厚さ2
0μmの銅層4が形成されている。The support substrate 1 has, for example, Ni on the surface of 70
Ni-Cr with a thickness of 200Å formed by DC magnetron sputtering with a target material of at% Ni-Cr alloy
The alloy layer 2 is formed. In addition, the Ni-Cr alloy layer 2
A target material is, for example, 99.99% oxygen-free copper, and a thickness of 200 is formed by the DC magnetron sputtering method.
A 0Å copper layer 3 is formed. Furthermore, 2 on the copper layer 3
Thickness plated by electrolytic plating method in 0 wt% copper sulfate solution 2
A copper layer 4 of 0 μm is formed.
【0020】尚、Ni−Cr合金層2と銅層3は、1つ
の真空成膜室内にNi−Crカソードと銅カソードを設
置し、DCマグネトロンスパッタ法により支持基板1を
該真空成膜室内を通過させながら連続的に成膜した。As for the Ni-Cr alloy layer 2 and the copper layer 3, a Ni-Cr cathode and a copper cathode are installed in one vacuum film forming chamber, and the support substrate 1 is placed in the vacuum film forming chamber by DC magnetron sputtering. A film was continuously formed while passing the film.
【0021】これらの構成は従来のプリント配線基板用
の銅箔の中間層であるクロム層をNi−Cr合金層に置
換した以外は同じ構成である。These structures are the same except that the chromium layer, which is the intermediate layer of the conventional copper foil for printed wiring boards, is replaced with a Ni--Cr alloy layer.
【0022】本発明の銅箔構成において、Ni−Cr合
金層2と支持基板1の界面に形成されるNi−Cr−O
x の酸化物は酸化クロム(Cr2O3,CrO2)と同様
に緻密で密着性が高く、これによりNi−Cr合金層2
と、その上に形成された銅層3,4との界面は金属−金
属の強い結合となる。よって、中間層としてNi−Cr
合金層2が形成された銅層3,4は支持基板1との密着
強度が1000g/cmの高い値となる。In the copper foil structure of the present invention, Ni—Cr—O formed at the interface between the Ni—Cr alloy layer 2 and the supporting substrate 1 is used.
The oxide of x is dense and has high adhesion like chromium oxide (Cr 2 O 3 , CrO 2 ).
Then, the interfaces with the copper layers 3 and 4 formed thereon form strong metal-metal bonds. Therefore, Ni-Cr as the intermediate layer
The copper layers 3 and 4 on which the alloy layer 2 is formed have a high adhesion strength with the supporting substrate 1 of 1000 g / cm.
【0023】前記実施例では銅層4の形成にメッキ法を
用いたが、スパッタ法により銅層3を形成する際、銅層
3の形成に連続させてスパッタ法で銅層4を形成しても
よい。また、前記実施例ではNi−Cr合金層2上の銅
層3の形成にスパッタ法を用いたが、蒸着法、CVD法
で銅層3および銅層4の形成を連続的に形成してもよ
い。また、支持基板1上に形成するNi−Cr合金層
2、銅層3および銅層4の形成をスパッタ法、蒸着法、
CVD法のいずれか1つの方法、或いはこれらの方法を
組み合わせて形成するようにしてもよい。Although the plating method is used to form the copper layer 4 in the above-described embodiment, when the copper layer 3 is formed by the sputtering method, the copper layer 4 is formed by the sputtering method after the formation of the copper layer 3. Good. Further, although the sputtering method is used to form the copper layer 3 on the Ni—Cr alloy layer 2 in the above-mentioned embodiment, the copper layer 3 and the copper layer 4 may be continuously formed by the vapor deposition method or the CVD method. Good. Further, formation of the Ni—Cr alloy layer 2, the copper layer 3 and the copper layer 4 formed on the support substrate 1 is performed by a sputtering method, a vapor deposition method,
Any one of the CVD methods or a combination of these methods may be used.
【0024】次に本発明の具体的実験例について説明す
る。Next, specific experimental examples of the present invention will be described.
【0025】実験例 本実験例では支持基板1上へのNi−Cr合金層2、銅
層3、銅層4の形成を次のように行った。Experimental Example In this experimental example, the Ni—Cr alloy layer 2, the copper layer 3, and the copper layer 4 were formed on the support substrate 1 as follows.
【0026】先ず、厚さ50μmのポリイミドから成る
支持基板1をNi−CrカソードとCuカソードを2台
有する連続巻取式スパッタ装置を備えた真空成膜室内に
載置した後、該真空成膜室内を真空ポンプ等を介して真
空度1×10-5Torr以下に設定し、続いて該成膜室内が
5×10-3Torrとなるようにアルゴンガスを導入した。
次いで、支持基板1にDCマグネトロンスパッタ法で該
支持基板1上に厚さ200Åの図2示すようなNiの含
有量が異なった種々のNi−Cr合金層2を形成し、続
いて該Ni−Cr合金層2上に厚さ2000Åの銅層3
を連続形成した後、該支持基板1を真空成膜室内より取
り出した。First, a supporting substrate 1 made of polyimide having a thickness of 50 μm is placed in a vacuum film forming chamber equipped with a continuous winding type sputtering device having two Ni--Cr cathodes and Cu cathodes, and then the vacuum film forming is carried out. The inside of the chamber was set to a vacuum degree of 1 × 10 −5 Torr or less through a vacuum pump or the like, and subsequently, argon gas was introduced so that the inside of the film forming chamber became 5 × 10 −3 Torr.
Then, various Ni—Cr alloy layers 2 having different Ni contents as shown in FIG. 2 and having a thickness of 200 Å are formed on the supporting substrate 1 by the DC magnetron sputtering method. 2000Å thick copper layer 3 on Cr alloy layer 2
Was continuously formed, the supporting substrate 1 was taken out from the vacuum film forming chamber.
【0027】尚、支持基板1上に形成するNi−Cr合
金層2のNiの含有量調整は、Ni−Cr合金の組成
(CrへのNiドープ量)を変化させたターゲットを用
いて行い、また、Ni−Cr合金層2上に形成する銅層
3は99.99%の無酸素銅をターゲットとした。The Ni content of the Ni—Cr alloy layer 2 formed on the supporting substrate 1 is adjusted by using a target having a different composition of Ni—Cr alloy (the amount of Ni doped into Cr). Further, the copper layer 3 formed on the Ni—Cr alloy layer 2 targeted 99.99% oxygen-free copper.
【0028】続いて、該支持基板1を20wt%の硫酸銅
溶液中に浸漬し、電解メッキ法で銅層3上に厚さ20μ
mのメッキ銅層4を形成した後、該支持基板1を電解メ
ッキ槽より取り出し、洗浄処理を行って、中間層として
Ni含有量の異なるNi−Cr合金層を有する各基板用
銅箔を作成した。Subsequently, the supporting substrate 1 is dipped in a 20 wt% copper sulfate solution, and a thickness of 20 μm is formed on the copper layer 3 by electrolytic plating.
After forming the plated copper layer 4 of m, the supporting substrate 1 is taken out from the electrolytic plating bath and washed to prepare a copper foil for each substrate having a Ni-Cr alloy layer having a different Ni content as an intermediate layer. did.
【0029】作成された各基板用銅箔の銅層3,4に配
線パターンを形成すべく、常法に従い、レジスト材を塗
布して露光し、ラインスペース20μmのレジストパタ
ーンを形成した後、塩化第2鉄の40g/リットル、温
度50℃のエッチング溶液中への浸漬によるエッチング
処理、並びに洗浄処理を行って銅層3,4に所定の配線
パターンを形成した。In order to form a wiring pattern on the copper layers 3 and 4 of each of the prepared copper foils for substrates, a resist material is applied and exposed in a conventional manner to form a resist pattern having a line space of 20 μm, and then chloride. A predetermined wiring pattern was formed on the copper layers 3 and 4 by performing an etching treatment by dipping ferric iron in an etching solution of 40 g / liter at a temperature of 50 ° C. and a cleaning treatment.
【0030】そして、各基板用銅箔の支持基板1と銅層
3,4との密着強度(g/cm)を180°反転剥離法
(JPCA−FC01−4.4に準拠)により測定し、
その測定結果を図2に示す。Then, the adhesion strength (g / cm) between the supporting substrate 1 and the copper layers 3 and 4 of the copper foil for each substrate was measured by a 180 ° reversal peeling method (based on JPCA-FC01-4.4),
The measurement result is shown in FIG.
【0031】また、配線パターンが形成された各基板用
銅箔の断面形状を走査電子顕微鏡(SEM)で観察し、
その模式を図3に示した。尚、図3にはNi−Cr合金
層中のNi含有量が0at%、4at%、5at%並びに80
at%の場合のみを示した。Further, the cross-sectional shape of each copper foil for a substrate on which a wiring pattern is formed is observed with a scanning electron microscope (SEM),
The pattern is shown in FIG. In FIG. 3, the Ni content in the Ni—Cr alloy layer is 0 at%, 4 at%, 5 at%, and 80 at%.
Only the case of at% is shown.
【0032】図2から明らかなように、Ni−Cr合金
層中のNiが1at%〜80at%の範囲で、Niを全く含
まないクロム層のみの場合と同等の密着強度が得られる
ことが確認された。また、図3から明らかなように、N
i−Cr合金層中のNiが4at%の場合、Niを全く含
まないクロム層の場合は、エッチング処理時に中間層で
あるクロム層またはNiが4at%のNi−Cr合金層が
エッチングされることなくそのまま残渣として残存する
が、Niが5at%、80at%のNi−Cr合金層はエッ
チング時に、その上に形成されている銅層と一緒に除去
されて配線パターンが確実に形成出来ることが確認され
た。As is clear from FIG. 2, it was confirmed that when Ni in the Ni—Cr alloy layer was in the range of 1 at% to 80 at%, the same adhesion strength as that obtained only with the chromium layer containing no Ni was obtained. Was done. Also, as is clear from FIG.
When Ni in the i-Cr alloy layer is 4 at%, or in the case of a chromium layer containing no Ni, the chromium layer as the intermediate layer or the Ni-Cr alloy layer having 4 at% Ni should be etched during the etching treatment. Although it remains as a residue as it is, it is confirmed that the Ni-Cr alloy layer containing 5 at% Ni and 80 at% Ni is removed together with the copper layer formed on the Ni-Cr alloy layer at the time of etching, and the wiring pattern can be reliably formed. Was done.
【0033】前記の如く、本発明の中間層としてNiが
5at%〜80at%のNi−Cr合金層を有する銅箔は、
1000g/cmの高い密着強度を有し、かつ1種類のエ
ッチング溶液で配線パターンを確実に形成することが可
能となり、プリント配線基板の配線パターン形成の際、
工程の簡略化、製品の歩留まりアップ、コストの削減に
大きく寄与出来る。As described above, the copper foil having the Ni—Cr alloy layer containing 5 to 80 at% Ni as the intermediate layer of the present invention is
It has a high adhesion strength of 1000 g / cm, and it is possible to reliably form a wiring pattern with one type of etching solution.
It can greatly contribute to simplification of process, increase of product yield, and cost reduction.
【0034】[0034]
【発明の効果】本発明のプリント配線基板用の銅箔によ
るときは、支持基板と銅層との間にNiが5at%〜80
at%のNi−Cr合金層の中間層を設けるようにしたの
で、支持基板と銅層との密着強度は1000g/cmと高
く、また、1種類のエッチング溶液でラインスペース2
0μm程度の微細パターンの形成が出来るため、プリン
ト配線基板用の銅箔に配線パターンを形成する際、工程
の簡略化、製品の歩留まりアップ、コスト削減に寄与す
ることが出来る等の効果がある。According to the copper foil for a printed wiring board of the present invention, Ni is contained between the supporting substrate and the copper layer in an amount of 5 at% to 80 at%.
Since the intermediate layer of the at% Ni-Cr alloy layer is provided, the adhesion strength between the supporting substrate and the copper layer is as high as 1000 g / cm, and the line space 2 can be formed with one type of etching solution.
Since a fine pattern of about 0 μm can be formed, when forming a wiring pattern on a copper foil for a printed wiring board, there are effects such as simplification of the process, an increase in product yield, and a cost reduction.
【図1】 本発明銅箔の1実施例の截断面図、FIG. 1 is a cross-sectional view of one embodiment of a copper foil of the present invention,
【図2】 本発明実験例における支持基板と銅層の密着
強度とNi−Cr合金層中のNi量変化との関係を示す
特性線図、FIG. 2 is a characteristic diagram showing the relationship between the adhesion strength between a support substrate and a copper layer and changes in the amount of Ni in a Ni—Cr alloy layer in an experimental example of the present invention,
【図3】 本発明実験例におけるエッチング処理後のN
i−Cr合金層中のNi量変化と支持基板上の銅層およ
び中間層のエッチング状態の関係を示す模式図、FIG. 3 shows N after etching treatment in the experimental example of the present invention.
Schematic diagram showing the relationship between the amount of Ni in the i-Cr alloy layer and the etching state of the copper layer and the intermediate layer on the support substrate,
【図4】 従来銅箔の截断面図。FIG. 4 is a cross-sectional view of a conventional copper foil.
1 支持基板、 2 中間層、 3,4 銅
層。1 supporting substrate, 2 intermediate layer, 3, 4 copper layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 久三 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 川村 裕明 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisami Nakamura 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Vacuum Technology Co., Ltd. Chiba Institute for Super Materials (72) Inventor Hiroaki Kawamura 523 Yokota, Yamatake-cho, Sanmu-gun, Chiba Japan Vacuum Technology Co., Ltd. Chiba Institute for Materials Research
Claims (1)
持基板と銅層との間に中間層としてNiが5at%〜80
at%のNi−Cr合金層を設けたことを特徴とするプリ
ント配線基板用の銅箔。1. A copper foil for a printed wiring board, wherein Ni is 5 at% to 80 as an intermediate layer between the support substrate and the copper layer.
A copper foil for a printed wiring board, which is provided with an at% Ni-Cr alloy layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26885892A JPH06120630A (en) | 1992-10-07 | 1992-10-07 | Copper foil for printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26885892A JPH06120630A (en) | 1992-10-07 | 1992-10-07 | Copper foil for printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06120630A true JPH06120630A (en) | 1994-04-28 |
Family
ID=17464249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26885892A Pending JPH06120630A (en) | 1992-10-07 | 1992-10-07 | Copper foil for printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06120630A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6622374B1 (en) | 2000-09-22 | 2003-09-23 | Gould Electronics Inc. | Resistor component with multiple layers of resistive material |
JP2007173872A (en) * | 2007-03-26 | 2007-07-05 | Sharp Corp | Film for semiconductor carrier and semiconductor device using same, and liquid crystal module |
JP2007207812A (en) * | 2006-01-31 | 2007-08-16 | Nikko Kinzoku Kk | Copper foil for printed wiring board and printed wiring board using the same |
JP2008130585A (en) * | 2006-11-16 | 2008-06-05 | Sumitomo Metal Mining Co Ltd | Copper-coated polyimide substrate and manufacturing method thereof |
JP2008166850A (en) * | 2008-03-27 | 2008-07-17 | Sharp Corp | Film for semiconductor carrier and semiconductor device using the same, and liquid crystal module |
JP2009021639A (en) * | 2008-10-27 | 2009-01-29 | Sharp Corp | Film for semiconductor carrier and semiconductor device using the same, and liquid crystal module |
US7495177B2 (en) | 2003-12-05 | 2009-02-24 | Mitsui Mining & Smelting Co., Ltd. | Printed wiring board, its manufacturing method, and circuit device |
US7523548B2 (en) | 2003-12-05 | 2009-04-28 | Mitsui Mining & Smelting Co., Ltd. | Method for producing a printed circuit board |
WO2009098832A1 (en) | 2008-02-04 | 2009-08-13 | Nippon Mining & Metals Co., Ltd. | Adhesive-free flexible laminate |
JP2010005800A (en) * | 2008-06-24 | 2010-01-14 | Sumitomo Metal Mining Co Ltd | Two-layered flexible substrate, its method of manufacturing, printed-wiring board using the two-layered flexible substrate, and its method of manufacturing |
WO2010074056A1 (en) | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | Flexible laminate and flexible electronic circuit substrate formed using the same |
US8092696B2 (en) | 2004-07-01 | 2012-01-10 | Nitto Denko Corporation | Method for manufacturing printed circuit board |
US8465656B2 (en) | 2007-09-10 | 2013-06-18 | Sumitomo Metal Mining Co., Ltd. | Method for manufacturing a printed circuit board and a printed circuit board obtained by the manufacturing method |
US8568899B2 (en) | 2007-10-18 | 2013-10-29 | Jx Nippon Mining & Metals Corporation | Metal covered polyimide composite, process for producing the composite, and process for producing electronic circuit board |
US8663484B2 (en) | 2007-07-09 | 2014-03-04 | Sumitomo Metal Mining Co., Ltd. | Method for manufacturing a printed circuit board and a printed circuit board obtained by the manufacturing method |
US8721864B2 (en) | 2007-10-18 | 2014-05-13 | Jx Nippon Mining & Metals Corporation | Process and apparatus for producing a metal covered polyimide composite |
JP2014112744A (en) * | 2014-03-26 | 2014-06-19 | Sharp Corp | Method of using film for semiconductor carrier |
KR20170084286A (en) | 2015-01-10 | 2017-07-19 | 미쯔비시 케미컬 주식회사 | Double-sided metal laminated film |
KR20200023550A (en) | 2015-09-30 | 2020-03-04 | 미쯔비시 케미컬 주식회사 | Film for laminating metal film |
-
1992
- 1992-10-07 JP JP26885892A patent/JPH06120630A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6771160B2 (en) | 2000-09-22 | 2004-08-03 | Nikko Materials Usa, Inc. | Resistor component with multiple layers of resistive material |
US6622374B1 (en) | 2000-09-22 | 2003-09-23 | Gould Electronics Inc. | Resistor component with multiple layers of resistive material |
US7495177B2 (en) | 2003-12-05 | 2009-02-24 | Mitsui Mining & Smelting Co., Ltd. | Printed wiring board, its manufacturing method, and circuit device |
US7523548B2 (en) | 2003-12-05 | 2009-04-28 | Mitsui Mining & Smelting Co., Ltd. | Method for producing a printed circuit board |
US8092696B2 (en) | 2004-07-01 | 2012-01-10 | Nitto Denko Corporation | Method for manufacturing printed circuit board |
JP2007207812A (en) * | 2006-01-31 | 2007-08-16 | Nikko Kinzoku Kk | Copper foil for printed wiring board and printed wiring board using the same |
JP2008130585A (en) * | 2006-11-16 | 2008-06-05 | Sumitomo Metal Mining Co Ltd | Copper-coated polyimide substrate and manufacturing method thereof |
JP2007173872A (en) * | 2007-03-26 | 2007-07-05 | Sharp Corp | Film for semiconductor carrier and semiconductor device using same, and liquid crystal module |
US8663484B2 (en) | 2007-07-09 | 2014-03-04 | Sumitomo Metal Mining Co., Ltd. | Method for manufacturing a printed circuit board and a printed circuit board obtained by the manufacturing method |
US8465656B2 (en) | 2007-09-10 | 2013-06-18 | Sumitomo Metal Mining Co., Ltd. | Method for manufacturing a printed circuit board and a printed circuit board obtained by the manufacturing method |
US8721864B2 (en) | 2007-10-18 | 2014-05-13 | Jx Nippon Mining & Metals Corporation | Process and apparatus for producing a metal covered polyimide composite |
US8568899B2 (en) | 2007-10-18 | 2013-10-29 | Jx Nippon Mining & Metals Corporation | Metal covered polyimide composite, process for producing the composite, and process for producing electronic circuit board |
WO2009098832A1 (en) | 2008-02-04 | 2009-08-13 | Nippon Mining & Metals Co., Ltd. | Adhesive-free flexible laminate |
JP2008166850A (en) * | 2008-03-27 | 2008-07-17 | Sharp Corp | Film for semiconductor carrier and semiconductor device using the same, and liquid crystal module |
JP2010005800A (en) * | 2008-06-24 | 2010-01-14 | Sumitomo Metal Mining Co Ltd | Two-layered flexible substrate, its method of manufacturing, printed-wiring board using the two-layered flexible substrate, and its method of manufacturing |
JP2009021639A (en) * | 2008-10-27 | 2009-01-29 | Sharp Corp | Film for semiconductor carrier and semiconductor device using the same, and liquid crystal module |
US8487191B2 (en) | 2008-12-26 | 2013-07-16 | Jx Nippon Mining & Metals Corporation | Flexible laminate and flexible electronic circuit board formed by using the same |
WO2010074056A1 (en) | 2008-12-26 | 2010-07-01 | 日鉱金属株式会社 | Flexible laminate and flexible electronic circuit substrate formed using the same |
JP2014112744A (en) * | 2014-03-26 | 2014-06-19 | Sharp Corp | Method of using film for semiconductor carrier |
KR20170084286A (en) | 2015-01-10 | 2017-07-19 | 미쯔비시 케미컬 주식회사 | Double-sided metal laminated film |
KR20190018564A (en) | 2015-01-10 | 2019-02-22 | 미쯔비시 케미컬 주식회사 | Double-sided metal laminated film |
KR20200023550A (en) | 2015-09-30 | 2020-03-04 | 미쯔비시 케미컬 주식회사 | Film for laminating metal film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06120630A (en) | Copper foil for printed wiring board | |
US5284548A (en) | Process for producing electrical circuits with precision surface features | |
US7495177B2 (en) | Printed wiring board, its manufacturing method, and circuit device | |
JP4087369B2 (en) | Ultra-thin copper foil with carrier and printed wiring board | |
CN104080951B (en) | Copper foil for printed circuit board and its duplexer of use, printed circuit board (PCB) and electronic unit | |
JPH0255943B2 (en) | ||
JP2002176242A (en) | Copper foil for electronic circuit and method for forming electronic circuit | |
JPH0681172A (en) | Formation of fine pattern | |
WO2010074054A1 (en) | Method for forming electronic circuit | |
JPH07197239A (en) | Production of metal-laminated polyimide film | |
US20080236872A1 (en) | Printed Wiring Board, Process For Producing the Same and Semiconductor Device | |
JP4924843B2 (en) | Two-layer flexible substrate and method for manufacturing the same, printed wiring board using the two-layer flexible substrate, and method for manufacturing the same | |
EP0257737A2 (en) | Printed circuit precursor | |
JP2637804B2 (en) | Substrate with plating | |
JP2011171621A (en) | Copper foil with resistor layer and copper clad laminate including the same, and method of manufacturing the copper clad laminate | |
JP2000286531A (en) | Manufacture of printed wiring board | |
JP2875186B2 (en) | Processing method of copper foil for printed circuit | |
CN102812786B (en) | Printed wiring board-use copper-clad and use the duplexer of this Copper Foil | |
JP5506497B2 (en) | Copper foil for printed wiring board for forming circuit with excellent electric transmission characteristics and laminate using the same | |
JP2006159632A (en) | Copper metallized laminated sheet and its manufacturing method | |
JP4385298B2 (en) | Two-layer flexible substrate and manufacturing method thereof | |
CN103262665B (en) | The formation method of Copper Foil, duplexer, printed wiring board and electronic circuit | |
TW201247041A (en) | Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit | |
WO2011121803A1 (en) | Copper foil for printed wiring board having excellent thermal discoloration resistance and etching properties, and laminate using same | |
JPH0555750A (en) | Multilayer printed wiring board and manufacturing method thereof |