JPH06112570A - Distributed bragg-reflection type semiconductor laser - Google Patents
Distributed bragg-reflection type semiconductor laserInfo
- Publication number
- JPH06112570A JPH06112570A JP28064692A JP28064692A JPH06112570A JP H06112570 A JPH06112570 A JP H06112570A JP 28064692 A JP28064692 A JP 28064692A JP 28064692 A JP28064692 A JP 28064692A JP H06112570 A JPH06112570 A JP H06112570A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- waveguide
- diffraction grating
- semiconductor laser
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0261—Non-optical elements, e.g. laser driver components, heaters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/0607—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
- H01S5/0612—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1237—Lateral grating, i.e. grating only adjacent ridge or mesa
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コヒーレント光伝送お
よび光計測の光源として有用である単一モード発振で広
帯域な波長可変の分布ブラッグ反射型半導体レーザに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunable distributed Bragg reflection type semiconductor laser with a single mode oscillation and a wide band, which is useful as a light source for coherent optical transmission and optical measurement.
【0002】[0002]
【従来の技術】近年の情報量の多量化に伴い、光による
情報伝達の手段として光を周波数として扱ったコヒーレ
ント光伝送方式が開発されつつあり、その方式の一つと
して光ヘテロダイン方式が有望視されている。この方式
によれば送信側の信号光と受信側の局発光を同調させた
時に得られる干渉信号を情報信号として取り扱うため、
一本のファイバ上で周波数の異なった複数の信号光を同
時に送信することが可能になる。これを実現するには使
用する光源の性能が重要となる。要求される性能として
は、狭い周波数帯により多くの情報をのせるためスペク
トル線幅はできるだけ狭いこと、チャンネルの設定数を
多くするために波長可変幅が十分に広いこと、正確な信
号を得るために光出力はより大きいこと、信号光にはA
M信号およびFM信号が印加できること、局発光には信
号光に同調できる程度に高速な波長シフトが可能である
こと等があげられる。2. Description of the Related Art With the increasing amount of information in recent years, a coherent optical transmission system using light as a frequency is being developed as a means of transmitting information by light, and an optical heterodyne system is a promising system as one of the systems. Has been done. According to this method, the interference signal obtained when the signal light on the transmission side and the local light on the reception side are synchronized is treated as an information signal,
It becomes possible to simultaneously transmit a plurality of signal lights having different frequencies on one fiber. To realize this, the performance of the light source used is important. The required performance is that the spectral linewidth is as narrow as possible to put more information in a narrow frequency band, that the wavelength tunable width is wide enough to increase the number of channel settings, and that an accurate signal is obtained. The optical output is higher, and the signal light is A
It is possible to apply the M signal and the FM signal, and the local light can be wavelength-shifted so fast that it can be tuned to the signal light.
【0003】単一波長にて発振する半導体レーザとして
は、発光領域と回折格子を含む反射器とで構成された分
布ブラッグ反射型(DBR:Distributed
Bragg Reflector )レーザと、発光領
域に回折格子を備えた分布帰還型(DFB:Distr
ibuted Feedback)レーザがある。これ
らのレーザにおいては回折格子のピッチ(周期)の長さ
とその導波路の屈折率によって発振波長が決まることか
ら、それらの物理量を変えられれば発振波長を変えるこ
とができる。As a semiconductor laser that oscillates at a single wavelength, a distributed Bragg reflection type (DBR: Distributed) composed of a light emitting region and a reflector including a diffraction grating.
A Bragg Reflector laser and a distributed feedback (DFB: Distr) equipped with a diffraction grating in the light emitting region.
There is an ibuted feedback laser. In these lasers, the oscillation wavelength is determined by the length of the pitch (cycle) of the diffraction grating and the refractive index of the waveguide, so that the oscillation wavelength can be changed by changing their physical quantities.
【0004】実用性が高いという点から、屈折率を変え
ることによって波長を変化させる波長可変半導体レーザ
の作製が試みられ、図5に示すような3電極型のDBR
レーザが開発された(従来の技術1)。この3電極型の
DBRレーザは、基板1上に設けられた発光領域11
と、位相制御領域12と、ガイド層4の下に一定のピッ
チを持つ回折格子3を有するDBR領域13とが、それ
ぞれ独立した電極6b、6c、6aを有している。発光
領域11の活性層2に電流を注入することでレーザ発振
させ、位相制御領域12とDBR領域13のガイド層4
に電流を注入してキャリア密度を増やし、プラズマ効果
によって導波路の屈折率を変えることで波長をシフトさ
せる。これにより数mW以上の光出力で数nm以上の波
長可変幅を得ることができた。しかし、プラズマ効果を
用いて屈折率を変えるこの方法は、キャリア密度のゆら
ぎが生じる結果、屈折率が不安定となり、スペクトル線
幅の大きな劣化を伴うという問題点がある。また、この
構造では単一のブラッグ波長しか得られないため、広帯
域の波長選択には不向きであり、波長掃引範囲は10n
m程度に留まっていた。From the viewpoint of high practicality, an attempt has been made to produce a wavelength tunable semiconductor laser in which the wavelength is changed by changing the refractive index, and a three-electrode type DBR as shown in FIG.
A laser was developed (prior art 1). This three-electrode type DBR laser has a light emitting region 11 provided on a substrate 1.
The phase control region 12 and the DBR region 13 having the diffraction grating 3 having a constant pitch below the guide layer 4 have independent electrodes 6b, 6c and 6a, respectively. A laser is oscillated by injecting a current into the active layer 2 of the light emitting region 11 to guide the phase control region 12 and the guide layer 4 of the DBR region 13.
A wavelength is shifted by injecting a current to increase the carrier density and changing the refractive index of the waveguide by the plasma effect. This made it possible to obtain a wavelength tunable range of several nm or more with an optical output of several mW or more. However, this method of changing the refractive index by using the plasma effect has a problem in that the fluctuation of the carrier density causes the refractive index to become unstable and the spectral line width to be greatly deteriorated. In addition, since this structure can obtain only a single Bragg wavelength, it is not suitable for wideband wavelength selection, and the wavelength sweep range is 10 n.
It stayed around m.
【0005】(従来の技術2)それに対して、波長掃引
範囲を飛躍的に大きくする半導体レーザの反射器とし
て、超周期構造回折格子(以下、SSGという。)を有
するものが考えられている。これを以下に詳しく述べ
る。図6にSSGを有する反射器の模式図を示す。SS
Gの基本概念は、回折格子3のピッチがΛaからΛbま
で線形に減少する領域が、超周期Λsで繰り返される構
造となっていることである(図7(a)を参照)。その
反射特性は、フーリエ変換を用いて予測が可能であり、
その内容は波長λa=2neq Λaからλb=2neq Λb
までの帯域にわたって間隔Δλ=λ02 /2neq λsで
複数の高反射ピークを持つというものである。一方、S
SGの中心波数β0=2π/(Λa+Λb)を基準とし
た相対位相差Φを、 Φ=∫βdx−∫β0dx (β=π
/Λ)とすれば、SSGは相対位相差Φが図7(b)に
示すように二次曲線が長周期Λsで繰り返されるものと
しても記述できる。(Prior Art 2) On the other hand, as a reflector of a semiconductor laser for dramatically increasing the wavelength sweep range, one having a super-periodic structure diffraction grating (hereinafter referred to as SSG) is considered. This will be described in detail below. FIG. 6 shows a schematic view of a reflector having SSG. SS
The basic concept of G is that the region where the pitch of the diffraction grating 3 linearly decreases from Λa to Λb is repeated in the superperiod Λs (see FIG. 7A). Its reflection properties can be predicted using the Fourier transform,
The contents are from wavelength λa = 2neq Λa to λb = 2neq Λb
It has a plurality of high reflection peaks at intervals Δλ = λ0 2 / 2neq λs over the bands up to. On the other hand, S
The relative phase difference Φ based on the SG central wave number β0 = 2π / (Λa + Λb) is expressed as Φ = ∫βdx−∫β0dx (β = π
/ Λ), the SSG can be described as a quadratic curve having a relative phase difference Φ repeated at a long period Λs as shown in FIG. 7B.
【0006】SSGを試作するにあたっては、図8に示
すように2通りの方法を用いることができる。図7
(a)に対しては図8(a)に示すようにピッチを段階
的に変化させる方法を用い、図7(b)に対しては図8
(b)に示すように部分的に位相をシフトさせる方法を
用いた。後者の位相シフト型SSGについて、F−ma
trix法により求めた反射特性を図9に示す。このよ
うにSSGでは、広帯域にわたって鋭い高反射ピークを
有する特性を得ることが可能である。なお、段階的にピ
ッチを変化させる方法でも、同様の特性が得られる。こ
こでは、位相シフト型SSG反射器の試作結果を示す。
試作した反射器の構造はInPの基板1、1.3μm組
成InGaAsPのガイド層4(厚さ0.3μm)、I
nPのクラッド層5(厚さ1μm)からなる三層構造
で、InPのクラッド層5を2μmのメサストライプに
加工したリッジ導波路とし、両端面にはAR膜(図示せ
ず。)を施した。また、SSGは電子ビーム描画法を用
いてInGaAsPのガイド層4上に形成した。図10
はその透過特性を示す。1540nmを中心とした10
0nmの帯域にわたり、およそ10nm間隔で鋭い遮断
ピークを持つ特性を示した。In making an SSG as a prototype, two methods can be used as shown in FIG. Figure 7
For (a), the method of changing the pitch stepwise as shown in FIG. 8 (a) is used, and for FIG. 7 (b), the method shown in FIG.
A method of partially shifting the phase as shown in (b) was used. Regarding the latter phase shift type SSG, F-ma
The reflection characteristics obtained by the trix method are shown in FIG. As described above, in SSG, it is possible to obtain a characteristic having a sharp high reflection peak over a wide band. Similar characteristics can be obtained by a method of changing the pitch stepwise. Here, the experimental results of the phase shift type SSG reflector are shown.
The structure of the prototype reflector is InP substrate 1, 1.3 μm composition InGaAsP guide layer 4 (thickness 0.3 μm), I
The InP clad layer 5 has a three-layer structure composed of the nP clad layer 5 (thickness 1 μm), and is a ridge waveguide processed into a mesa stripe of 2 μm, and AR films (not shown) are applied to both end faces. . The SSG was formed on the InGaAsP guide layer 4 by using the electron beam drawing method. Figure 10
Indicates its transmission characteristics. 10 centered at 1540 nm
It exhibited a characteristic with sharp cut-off peaks at intervals of about 10 nm over the band of 0 nm.
【0007】このSSGを有する素子の構造を図11を
用いて述べる。連続的にピッチが変化する構造は作製が
極めて困難なため、ステップ状に近似して活性領域の両
側にそれぞれ10種類のピッチが67.5μm、75μ
mの超周期を持つように並べられた回折格子3を有して
いる。従って、それぞれのSSGは5.0、及び4.5
nm間隔に高反射ピークを有する。波長掃引はいずれか
一方のSSG領域20、21に電流を注入するか、もし
くは双方のSSG20および21への均一注入を組み合
わせて行う。無掃引時に両側のSSGの最長波側の高反
射ピーク同士が同調するように設計した場合、後ろ側の
SSG領域21への電流の注入で5.0nmおきに短波
側に、また、前側のSSG領域20への電流の注入で
は、一旦最短波側の高反射ピークまでシフトした後、
4.5nmおきに長波長側へ、それぞれモード跳びを起
こしながらシフトしていく。The structure of the element having this SSG will be described with reference to FIG. Since it is extremely difficult to fabricate a structure in which the pitch changes continuously, it is possible to approximate 10 steps of pitches on both sides of the active region by 67.5 μm and 75 μ, respectively.
It has a diffraction grating 3 arranged so as to have a super period of m. Therefore, each SSG is 5.0 and 4.5.
It has high reflection peaks at nm intervals. The wavelength sweep is performed by injecting a current into one of the SSG regions 20 and 21 or by performing uniform injection into both SSG regions 20 and 21. When the high reflection peaks on the longest wave side of the SSGs on both sides are tuned to each other at the time of non-sweep, current is injected into the SSG region 21 on the rear side to the short wave side at every 5.0 nm and the SSG on the front side. In the injection of current into the region 20, after shifting to the high reflection peak on the shortest wave side once,
It shifts to the long wavelength side every 4.5 nm while causing mode jumps.
【0008】両側のSSG高反射ピークが同調した後は
通常のDBRレーザと同等の特性となるため、両側に等
しい電流密度で注入することにより、さらに掃引範囲を
拡大することができる。活性層2は1.0%圧縮歪4ウ
ェルMQW(PL波長1.58μm)で、両側に低損失
1.3μmのガイド層4をバットジョイント成長させ、
その上にSSGを形成した。図12に示すように、両側
のSSGに電流を注入することにより、上に述べた活性
層2を有するレーザにおける波長掃引範囲の拡大を行っ
た。その結果、単一モード掃引で63nmの広帯域掃引
特性を得た。このときのスペクトル線幅は10MHzか
ら30MHz程度である。After tuning the SSG high reflection peaks on both sides, the characteristics become equivalent to those of a normal DBR laser, so that the sweep range can be further expanded by injecting at the same current density on both sides. The active layer 2 is 1.0% compressive strain 4-well MQW (PL wavelength 1.58 μm), and the guide layer 4 with low loss 1.3 μm is butt joint grown on both sides.
SSG was formed on it. As shown in FIG. 12, the wavelength sweep range in the above-described laser having the active layer 2 was expanded by injecting current into the SSGs on both sides. As a result, a wide band sweep characteristic of 63 nm was obtained by the single mode sweep. The spectral line width at this time is about 10 MHz to 30 MHz.
【0009】一方、SSGと同様に複数の反射ピークを
持つ反射器として、サンプルドグレーティングというも
のも提案されている(V.Jayaraman,et.al:Applied Phys
icsLetters 60,P.2321(1992))。これは、ピッチΛの一
様な回折格子が導波路内の共振軸方向に距離Z1にわた
って形成され、それに隣接する距離Z2までの導波路内
には回折格子を形成しない。さらに、これらが超周期Z
0=Z1+Z2をもって導波路内を繰り返される構造を
有している。この構造によってもSSGと同様の機能が
得られる。On the other hand, as a reflector having a plurality of reflection peaks like SSG, a sampled grating has been proposed (V. Jayaraman, et.al:Applied Phys).
icsLetters 60, P.2321 (1992)). This means that a uniform diffraction grating with a pitch Λ is formed over the distance Z1 in the resonance axis direction in the waveguide, and no diffraction grating is formed in the waveguide adjacent to the distance Z2. Furthermore, these are super-cycles Z
It has a structure in which the waveguide is repeated with 0 = Z1 + Z2. With this structure, the same function as SSG can be obtained.
【0010】[0010]
【発明が解決しようとする課題】上に述べた、SSG、
いわゆる超周期構造回折格子を有する半導体レーザ(従
来技術2)は、広帯域の波長掃引を可能にした点は優れ
ているが、以下のような解決しなければならない課題は
のこる。まず、従来の電流注入型の分布ブラッグ反射型
レーザと同様に、電流注入によるキャリア密度のゆらぎ
から屈折率が不安定となり、波長掃引時にスペクトル線
幅の大きな劣化を伴うという点は何ら解決されていな
い。次に、ΛaからΛbまでのピッチの変化量を変える
ことが出来ず、また超周期Λsも固定であることから、
波長掃引を行う上で、広帯域掃引時も狭帯域掃引時も同
じモード間隔でモードジャンプさせるしかないため、広
帯域用に格子を設計すると、狭い帯域での微妙な掃引が
難しい。さらに、回折格子のピッチをΛaからΛbまで
線形に減少するように、あるいは位相を制御しながらス
テップ状に減少するようにして、Λsの超周期で繰り返
すような構造を作製するのは電子ビーム法を持ってして
も非常な困難をともなう。なお、サンプルドグレーティ
ング方法によっても、回折格子のピッチΛ及び超周期Z
0が固定であることにはかわりがなく、さらに回折格子
が半分しか存在しないので、反射効率が悪化するという
問題もある。The above-mentioned SSG,
A semiconductor laser having a so-called super-periodic structure diffraction grating (Prior Art 2) is excellent in that it enables wavelength sweeping in a wide band, but the following problems to be solved remain. First, similar to the conventional current injection type distributed Bragg reflection type laser, the problem that the refractive index becomes unstable due to the fluctuation of the carrier density due to the current injection and the spectrum line width is greatly deteriorated at the time of wavelength sweep has been solved. Absent. Next, since the amount of change in pitch from Λa to Λb cannot be changed and the super-period Λs is fixed,
When performing wavelength sweeping, since there is no choice but to make mode jumps at the same mode interval during wideband sweeping and narrowband sweeping, it is difficult to make delicate sweeping in a narrow band when designing a grating for wideband. Furthermore, the electron beam method is used to fabricate a structure in which the pitch of the diffraction grating is linearly reduced from Λa to Λb, or is reduced stepwise while controlling the phase so as to repeat with a super-cycle of Λs. It is very difficult to carry. Note that the pitch Λ of the diffraction grating and the super-period Z
There is no change in that 0 is fixed, and since only half of the diffraction grating exists, there is also a problem that the reflection efficiency deteriorates.
【0011】[0011]
【課題を解決するための手段】以下、上記課題を解決す
る手段を述べる。まず、電流を注入することによるスペ
クトル線幅の劣化を防止するため、波長の制御は加熱に
よる温度変化により行う。次に、発光領域11と共振器
を構成する導波路23を半導体基板上に有する分布ブラ
ッグ反射型レーザにおいて、導波路の共振軸方向に距離
に対して一定の周期を持って繰り返される回折格子と、
導波路の共振軸方向に距離に対して一定の周期を持って
繰り返される第一の温度分布を生じさせるために周期的
に配置された加熱手段とを有する第一の波長制御領域2
4があり、さらに、導波路の共振軸方向に距離に対して
一定の周期を持って繰り返される回折格子と、導波路の
共振軸方向に距離に対して一定の周期を持って繰り返さ
れる第二の温度分布を生じさせるために周期的に配置さ
れた加熱手段とを有する第二の波長制御領域25がある
構造を発明した。Means for solving the above problems will be described below. First, in order to prevent the deterioration of the spectral line width due to the injection of current, the wavelength is controlled by the temperature change due to heating. Next, in a distributed Bragg reflection type laser having a waveguide 23 that forms a resonator with the light emitting region 11 on a semiconductor substrate, a diffraction grating that is repeated with a constant period in the resonance axis direction of the waveguide is used. ,
A first wavelength control region 2 having heating means periodically arranged to generate a first temperature distribution which is repeated with a constant cycle with respect to distance in the resonance axis direction of the waveguide.
4 further includes a diffraction grating which is repeated with a constant period in the resonance axis direction of the waveguide with respect to the distance, and a second diffraction grating which is repeated with a constant period in the resonance axis direction of the waveguide with respect to the distance. Has invented a structure with a second wavelength control region 25 having heating means arranged periodically to produce a temperature distribution of
【0012】[0012]
【作用】本発明の分布ブラッグ反射型半導体レーザによ
れば、一様なピッチをもつ回折格子を有する波長制御領
域を加熱手段により加熱し、導波路内に周期的な温度分
布をつくり、回折格子の実効的周期を変調させることが
できる。前提として、波長の制御を加熱による温度変化
で行っているので、スペクトル線幅の劣化が生じない。
また、ピッチΛの回折格子のブラッグ波長はλ=2nΛ
であり、等価屈折率nが温度により変化するので、それ
ぞれの回折格子のブラッグ波長は温度分布中の最大温度
Taに対応するλaから最小温度Tbに対応するλbま
での帯域に複数のピークとして分布する。温度分布がΛ
sの周期を持っているとすれば、回折格子を有する反射
のピークはΔλ=λ02 /2nΛsの間隔で分布するこ
とになる。According to the distributed Bragg reflection type semiconductor laser of the present invention, the wavelength control region having the diffraction grating having a uniform pitch is heated by the heating means to form a periodic temperature distribution in the waveguide, The effective period of can be modulated. As a premise, since the wavelength control is performed by the temperature change due to heating, deterioration of the spectral line width does not occur.
The Bragg wavelength of the diffraction grating with the pitch Λ is λ = 2nΛ
Since the equivalent refractive index n changes with temperature, the Bragg wavelength of each diffraction grating is distributed as a plurality of peaks in the band from λa corresponding to the maximum temperature Ta to λb corresponding to the minimum temperature Tb in the temperature distribution. To do. The temperature distribution is Λ
If it has a period of s, the reflection peaks having the diffraction grating will be distributed at intervals of Δλ = λ0 2 / 2nΛs.
【0013】[0013]
【実施例】(第1の実施例)本発明の第1の実施例を図
1に示す。図1(A)は本発明の素子の、導波路にそっ
て切断した断面図、(B)は素子の上面図である。本発
明の分布ブラッグ反射型半導体レーザは、以下の手順に
より作製される。(First Embodiment) FIG. 1 shows a first embodiment of the present invention. 1A is a cross-sectional view of the device of the present invention taken along a waveguide, and FIG. 1B is a top view of the device. The distributed Bragg reflection type semiconductor laser of the present invention is manufactured by the following procedure.
【0014】まず、p形InPの基板1上に1.55μ
m帯InGaAsPからなる活性層2を成長する。First, 1.55 μ is formed on the p-type InP substrate 1.
An active layer 2 made of m-band InGaAsP is grown.
【0015】次に、発光領域11となる部分以外の活性
層2をエッチングにより除去し、発光領域の両側にある
DBR領域13に1.55μmの波長の光をブラッグ反
射させる2420オングストロームのピッチの回折格子
3を形成し、その上部に1.3μm帯InGaAsPか
らなるガイド層4を成長する。Next, the active layer 2 other than the portion to be the light emitting region 11 is removed by etching, and the DBR regions 13 on both sides of the light emitting region are subjected to Bragg reflection of light having a wavelength of 1.55 μm at a pitch of 2420 angstroms. A grating 3 is formed, and a 1.3 μm band InGaAsP guide layer 4 is grown on the grating 3.
【0016】その後、n形InPからなるクラッド層5
を発光領域11、DBR領域13の全面にわたって成長
し、横モード制御されるように1.5μmの幅のメサ形
の導波路をエッチングを用いて形成し、そのメサ形の導
波路の両側にn形InP及びp形InPの電流阻止層
(図示せず。)を再成長する。After that, the cladding layer 5 made of n-type InP
Are grown over the entire surface of the light emitting region 11 and the DBR region 13, and a mesa-shaped waveguide having a width of 1.5 μm is formed by etching so as to control the lateral mode, and n is formed on both sides of the mesa-shaped waveguide. Re-grow the InP and p-InP current blocking layers (not shown).
【0017】さらに、基板1側にはp形電極7を、DB
R領域13と発光領域11のそれぞれのクラッド層5の
上部には、ともにn形の電極6a、6bをそれぞれ形成
する。DBR領域13は発光領域11をはさんで複数存
在するが、一方のDBR領域(以下、第1の波長制御領
域24という。)と他方のDBR領域(以下、第2の波
長制御領域25という。)では、超周期Λsを変えてお
き単一の発振モードが選択できるようにする。第1の波
長制御領域24および第2の波長制御領域25の電極6
aの上部にはSiO2の絶縁膜8を介して加熱用電極1
0a、10bを有するAuの薄膜ストライプ9をそれぞ
れ形成する。第1の波長制御領域24においては薄膜ス
トライプ9に導波路23に沿って150μmおきに10
μmの幅でTiを混入した部分を作り、合金化して発熱
抵抗部22とする(図1中にはハッチングで示した)。
第2の波長制御領域25においては薄膜ストライプ9に
導波路23に沿って165μmおきに10μmの幅でT
iを混入した部分を作り、合金化して発熱抵抗部22と
する(図1中にはハッチングで示した)。この発熱抵抗
部22が本発明の加熱手段に相当する。Further, a p-type electrode 7 is provided on the substrate 1 side, DB
N-type electrodes 6a and 6b are formed on the cladding regions 5 of the R region 13 and the light emitting region 11, respectively. Although there are a plurality of DBR regions 13 across the light emitting region 11, one DBR region (hereinafter referred to as the first wavelength control region 24) and the other DBR region (hereinafter referred to as the second wavelength control region 25). ), The super-cycle Λs is changed so that a single oscillation mode can be selected. Electrodes 6 of the first wavelength control region 24 and the second wavelength control region 25
A heating electrode 1 is formed on the upper part of a through an insulating film 8 of SiO2.
Au thin film stripes 9 having 0a and 10b are formed, respectively. In the first wavelength control region 24, the thin film stripe 9 is provided along the waveguide 23 at intervals of 150 μm.
A portion mixed with Ti having a width of μm is formed and alloyed to form the heating resistance portion 22 (shown by hatching in FIG. 1).
In the second wavelength control region 25, the thin film stripe 9 has a width of 10 μm at intervals of 165 μm along the waveguide 23.
A portion mixed with i is formed and alloyed to form the heat generating resistance portion 22 (shown by hatching in FIG. 1). The heating resistor portion 22 corresponds to the heating means of the present invention.
【0018】この抵抗がそれぞれ0.02Wおよび0.
04Wの発熱を行った場合の導波路内の温度分布を図2
に示す。縦軸は温度変化、横軸は位置を示すが、横軸の
原点は任意である。このように発熱抵抗部22の大きさ
を極めて小さくした場合には、発熱抵抗部22の近傍の
極めて限られた領域のブラッグ波長だけが極端にシフト
し、残りの部分は温度がほぼ一定してTb(0.02W
のときは48℃)の値を取り、対応するλbのブラッグ
波長を持つ領域を形成することになる。これは初めから
λbのブラッグ波長を持つ回折格子のある領域と回折格
子のない領域とが超周期Λs(ヒータ配置間隔に相当す
る)を持って繰り返すというサンプルドグレーティング
DBRを形成したのと同じ機能を持つ。さらに温度を変
えることでλbを変えて、発振可能なモード群全体をモ
ード間隔を変えずにシフトさせることが出来る。This resistance is 0.02 W and 0.
Figure 2 shows the temperature distribution in the waveguide when heat of 04 W is generated.
Shown in. The vertical axis represents temperature change and the horizontal axis represents position, but the origin of the horizontal axis is arbitrary. When the size of the heating resistor portion 22 is made extremely small in this way, only the Bragg wavelength in an extremely limited region near the heating resistor portion 22 is extremely shifted, and the temperature of the remaining portion is almost constant. Tb (0.02W
In this case, a value of 48 ° C. is taken, and a region having the corresponding Bragg wavelength of λb is formed. This is the same function as forming a sampled grating DBR in which a region with a diffraction grating having a Bragg wavelength of λb and a region without a diffraction grating repeat from the beginning with a superperiod Λs (corresponding to a heater arrangement interval). have. Further, by changing the temperature, λb can be changed to shift the entire oscillating mode group without changing the mode interval.
【0019】これに対して、発熱抵抗部22の大きさを
大きくして、高温と低温でそれぞれ一定になるような矩
形波状の温度分布を生じさせれば、従来技術2に挙げた
ピッチがステップ状に変化する回折格子を作製したのと
同じ機能を持ち、さらに温度差を変えることで、選択可
能なモード範囲を自由に設定することができる。すなわ
ち、温度差を大きくすればより広い範囲でのモード選択
が可能となる。この例ではヒータ間隔で決まる超周期Λ
sは固定のため、各モード間の間隔は一定のままであ
る。On the other hand, if the size of the heating resistor portion 22 is increased to generate a rectangular wave-like temperature distribution that becomes constant at high temperature and low temperature, the pitch described in the prior art 2 is stepped. It has the same function as that of producing a diffraction grating that changes in a shape, and by changing the temperature difference, the selectable mode range can be set freely. That is, if the temperature difference is increased, the mode can be selected in a wider range. In this example, the super-period Λ determined by the heater interval
Since s is fixed, the spacing between each mode remains constant.
【0020】さらに、発熱抵抗部22の中心位置の真下
の位置から共振軸方向にΛs/2までの範囲の導波路
(温度分布における位置関係で示せば図2中の白黒パタ
ーンの黒の位置、または白の位置で表される。)にのみ
一様のピッチの回折格子を形成すれば、従来技術2で理
論的に述べられていた、ピッチが連続的に変化し且つ大
きな超周期を持って繰り返す超周期構造を有する波長制
御領域が実効的に形成される。この場合も、温度の高低
は発振モード群の全体的に一様な波長シフトに対応し、
温度差の大小は発振可能な最大波長と最小波長の範囲の
決定に対応する。一方発熱抵抗部の構造については、合
金化によらなくとも、抵抗を高くしたい部分のみAuの
厚さを薄くすることでも同様の結果が得られる。Further, a waveguide in a range from a position directly below the center position of the heat generating resistor portion 22 to Λs / 2 in the resonance axis direction (if the positional relationship in the temperature distribution is shown, the black position of the black and white pattern in FIG. 2, Or a white position), a diffraction grating having a uniform pitch can be formed, and the pitch is continuously changed and has a large super-period, which is theoretically described in the prior art 2. A wavelength control region having a repeating super-periodic structure is effectively formed. In this case as well, the high and low temperatures correspond to an overall uniform wavelength shift of the oscillation mode group,
The magnitude of the temperature difference corresponds to the determination of the range of the maximum wavelength and the minimum wavelength that can be oscillated. On the other hand, with respect to the structure of the heat generating resistor portion, the same result can be obtained by reducing the thickness of Au only in the portion where the resistance is desired to be increased, regardless of alloying.
【0021】(第2の実施例)次に、本発明の第2の実
施例を図3を用いて説明する。図3は素子の上面図であ
り、導波路23は破線で示し、回折格子は図示しない。
第1の波長制御領域24、第2の波長制御領域25に加
熱手段として加熱用電極10a、10bを有するAu薄
膜抵抗26を、絶縁膜8を介して導波路23上の電極6
a上面に導波路23と直交する方向に、第1の波長制御
領域24においては150μm間隔で、第2の波長制御
領域25においては165μm間隔でそれぞれ配置す
る。全ての薄膜抵抗26に同じ発熱を起こさせれば、第
1の実施例と同様の作用が生じ、一つ置きあるいは二つ
置きなど別の一定の周期を持って発熱させれば、温度分
布の超周期をも変化させて発振モード間隔を狭めること
もできる。発振モード間隔が狭くなれば、狭い帯域での
微妙な波長掃引が極めて容易となる。この実施例におい
ても、薄膜抵抗26の中心位置の真下の位置から共振軸
方向にΛs/2までの範囲の導波路(温度分布における
位置関係で示せば図2中の白黒パターンの黒の位置、ま
たは白の位置で表される。)にのみ一様なピッチの回折
格子を形成すれば、ピッチが連続的に変化し且つ大きな
超周期を持って繰り返す超周期構造を有する波長制御領
域が実効的に形成される。(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a top view of the device, the waveguide 23 is shown by a broken line, and the diffraction grating is not shown.
The Au thin film resistor 26 having the heating electrodes 10a and 10b as heating means in the first wavelength control region 24 and the second wavelength control region 25 is provided with the electrode 6 on the waveguide 23 via the insulating film 8.
The first wavelength control region 24 and the second wavelength control region 25 are arranged on the upper surface a in a direction orthogonal to the waveguide 23 at intervals of 150 μm and at intervals of 165 μm. If ask cause the same heating all of the thin film resistor 26, the same effect as the first embodiment can occur, if the heating has another fixed period, such as every other place or two, a temperature distribution super The period can also be changed to narrow the oscillation mode interval. If the oscillation mode interval is narrow, delicate wavelength sweeping in a narrow band becomes extremely easy. Also in this embodiment, the waveguide in the range from just below the center position of the thin film resistor 26 to Λs / 2 in the resonance axis direction (if it is shown by the positional relationship in the temperature distribution, the black position of the black and white pattern in FIG. Or, it is represented by a white position.), A wavelength control region having a super-periodic structure in which the pitch changes continuously and repeats with a large super-period is effective. Is formed.
【0022】(第3の実施例)次に、本発明の第3の実
施例を図4を用いて説明する。図4は素子の斜視図であ
る。この実施例は周期的に配置された発熱抵抗部22ま
たは薄膜抵抗26により加熱し温度分布を生じさせる第
1または第2の実施例とは異なり、第1及び第2の波長
制御領域24、25の電流阻止層27、28を上からみ
て鋸歯状にして温度分布を生じさせている。すなわち、
光の閉じ込めにほとんど影響を与えない導波路の両側の
部分をエッチングによって深さ約5μm排除すること
で、共振軸方向に関して導波路に熱伝導分布を与え、共
振軸方向に一定の周期をもった温度分布を生じさせるよ
うにしている。また、第2の実施例のように個々の加熱
手段の制御を個別におこなえば、第2の実施例と同様の
効果を得られることは当然である。(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a perspective view of the element. This embodiment is different from the first or second embodiment in which a heating resistor 22 or a thin film resistor 26 arranged periodically is used to generate a temperature distribution, and the first and second wavelength control regions 24 and 25 are different. The current blocking layers 27 and 28 are sawtooth-shaped when viewed from above to generate a temperature distribution. That is,
By removing the portions on both sides of the waveguide that have almost no influence on the confinement of light by etching to a depth of about 5 μm, a heat conduction distribution is given to the waveguide in the resonance axis direction, and a constant period is provided in the resonance axis direction. The temperature distribution is generated. Further, it is natural that the same effect as that of the second embodiment can be obtained by individually controlling each heating means as in the second embodiment.
【0023】図1から図4までの実施例はいずれも繰り
返し周期が4つのものを示してあるが、この数は4つに
制限されず、少なくとも2つあればよい。また、本発明
において用いた加熱手段とは、広義の加熱手段であり、
導波路に温度分布を誘起する手段の総称であって、ヒー
タや熱伝導分布などに限定されるものではない。また、
各図においては縦軸のスケールは任意に設定しており、
回折格子など素子の微細構造については特に強調して描
いている。これら3つの実施例においては触れなかった
が、広義の加熱手段によって温度分布を生じさせた状態
で、第一の波長制御領域24および第二の波長制御領域
25へ電極6aを用いて電流を注入し、プラズマ効果に
よる波長掃引を行うことも可能である。ただし上で述べ
たように、スペクトル線幅の劣化は当然生じる。一方、
熱による波長掃引ではスペクトル線幅は常に1MHz前
後の値に維持された。Although all of the embodiments shown in FIGS. 1 to 4 have four repetition periods, the number is not limited to four, and at least two may be used. The heating means used in the present invention is a heating means in a broad sense,
It is a general term for means for inducing a temperature distribution in the waveguide, and is not limited to a heater, heat conduction distribution, or the like. Also,
In each figure, the scale of the vertical axis is set arbitrarily,
The fine structure of the element such as the diffraction grating is particularly emphasized. Although not mentioned in these three examples, a current is injected into the first wavelength control region 24 and the second wavelength control region 25 by using the electrode 6a in a state where the temperature distribution is generated by the heating means in a broad sense. However, it is also possible to perform wavelength sweep by the plasma effect. However, as described above, deterioration of the spectral line width naturally occurs. on the other hand,
In the wavelength sweep by heat, the spectral line width was always maintained at a value around 1 MHz.
【0024】[0024]
【本発明の効果】本発明では以下の効果が得られる。ま
ず第一に、電流注入方式時のキャリア密度のゆらぎから
屈折率が不安定となり、スペクトル線幅の大きな劣化を
伴うという点は解決された。次に、1超周期内での回折
格子のピッチの変化量を自由に変えられること、および
超周期の大きさを変えられることで、発振のモード間隔
および選択可能モードの最大値最小値を変化させること
が可能となり、波長掃引時のモード選択が容易となっ
た。さらに、回折格子のピッチを変化させるという作製
方法をとらないことで、電子ビーム法によらなくとも2
光束干渉露光法のような簡便な方法で作製される。付け
加えると、サンプルドグレーティング法のような反射効
率の低下もおきない。The following effects are obtained with the present invention. First of all, the problem that the refractive index becomes unstable due to the fluctuation of the carrier density during the current injection method and the spectral line width is greatly deteriorated has been solved. Next, by changing the amount of change in the pitch of the diffraction grating within one super period and by changing the size of the super period, the oscillation mode interval and the maximum and minimum values of the selectable modes can be changed. It became possible to select the mode at the time of wavelength sweep. Furthermore, since the manufacturing method of changing the pitch of the diffraction grating is not adopted, it is possible to use the electron beam method instead of the manufacturing method.
It is manufactured by a simple method such as a light flux interference exposure method. In addition, there is no reduction in reflection efficiency as in the sampled grating method.
【0025】[0025]
【図1】 本発明の第1の実施例を示す断面図、及び上
面図である。FIG. 1 is a sectional view and a top view showing a first embodiment of the present invention.
【図2】 本発明の第1の実施例の導波路内の温度分布
を示す図である。FIG. 2 is a diagram showing a temperature distribution in the waveguide according to the first embodiment of the present invention.
【図3】 本発明の第2の実施例を示す上面図である。FIG. 3 is a top view showing a second embodiment of the present invention.
【図4】 本発明の第3の実施例を示す斜視図である。FIG. 4 is a perspective view showing a third embodiment of the present invention.
【図5】 従来の分布ブラッグ反射型半導体レーザの断
面図である。FIG. 5 is a sectional view of a conventional distributed Bragg reflection type semiconductor laser.
【図6】 いわゆるSSG反射器の模式図である。FIG. 6 is a schematic view of a so-called SSG reflector.
【図7】 いわゆるSSGのピッチと位相を示す図であ
る。FIG. 7 is a diagram showing so-called SSG pitch and phase.
【図8】 作製したSSGのピッチと位相を示す図であ
る。FIG. 8 is a diagram showing a pitch and a phase of the produced SSG.
【図9】 いわゆるSSGの反射特性を示した図であ
る。FIG. 9 is a diagram showing a so-called SSG reflection characteristic.
【図10】いわゆるSSGの透過特性を示した図であ
る。FIG. 10 is a diagram showing a so-called SSG transmission characteristic.
【図11】いわゆるSSGを備えた素子の斜視図であ
る。FIG. 11 is a perspective view of a device provided with so-called SSG.
【図12】いわゆるSSGの波長掃引範囲の拡大を示す
図である。FIG. 12 is a diagram showing expansion of a so-called SSG wavelength sweep range.
1 基板 2 活性層 3 回折格子 4 ガイド層 5 クラッド層 6a 電極 6b 電極 6c 電極 7 p型電極 8 絶縁膜 9 薄膜ストライプ 10a 加熱用電極 10b 加熱用電極 11 発光領域 12 位相制御領域 13 DBR領域 20 SSG領域 21 SSG領域 22 発熱抵抗部 23 導波路 24 第1の波長制御領域 25 第2の波長制御領域 26 薄膜抵抗 27 電流阻止層 28 電流阻止層。 1 substrate 2 active layer 3 diffraction grating 4 guide layer 5 clad layer 6a electrode 6b electrode 6c electrode 7 p-type electrode 8 insulating film 9 thin film stripe 10a heating electrode 10b heating electrode 11 light emitting region 12 phase control region 13 DBR region 20 SSG Region 21 SSG Region 22 Heating Resistor 23 Waveguide 24 First Wavelength Control Region 25 Second Wavelength Control Region 26 Thin Film Resistor 27 Current Blocking Layer 28 Current Blocking Layer.
Claims (1)
導体基板上に有する分布ブラッグ反射型半導体レーザに
おいて、 該導波路の共振軸方向に距離に対して一定の周期を持っ
て繰り返される、回折格子と第一の温度分布を生じさせ
るために周期的に配置された加熱手段とを有する第一の
波長制御領域(24)と、 前記導波路の共振軸方向に距離に対して一定の周期を持
って繰り返される、回折格子と第二の温度分布を生じさ
せるために周期的に配置された加熱手段とを有する第二
の波長制御領域(25)とを備えたことを特徴とする分
布ブラッグ反射型半導体レーザ。1. A distributed Bragg reflection type semiconductor laser having a light emitting region and a waveguide constituting a resonator on a semiconductor substrate, wherein the distributed Bragg reflection type semiconductor laser is repeated at a constant cycle in the resonance axis direction of the waveguide. A first wavelength control region (24) having a diffraction grating and heating means periodically arranged to generate a first temperature distribution; and a constant period with respect to distance in the resonance axis direction of the waveguide. Bragg distribution characterized in that it comprises a second wavelength control region (25) having a diffraction grating and heating means periodically arranged to produce a second temperature distribution, Reflective semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28064692A JPH06112570A (en) | 1992-09-25 | 1992-09-25 | Distributed bragg-reflection type semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28064692A JPH06112570A (en) | 1992-09-25 | 1992-09-25 | Distributed bragg-reflection type semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06112570A true JPH06112570A (en) | 1994-04-22 |
Family
ID=17627960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28064692A Pending JPH06112570A (en) | 1992-09-25 | 1992-09-25 | Distributed bragg-reflection type semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06112570A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6038242A (en) * | 1998-02-12 | 2000-03-14 | Fujitsu Limited | Multiwavelength light source |
WO2002003516A1 (en) * | 2000-07-05 | 2002-01-10 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US6700910B1 (en) | 1999-04-07 | 2004-03-02 | Hitachi, Ltd. | Wavelength tunable laser and optical device |
KR100464358B1 (en) * | 2002-03-11 | 2005-01-03 | 삼성전자주식회사 | Method for fabricating distributed bragg reflector laser |
JP2007048988A (en) * | 2005-08-11 | 2007-02-22 | Eudyna Devices Inc | Semiconductor laser, laser module, optical component, laser device, and manufacturing method and control method of semiconductor laser |
WO2012104143A3 (en) * | 2011-01-31 | 2012-11-01 | Technische Universität Berlin | Device comprising a laser |
JP2013172026A (en) * | 2012-02-21 | 2013-09-02 | Furukawa Electric Co Ltd:The | Optical filter and semiconductor laser device |
US10447009B2 (en) | 2016-07-11 | 2019-10-15 | Sumitomo Electric Device Innovations, Inc. | Method of evaluating initial parameters and target values for feedback control loop of wavelength tunable system |
-
1992
- 1992-09-25 JP JP28064692A patent/JPH06112570A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6038242A (en) * | 1998-02-12 | 2000-03-14 | Fujitsu Limited | Multiwavelength light source |
US6700910B1 (en) | 1999-04-07 | 2004-03-02 | Hitachi, Ltd. | Wavelength tunable laser and optical device |
WO2002003516A1 (en) * | 2000-07-05 | 2002-01-10 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US6643309B1 (en) | 2000-07-05 | 2003-11-04 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
KR100464358B1 (en) * | 2002-03-11 | 2005-01-03 | 삼성전자주식회사 | Method for fabricating distributed bragg reflector laser |
JP4657853B2 (en) * | 2005-08-11 | 2011-03-23 | 住友電工デバイス・イノベーション株式会社 | Semiconductor laser, laser module, optical component, laser device, semiconductor laser manufacturing method, and semiconductor laser control method |
JP2007048988A (en) * | 2005-08-11 | 2007-02-22 | Eudyna Devices Inc | Semiconductor laser, laser module, optical component, laser device, and manufacturing method and control method of semiconductor laser |
US8588266B2 (en) | 2005-08-11 | 2013-11-19 | Eudyna Devices Inc. | Wavelength tunable semiconductor laser having two difractive grating areas |
WO2012104143A3 (en) * | 2011-01-31 | 2012-11-01 | Technische Universität Berlin | Device comprising a laser |
US8396091B2 (en) | 2011-01-31 | 2013-03-12 | Technische Universitat Berlin | Device comprising a laser |
JP2013172026A (en) * | 2012-02-21 | 2013-09-02 | Furukawa Electric Co Ltd:The | Optical filter and semiconductor laser device |
US10447009B2 (en) | 2016-07-11 | 2019-10-15 | Sumitomo Electric Device Innovations, Inc. | Method of evaluating initial parameters and target values for feedback control loop of wavelength tunable system |
US10749314B2 (en) | 2016-07-11 | 2020-08-18 | Sumitomo Electric Device Innovations, Inc. | Method of evaluating initial parameters and target values for feedback control loop of wavelength tunable system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0559192B1 (en) | Distributed reflector and wavelength-tunable semiconductor laser | |
JP2768940B2 (en) | Single wavelength oscillation semiconductor laser device | |
JPH06204610A (en) | Semiconductor laser and manufacture thereof | |
US6594298B2 (en) | Multi-wavelength semiconductor laser array and method for fabricating the same | |
JP3237733B2 (en) | Semiconductor laser | |
US5394429A (en) | Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same | |
JPH0348481A (en) | Semiconductor laser | |
JP3198338B2 (en) | Semiconductor light emitting device | |
US20050129084A1 (en) | Semiconductor laser array with a lattice structure | |
JPH06112570A (en) | Distributed bragg-reflection type semiconductor laser | |
US6111906A (en) | Distributed-feedback semiconductor laser | |
JP3463740B2 (en) | Distributed feedback semiconductor laser | |
JP3689483B2 (en) | Multiple wavelength laser | |
JP3220259B2 (en) | Laser device | |
JPS63244694A (en) | Distributed feedback type semiconductor laser | |
EP0753914B1 (en) | Laser diode element with excellent intermodulation distortion characteristic | |
JP3064118B2 (en) | Distributed reflection semiconductor laser | |
JPH06313818A (en) | Light reflector | |
JP2690840B2 (en) | Distributed light reflector and wavelength tunable semiconductor laser using the same | |
JP2770900B2 (en) | Distributed reflector and tunable semiconductor laser using the same | |
JPS63186A (en) | Semiconductor laser | |
JP2770897B2 (en) | Semiconductor distributed reflector and semiconductor laser using the same | |
JP2832920B2 (en) | Semiconductor laser with wavelength sweep function | |
JPH0653591A (en) | Element for converting optical frequency | |
JP2000223774A (en) | Wavelength-variable light source |