JPH06113398A - Sound wave transducer element - Google Patents
Sound wave transducer elementInfo
- Publication number
- JPH06113398A JPH06113398A JP4261541A JP26154192A JPH06113398A JP H06113398 A JPH06113398 A JP H06113398A JP 4261541 A JP4261541 A JP 4261541A JP 26154192 A JP26154192 A JP 26154192A JP H06113398 A JPH06113398 A JP H06113398A
- Authority
- JP
- Japan
- Prior art keywords
- conversion element
- sound wave
- electroacoustic
- sample
- acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Transducers For Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超音波を用いて試料の
厚さを測定する超音波計測装置や、厚さ測定機能の付い
た超音波顕微鏡などに用いられる音波変換素子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic measuring device for measuring the thickness of a sample by using ultrasonic waves, and a sound wave conversion element used in an ultrasonic microscope having a thickness measuring function.
【0002】[0002]
【従来の技術】試料に超音波を照射し、その試料からの
反射波を電気信号に変換し、その電気信号から特定の成
分を取り出し、この取り出した成分に基づいて試料の厚
さを計測する超音波計測装置が知られている。2. Description of the Related Art A sample is irradiated with ultrasonic waves, a reflected wave from the sample is converted into an electric signal, a specific component is extracted from the electric signal, and the thickness of the sample is measured based on the extracted component. Ultrasonic measuring devices are known.
【0003】超音波計測装置は、その一例が図6(A)
に示すように、超音波を集束する音響レンズ112と、
これに取り付けられた電気音響変換素子114とを有し
ている。音響レンズ112はカプラー媒体116を介し
て試料118と結合されている。装置は、超音波を発生
させるための電気信号を電気音響変換素子114に供給
する発振器120を含み、電気音響変換素子114は入
力された電気信号に応じた超音波を音響レンズ112の
内部に発射する。この超音波は音響レンズ112のレン
ズ面で集束され、カプラー媒体116を介して試料11
8に照射される。試料118で反射された超音波は、カ
プラー媒体116を通って音響レンズ112に入射し、
その内部を伝搬して電気音響変換素子114に入射す
る。電気音響変換素子114は受信した超音波をこれに
応じた電気信号に変換する。この電気信号は増幅器12
2で増幅された後に波形表示部124に入力される。測
定時、発振器120の周波数fを連続的に変化させる。
このとき、試料118の内部の超音波の波長λと試料1
18の厚さdとの間に nλ/2=d (n=1,2,3…) (1)An example of the ultrasonic measuring device is shown in FIG.
And an acoustic lens 112 for focusing ultrasonic waves,
It has an electroacoustic conversion element 114 attached thereto. The acoustic lens 112 is coupled to the sample 118 via the coupler medium 116. The apparatus includes an oscillator 120 that supplies an electric signal for generating an ultrasonic wave to the electroacoustic conversion element 114, and the electroacoustic conversion element 114 emits an ultrasonic wave according to the input electric signal into the acoustic lens 112. To do. This ultrasonic wave is focused on the lens surface of the acoustic lens 112, and is transmitted through the coupler medium 116 to the sample 11
8 is irradiated. The ultrasonic wave reflected by the sample 118 enters the acoustic lens 112 through the coupler medium 116,
It propagates through the inside and enters the electroacoustic conversion element 114. The electroacoustic conversion element 114 converts the received ultrasonic wave into an electric signal corresponding thereto. This electric signal is sent to the amplifier 12
After being amplified by 2, it is input to the waveform display unit 124. During measurement, the frequency f of the oscillator 120 is continuously changed.
At this time, the wavelength λ of the ultrasonic wave inside the sample 118 and the sample 1
Between the thickness d of 18 and nλ / 2 = d (n = 1, 2, 3 ...) (1)
【0004】の関係が成り立つとき、試料118の内部
に定在波が生じる。この発振器120の周波数fと受信
音波の強度の関係は波形表示部124に表示され、図6
(B)に示されるように、 fn =nV/2d (n=1,2,3…) (2) の所でピークを示す。式中、Vは試料内部での音速であ
る。従って、n,V,fにより試料118の厚さdが求
まる。nが不明の場合、試料118の厚さdは d=V/2(fn −fn-1 ) (3) により求められる。When the relationship of (2) is established, a standing wave is generated inside the sample 118. The relationship between the frequency f of the oscillator 120 and the intensity of the received sound wave is displayed on the waveform display unit 124.
As shown in (B), a peak is shown at f n = nV / 2d (n = 1, 2, 3 ...) (2). In the equation, V is the speed of sound inside the sample. Therefore, the thickness d of the sample 118 can be obtained from n, V, and f. If n is unknown, the thickness d of the sample 118 is obtained by d = V / 2 (f n -f n-1) (3).
【0005】上述の測定では、連続の超音波を用いた
が、パルス状の超音波を用いることもできる。この場
合、図7(A)に示すスペクトラムを持つ超音波パルス
を電気音響変換素子114から射出する。この超音波パ
ルスは、図7(B)に示すように、試料118の上面と
下面とで反射される。試料118の上下面で反射された
超音波パルスを抽出し、その周波数成分を調べると図7
(C)の様になる。今、谷の部分の周波数をf1 ,
f2 ,f3 ,f4 とすると、試料118の厚さdは d=V/2fS (fS =f2 −f1 =f3 −f2 =f4 −f3 ) (4) で求められる。In the above measurement, continuous ultrasonic waves are used, but pulsed ultrasonic waves can also be used. In this case, the ultrasonic pulse having the spectrum shown in FIG. 7A is emitted from the electroacoustic conversion element 114. This ultrasonic pulse is reflected on the upper surface and the lower surface of the sample 118, as shown in FIG. When the ultrasonic pulse reflected on the upper and lower surfaces of the sample 118 is extracted and its frequency component is examined, FIG.
It becomes like (C). Now, let the frequency of the valley part be f 1 ,
Assuming f 2 , f 3 and f 4 , the thickness d of the sample 118 is d = V / 2f S (f S = f 2 −f 1 = f 3 −f 2 = f 4 −f 3 ) (4) Desired.
【0006】このような超音波計測装置に用いる音波変
換素子は大きく分けて2種類ある。その一つは図8
(A)に示すように支持部材132に電気音響変換素子
134をレンズ面形状たとえば球面や円筒面に設けたも
ので、電気音響変換素子134から射出された超音波は
電気音響変換素子134の形状に応じて一点または一直
線に集束される。他の一つは図8(B)に示すように音
響レンズ136のレンズ面140の反対側に電気音響変
換素子138を設けたもので、電気音響変換素子138
から射出された超音波はレンズ面140によりその形状
に応じてすなわち球面か円筒面かに応じて一点または一
直線に集束する。これらの音波変換素子はいずれも共焦
点型で、超音波の送信と受信の両方を一つの電気音響変
換素子134と138で行なっている。There are roughly two types of acoustic wave conversion elements used in such ultrasonic measuring devices. One of them is Figure 8.
As shown in (A), the support member 132 is provided with the electroacoustic conversion element 134 in a lens surface shape, for example, a spherical surface or a cylindrical surface. It is focused on a single point or a straight line depending on. The other one is that an electroacoustic conversion element 138 is provided on the opposite side of the lens surface 140 of the acoustic lens 136 as shown in FIG.
The ultrasonic wave emitted from the lens is focused by the lens surface 140 into a point or a straight line depending on its shape, that is, a spherical surface or a cylindrical surface. All of these acoustic wave conversion elements are confocal, and both the transmission and reception of ultrasonic waves are performed by one electroacoustic conversion element 134 and 138.
【0007】[0007]
【発明が解決しようとする課題】このような音波変換素
子には以下のような欠点がある。Such a sound wave conversion element has the following drawbacks.
【0008】連続波を用いた測定において、音波変換素
子に図8(a)に示したタイプのものを使用した場合、
電気音響変換素子と試料の間の距離d’とカプラー媒体
中での波長λ’との間に d’=nλ/2 (n=1,2,3…) (1’)In the measurement using a continuous wave, when the acoustic wave conversion element of the type shown in FIG. 8 (a) is used,
Between the distance d ′ between the electroacoustic transducer and the sample and the wavelength λ ′ in the coupler medium d ′ = nλ / 2 (n = 1,2,3 ...) (1 ′)
【0009】の関係が成り立つとき、カプラー媒体中に
定在波が発生する。このため、波形表示部の表示は、図
9に示すように、試料中の定在波のピークの他にカプラ
ー媒体内の定在波のピークが現れるために厚さの測定が
困難になることがある。また、音波変換素子に図8
(B)に示したタイプのものを使用した場合には、カプ
ラー媒体中だけでなく、音響レンズ内にも定在波が発生
する可能性が生じるため、測定が更に困難になる。一
方、パルス波を用いた測定においては、送信パルスが音
波変換素子を通り、電気ノイズが電気信号処理部にも
れ、厚さ測定の精度を落すことになる。本発明は、試料
の厚さを精度良く測定することを可能にする音波変換素
子の提供を目的とする。When the relationship of (1) holds, a standing wave is generated in the coupler medium. Therefore, as shown in FIG. 9, the display of the waveform display section makes it difficult to measure the thickness because the peak of the standing wave in the coupler medium appears in addition to the peak of the standing wave in the sample. There is. In addition, the sound wave conversion element shown in FIG.
When the type shown in (B) is used, a standing wave may be generated not only in the coupler medium but also in the acoustic lens, which makes the measurement more difficult. On the other hand, in the measurement using the pulse wave, the transmission pulse passes through the acoustic wave conversion element, the electric noise leaks to the electric signal processing unit, and the accuracy of the thickness measurement deteriorates. It is an object of the present invention to provide a sound wave conversion element that enables the thickness of a sample to be accurately measured.
【0010】[0010]
【課題を解決するための手段】本発明の音波変換素子
は、電気信号と音響信号とを相互に変換する電気音響変
換手段と、音響信号を集束する集束手段とを備えてお
り、電気音響変換手段は互いに電気的に分離された音響
信号を送信する送信部と音響信号を受信する受信部とを
有している。The acoustic wave conversion element of the present invention comprises an electroacoustic conversion means for mutually converting an electrical signal and an acoustic signal, and a focusing means for converging the acoustic signal. The means has a transmitter for transmitting the acoustic signals and a receiver for receiving the acoustic signals electrically isolated from each other.
【0011】[0011]
【作用】本発明の音波変換素子は電気音響変換手段と集
束手段とを有している。電気音響変換手段は、例えば圧
電材料や電歪材料である誘電体に対向する二枚の電極を
設けて構成される。集束手段は、音響信号すなわち音波
を射出する射出面が球面または円柱面に形成された電気
音響変換手段で構成される。あるいは、音波を伝搬する
材料で作られた、球面または円柱面からなるレンズ面を
有する伝搬媒体で構成される。この場合、電気音響変換
手段はレンズ面に向けて音波を射出するように伝搬媒体
に取り付けられる。The sound wave conversion element of the present invention has electroacoustic conversion means and focusing means. The electroacoustic conversion means is configured by providing two electrodes facing a dielectric material such as a piezoelectric material or an electrostrictive material. The focusing means is composed of electroacoustic conversion means having an emission surface for emitting an acoustic signal, that is, a sound wave, formed in a spherical surface or a cylindrical surface. Alternatively, it is composed of a propagation medium having a lens surface made of a spherical surface or a cylindrical surface, which is made of a material that propagates sound waves. In this case, the electroacoustic conversion means is attached to the propagation medium so as to emit a sound wave toward the lens surface.
【0012】電気音響変換手段は、入力される電気信号
を音響信号に変換して出力する送信部と、受信した音響
信号を電気信号に変換して出力する受信部とを有してい
る。送信部から射出された音響信号すなわち音波は試料
に集束され、試料からの反射波は受信部に入射する。The electroacoustic converting means has a transmitting section for converting an inputted electric signal into an acoustic signal and outputting the acoustic signal, and a receiving section for converting a received acoustic signal into an electric signal and outputting the electric signal. The acoustic signal, that is, the sound wave emitted from the transmitting unit is focused on the sample, and the reflected wave from the sample enters the receiving unit.
【0013】[0013]
【実施例】以下、図面を参照しながら本発明の実施例に
ついて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0014】本発明の第一実施例の音波変換素子は、そ
の側断面図を図1(A)に、下面図を図1(C)に示す
ように、支持部材12の下端に送信用の電気音響変換素
子14と受信用の電気音響変換素子16が設けられてい
る。電気音響変換素子14と16は、無機高分子圧電膜
等の誘電体層20の上下面に電極18と22を積層した
構造となっている。送信用の電気音響変換素子14と受
信用の電気音響変換素子16は、支持部材12の下端を
球面に形成し、その球面に電極18と誘電体層20と電
極22とを積層した後、溝24を設けて形成される。従
って、電気音響変換素子14と16の電極22の下面は
共に同一球面の一部をなしている。The sound wave conversion element of the first embodiment of the present invention has a side sectional view shown in FIG. 1A and a bottom view thereof as shown in FIG. An electroacoustic conversion element 14 and a reception electroacoustic conversion element 16 are provided. The electroacoustic transducers 14 and 16 have a structure in which electrodes 18 and 22 are laminated on the upper and lower surfaces of a dielectric layer 20 such as an inorganic polymer piezoelectric film. In the electroacoustic transducer 14 for transmission and the electroacoustic transducer 16 for reception, the lower end of the support member 12 is formed into a spherical surface, and the electrode 18, the dielectric layer 20, and the electrode 22 are laminated on the spherical surface, and then the groove is formed. It is formed by providing 24. Therefore, the lower surfaces of the electrodes 22 of the electroacoustic transducers 14 and 16 both form part of the same spherical surface.
【0015】測定の際、この音波変換素子は図1(B)
に示すようにカプラー媒体26を介して試料28に結合
される。送信用の電気音響変換素子14は入力される電
気信号を音響信号すなわち超音波に変換して射出する。
電気音響素子14の電極22は球面であるから、そこか
ら射出された超音波は一点に集束される。このように射
出された超音波は試料28の上面と下面とで反射され、
その反射波は受信用の電気音響変換素子16に入射して
電気信号に変換される。At the time of measurement, this acoustic wave conversion element is shown in FIG.
It is coupled to the sample 28 via the coupler medium 26 as shown in FIG. The transmission electroacoustic conversion element 14 converts an input electric signal into an acoustic signal, that is, an ultrasonic wave, and emits the acoustic signal.
Since the electrode 22 of the electroacoustic element 14 has a spherical surface, ultrasonic waves emitted from the electrode 22 are focused at one point. The ultrasonic wave thus emitted is reflected by the upper surface and the lower surface of the sample 28,
The reflected wave enters the electroacoustic conversion element 16 for reception and is converted into an electric signal.
【0016】本実施例の音波変換素子は、互いに独立し
た送信用の電気音響変換素子14と受信用の電気音響変
換素子16とを備えており、送信信号と受信信号を別々
の電気音響変換素子で処理するため測定精度が向上す
る。The acoustic wave conversion element of this embodiment comprises an electroacoustic conversion element 14 for transmission and an electroacoustic conversion element 16 for reception, which are independent of each other, and separates the transmission signal and the reception signal from each other. The measurement accuracy is improved because it is processed in.
【0017】次に図2を参照しながら本発明の第二実施
例の音波変換素子について説明する。本実施例の音波変
換素子は、送信用の電気音響変換素子14と受信用の電
気音響変換素子16とを支持部材12の下端に有してい
る。電気音響変換素子14と16は、誘電体層20の上
下面に電極18と22を積層した構造で、支持部材12
に接している電極18はその中央で二つに分割されてお
り、これにより送信用の電気音響変換素子14と受信用
の電気音響変換素子16とに電気的に分離されている。
この音波変換素子では、超音波を発生させるための電気
信号は送信用の電気音響変換素子14の電極18に供給
され、反射波の電気信号は受信用の電気音響変換素子1
6の電極18から取り出される。本実施例の音波変換素
子は、第一実施例と同様、送信信号と受信信号を別々の
電気音響変換素子で処理するため測定精度が向上する。Next, a sound wave conversion element according to a second embodiment of the present invention will be described with reference to FIG. The sound wave conversion element of this embodiment has a transmission electroacoustic conversion element 14 and a reception electroacoustic conversion element 16 at the lower end of the support member 12. The electroacoustic conversion elements 14 and 16 have a structure in which electrodes 18 and 22 are laminated on the upper and lower surfaces of the dielectric layer 20, and the support member 12
The electrode 18 in contact with is divided into two parts at the center thereof, and is thereby electrically separated into a transmission electroacoustic conversion element 14 and a reception electroacoustic conversion element 16.
In this sound wave conversion element, an electric signal for generating an ultrasonic wave is supplied to the electrode 18 of the transmission electroacoustic conversion element 14, and a reflection wave electric signal is received.
6 of the electrode 18 is taken out. Like the first embodiment, the sound wave conversion element of the present embodiment processes the transmission signal and the reception signal by separate electroacoustic conversion elements, so that the measurement accuracy is improved.
【0018】続いて図3を参照しながら本発明の第三実
施例の音波変換素子について説明する。本実施例の音波
変換素子は、その側断面図を図3(A)に、上面図を図
3(C)に示すように、アクリルや石英などで作った、
球面形状のレンズ面33を有する音響レンズ32と、レ
ンズ面33の反対側に設けられた送信用の電気音響変換
素子34と受信用の電気音響変換素子36とを備えてい
る。電気音響変換素子34と36は、音響レンズ32の
レンズ面33の反対側の面上に電極38と誘電体層40
と電極42とを積層した後、その中央に溝44を形成し
てこの積層構造体を二分することにより形成される。Next, a sound wave conversion element according to a third embodiment of the present invention will be described with reference to FIG. The sound wave conversion element of this embodiment is made of acrylic, quartz or the like, as shown in a side sectional view of FIG. 3 (A) and a top view of FIG. 3 (C).
An acoustic lens 32 having a spherical lens surface 33, a transmission electroacoustic conversion element 34 and a reception electroacoustic conversion element 36, which are provided on the opposite side of the lens surface 33, are provided. The electroacoustic transducers 34 and 36 are provided with an electrode 38 and a dielectric layer 40 on the surface of the acoustic lens 32 opposite to the lens surface 33.
After laminating the electrode 42 with the electrode 42, a groove 44 is formed in the center thereof to divide the laminated structure into two parts.
【0019】測定時、音波変換素子は図3(B)に示す
ようにカプラー媒体26を介して試料28に結合され
る。送信用の電気音響変換素子34に供給された電気信
号は、音響信号すなわち超音波に変換され、電極38か
らレンズ面33に向けて音響レンズ32の内部に射出さ
れる。この超音波はレンズ面33により屈折され、試料
28の内部に集束される。試料28の上面と下面で反射
された超音波はレンズ面33に入射し、そこで屈折され
音響レンズ32の内部を伝搬して受信用の電気音響変換
素子36に入射し、電気信号に変換される。During measurement, the acoustic wave conversion element is coupled to the sample 28 via the coupler medium 26 as shown in FIG. 3 (B). The electric signal supplied to the transmission electroacoustic conversion element 34 is converted into an acoustic signal, that is, an ultrasonic wave, and is emitted from the electrode 38 toward the lens surface 33 into the acoustic lens 32. This ultrasonic wave is refracted by the lens surface 33 and focused inside the sample 28. The ultrasonic waves reflected by the upper surface and the lower surface of the sample 28 enter the lens surface 33, are refracted there, propagate inside the acoustic lens 32, enter the electroacoustic conversion element 36 for reception, and are converted into electric signals. .
【0020】このように、本実施例の音波変換素子で
は、試料28に照射する超音波は電気音響変換素子34
から送信され、試料28で反射された超音波は電気音響
変換素子36で受信される。従って、送信信号と受信信
号とが別々に処理されるため、測定の精度が向上する。As described above, in the sound wave conversion element of this embodiment, the ultrasonic waves applied to the sample 28 are converted into the electroacoustic conversion element 34.
The ultrasonic waves transmitted from the sample and reflected by the sample 28 are received by the electroacoustic conversion element 36. Therefore, since the transmission signal and the reception signal are processed separately, the accuracy of measurement is improved.
【0021】本発明の第四実施例の音波変換素子につい
て図4を参照しながら説明する。本実施例の音波変換素
子は、第三実施例と同様に、球面形状のレンズ面33を
有する音響レンズ32と、レンズ面33の反対側に設け
られた送信用の電気音響変換素子34と受信用の電気音
響変換素子36とを備えている。電気音響変換素子34
と36は電極38と誘電体層40と電極42とを順に積
層した構造となっており、電極42の中央を横断するよ
うに設けた電極42を二分する溝46により送信用と受
信用とに分割されている。本実施例の音波変換素子で
は、上述の実施例と同様、送信信号と受信信号とが別々
に処理されるため測定精度が向上する。A sound wave conversion element according to a fourth embodiment of the present invention will be described with reference to FIG. Similar to the third embodiment, the sound wave conversion element of this embodiment has an acoustic lens 32 having a spherical lens surface 33, a transmission electroacoustic conversion element 34 provided on the opposite side of the lens surface 33, and a reception element. And an electroacoustic conversion element 36. Electroacoustic transducer 34
The electrodes 36 and 36 have a structure in which an electrode 38, a dielectric layer 40, and an electrode 42 are laminated in this order, and a groove 46 that bisects the electrode 42 that is provided so as to cross the center of the electrode 42 is used for transmission and reception. It is divided. In the sound wave conversion element according to the present embodiment, the transmission signal and the reception signal are processed separately as in the above-described embodiments, so that the measurement accuracy is improved.
【0022】最後に本発明の第五実施例の音波変換素子
について図5を参照しながら説明する。本実施例の音波
変換素子は、円柱面形状のレンズ面33を有する音響レ
ンズ32と、レンズ面33の反対側に設けられた送信用
の電気音響変換素子34と受信用の電気音響変換素子3
6とを備えている。電気音響変換素子34と36は第三
実施例のそれと同様の構造となっており、両者間を走る
溝48によって受信用と送信用とに分割されている。送
信用の電気音響変換素子34から射出された超音波は想
像線で示すように試料28に直線状に集束される。試料
28からの超音波はレンズ面33で受信用の電気音響変
換素子36に向けて偏向され、電気音響変換素子36で
電気信号に変換される。本実施例の音波変換素子では、
上述の実施例と同様、送信信号と受信信号とが別々に処
理されるため測定精度が向上する。Finally, a sound wave conversion element according to a fifth embodiment of the present invention will be described with reference to FIG. The sound wave conversion element of the present embodiment includes an acoustic lens 32 having a cylindrical lens surface 33, a transmission electroacoustic conversion element 34 and a reception electroacoustic conversion element 3 provided on the opposite side of the lens surface 33.
6 and. The electroacoustic transducers 34 and 36 have the same structure as that of the third embodiment, and are divided into a receiving part and a transmitting part by a groove 48 running between them. The ultrasonic waves emitted from the transmitting electroacoustic transducer 34 are linearly focused on the sample 28 as indicated by an imaginary line. The ultrasonic wave from the sample 28 is deflected by the lens surface 33 toward the receiving electroacoustic conversion element 36, and is converted into an electric signal by the electroacoustic conversion element 36. In the sound wave conversion element of this embodiment,
Similar to the above-described embodiment, the transmission signal and the reception signal are processed separately, so that the measurement accuracy is improved.
【0023】本発明は、上述の実施例に何等限定される
ことなく、発明の要旨を逸脱しない範囲内において種々
多くの変形や修正が可能である。例えば、電気音響変換
素子を構成する誘電層として、無機高分子圧電膜の他に
も、圧電セラミックや圧電単結晶や酸化亜鉛膜等を用い
ることもできる。また、音響レンズの材料として、アク
リルや石英の他にも、サファイヤや光学ガラス等を用い
ることもできる。また、第一および第二の実施例におい
て、音波を線集束させることもできる。The present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the gist of the invention. For example, a piezoelectric ceramic, a piezoelectric single crystal, a zinc oxide film, or the like can be used as the dielectric layer forming the electroacoustic transducer, in addition to the inorganic polymer piezoelectric film. In addition to acrylic and quartz, sapphire, optical glass, and the like can be used as the material of the acoustic lens. Also, in the first and second embodiments, the sound waves may be line-focused.
【0024】[0024]
【発明の効果】本発明によれば、送信信号と受信信号を
電気音響素子の送信部と受信部とで別々に扱うため高い
S/N比が得られ、試料の厚さ測定を精度良く行なうこ
とが可能になる。また、本発明の音波変換素子を超音波
顕微鏡に適用した場合、厚さ測定の精度以外にも、試料
の画像観察の精度も向上する。According to the present invention, since the transmission signal and the reception signal are separately handled by the transmission section and the reception section of the electroacoustic element, a high S / N ratio can be obtained and the thickness of the sample can be accurately measured. It will be possible. When the acoustic wave conversion element of the present invention is applied to an ultrasonic microscope, the accuracy of image observation of the sample is improved in addition to the accuracy of thickness measurement.
【図1】本発明の第一実施例の音波変換素子を示す。FIG. 1 shows a sound wave conversion element according to a first embodiment of the present invention.
【図2】本発明の第二実施例の音波変換素子を示す。FIG. 2 shows a sound wave conversion element according to a second embodiment of the present invention.
【図3】本発明の第三実施例の音波変換素子を示す。FIG. 3 shows a sound wave conversion element according to a third embodiment of the present invention.
【図4】本発明の第四実施例の音波変換素子を示す。FIG. 4 shows a sound wave conversion element according to a fourth embodiment of the present invention.
【図5】本発明の第五実施例の音波変換素子を示す。FIG. 5 shows a sound wave conversion element according to a fifth embodiment of the present invention.
【図6】超音波計測装置の構成および検出波形を示す。FIG. 6 shows a configuration of an ultrasonic measuring device and a detected waveform.
【図7】超音波パルスを使用した測定の原理を説明する
ための図である。FIG. 7 is a diagram for explaining the principle of measurement using ultrasonic pulses.
【図8】音波変換素子の代表的な二種類の構成を示す。FIG. 8 shows two typical configurations of a sound wave conversion element.
【図9】検出波形にノイズが乗った様子を示す。FIG. 9 shows how noise is added to the detected waveform.
14,16…電気音響変換素子、24…溝。 14, 16 ... Electroacoustic transducers, 24 ... Grooves.
Claims (1)
電気音響変換手段と、音響信号を集束する集束手段とを
備えた音波変換素子であって、電気音響変換手段が、互
いに電気的に分離された音響信号を送信する送信部と音
響信号を受信する受信部とを有している音波変換素子。1. A sound wave conversion element comprising electroacoustic conversion means for mutually converting an electric signal and an acoustic signal, and focusing means for converging the acoustic signal, wherein the electroacoustic conversion means electrically connect each other. A sound wave conversion element having a transmitter that transmits the separated acoustic signal and a receiver that receives the acoustic signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4261541A JPH06113398A (en) | 1992-09-30 | 1992-09-30 | Sound wave transducer element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4261541A JPH06113398A (en) | 1992-09-30 | 1992-09-30 | Sound wave transducer element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06113398A true JPH06113398A (en) | 1994-04-22 |
Family
ID=17363333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4261541A Withdrawn JPH06113398A (en) | 1992-09-30 | 1992-09-30 | Sound wave transducer element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06113398A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002209861A (en) * | 2001-01-22 | 2002-07-30 | Seiko Instruments Inc | Ultrasonic diagnostic equipment |
JP2006322789A (en) * | 2005-05-18 | 2006-11-30 | Jtekt Corp | Ultrasonic probe |
KR20190128966A (en) * | 2018-05-09 | 2019-11-19 | 한국수력원자력 주식회사 | Ultrasonic inspection device for baffle former bolt and method for inspecting baffle former bolts using the same |
-
1992
- 1992-09-30 JP JP4261541A patent/JPH06113398A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002209861A (en) * | 2001-01-22 | 2002-07-30 | Seiko Instruments Inc | Ultrasonic diagnostic equipment |
JP2006322789A (en) * | 2005-05-18 | 2006-11-30 | Jtekt Corp | Ultrasonic probe |
KR20190128966A (en) * | 2018-05-09 | 2019-11-19 | 한국수력원자력 주식회사 | Ultrasonic inspection device for baffle former bolt and method for inspecting baffle former bolts using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6594290B2 (en) | Dynamic change detecting method, dynamic change detecting apparatus and ultrasonic diagnostic apparatus | |
US6470752B2 (en) | Ultrasonic detection method and apparatus and ultrasonic diagnostic apparatus | |
US4462256A (en) | Lightweight, broadband Rayleigh wave transducer | |
EP0121690B1 (en) | Acoustic microscope | |
JPH06113398A (en) | Sound wave transducer element | |
JPH021263B2 (en) | ||
JPS5822978A (en) | Ultrasonic wave device | |
JPS6326344B2 (en) | ||
US3541848A (en) | Acoustical imaging system | |
JP2020176916A (en) | Aerial ultrasonic flaw detector | |
SU1260849A1 (en) | Ultrasonic transducer for calibration of acoustic-emission chek systems | |
Moriya et al. | Development of flexible acoustic transmission line for intravascular ultrasonography | |
JPH05149931A (en) | Method and apparatus for measuring sound speed and density | |
JPH06148154A (en) | Ultrasonic probe | |
JPH06281634A (en) | Ultrasonic probe | |
JP3341824B2 (en) | Electronic scanning ultrasonic flaw detector | |
JPH06323838A (en) | Ultrasonic transducer | |
SU1460696A1 (en) | Ultrasonic receiving transducer for operation in gas medium | |
JP2943438B2 (en) | Driving method of linear array ultrasonic probe | |
JP2003322558A (en) | Acoustic impedance measuring method and acoustic impedance measuring device | |
JPH0526655A (en) | Film thickness measuring method and device | |
JPH0521477B2 (en) | ||
JPH0627089A (en) | Velocity measuring apparatus for surface acoustic wave | |
JPS6139287Y2 (en) | ||
JPS625175A (en) | Ultrasonic wave transmitting/receiving element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |