[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06116854A - Specific nonwoven fabric - Google Patents

Specific nonwoven fabric

Info

Publication number
JPH06116854A
JPH06116854A JP3099601A JP9960191A JPH06116854A JP H06116854 A JPH06116854 A JP H06116854A JP 3099601 A JP3099601 A JP 3099601A JP 9960191 A JP9960191 A JP 9960191A JP H06116854 A JPH06116854 A JP H06116854A
Authority
JP
Japan
Prior art keywords
fibers
nonwoven fabric
fiber
mixed
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3099601A
Other languages
Japanese (ja)
Inventor
Soichi Inoue
壮一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3099601A priority Critical patent/JPH06116854A/en
Publication of JPH06116854A publication Critical patent/JPH06116854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain nonwoven fabric suitable for heat insulating material, high- temperature insulation, having excellent bulkiness, heat retaining properties, water vapor permeability and heat dissipation, comprising ultra-fine fibers. CONSTITUTION:Ultra-fine fibers having 10mum or shorter average fiber diameter are entangled with thicker crimping fibers to give nonwoven fabric having an inclination of water vapor transmission in the section direction. The nonwoven fabric is lightweight, has excellent heat retaining properties, water vapor permeability and is suitable for heat insulating material, high-temperature insulation, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極細繊維を含むかさ高
性に富みかつ厚み当たりの透湿性、放湿性に優れた耐熱
材、保温材などに好適な特殊な不織布に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a special non-woven fabric containing ultrafine fibers, which is suitable for heat-resistant materials, heat-insulating materials, etc., which are rich in bulkiness and excellent in moisture permeability and moisture release per thickness.

【0002】[0002]

【従来の技術】極細繊維からなる不織布、特にメルトブ
ロー法により得られる極細繊維は断熱性、バクテリアバ
リアー性、フイルター性などに優れ、これらの特徴を生
かして種々の用途に用いられている。メルトブロー法に
ついては、インダストリアル・アンド・エンジニアリン
グ・ケミストリー(Industrial and Engineering Chemi
stry) 48巻、第8号(1342〜1346)、195
6年に基本的な装置及び方法が開示されている。また、
特公昭56−33511号公報及び特開昭55−142
757号公報にポリオレフィン、ポリエステル等の極細
繊維の製造法が開示されている。他方、極細繊維に太い
短繊維を混合した不織布については以下のものが知られ
ている。すなわち、米国特許第3016599号には1
μm未満のミクロファイバーと1d以上のステープルフ
ァイバーを均一に混合した中入れ綿が開示され、特公昭
61−30065号公報には、極細繊維とこれより径の
大きい捲縮ステープルファイバーを混合した少なくとも
30cm3 /gのかさ高さを有する熱絶縁体用弾性繊維
ウエブが開示されている。また、特開昭59−1837
23号公報には極細繊維ウエブにステープル合成繊維と
綿繊維とが均一に混合した不織布が開示されている。
2. Description of the Related Art Nonwoven fabrics made of ultrafine fibers, especially ultrafine fibers obtained by the melt-blowing method are excellent in heat insulating property, bacterial barrier property, filter property and the like, and are utilized in various applications by utilizing these characteristics. For the melt-blowing method, see Industrial and Engineering Chemi
stry) Volume 48, No. 8 (1342-1346), 195
In 6 years the basic device and method were disclosed. Also,
JP-B-56-33511 and JP-A-55-142
Japanese Patent No. 757 discloses a method for producing ultrafine fibers such as polyolefin and polyester. On the other hand, the following are known as non-woven fabrics in which thick short fibers are mixed with ultrafine fibers. That is, in US Pat. No. 3,016,599, 1
A batting in which microfibers of less than μm and staple fibers of 1 d or more are uniformly mixed is disclosed. Japanese Patent Publication No. 61-30065 discloses a microfiber and a crimped staple fiber having a diameter larger than 30 cm. Elastic fiber webs for thermal insulation having a bulkiness of 3 / g are disclosed. Also, JP-A-59-1837
Japanese Unexamined Patent Publication No. 23 discloses a nonwoven fabric in which staple synthetic fibers and cotton fibers are uniformly mixed with an ultrafine fiber web.

【0003】[0003]

【発明が解決しようとする課題】極細繊維のみからなる
不織布、特にメルトブロー法で得られた極細繊維ウエブ
は非常に小さいポアサイズを持つ良好な多孔質体である
為、断熱性、バクテリアバリアー性、フィルター性、ワ
イパー性などに優れるという特長があるが、一般的に単
繊維は直線的であることからかさ高性が乏しいという問
題があった。この問題に対して前述の米国特許第301
6599号、特公昭61−30065号公報は極細繊維
に太い捲縮ステープルファイバーを混合してかさ高性を
向上させ優れた断熱性を得ようとするものであった。ま
た、特開昭59−183723号公報は極細繊維に太い
捲縮ステープルファイバー等を均一に混合してかさ高性
を向上させ、ワイパー性能を高めようとするものであっ
た。保温断熱材の一つである衣料用保温材に要求される
特性としては保温性向上の他に透湿性や放湿性の向上な
どがある。保温性の向上に対しては米国特許第3016
599号、特公昭61−30065号報、特開昭59−
183723号公報の様なかさ高化が有効である。しか
し、透湿性や放湿性の向上に対しては特公平1−919
0号公報のように吸湿層と放湿層の積層の適正化をする
ことなどで改良されているがコスト面などで問題が見ら
れる。本発明は軽量で厚み当りの優れた保温性と透湿性
や放湿性の向上などの性能を合わせ持つ様な一層タイプ
の保温断熱材として優れた特殊不織布を提供することを
目的とする。
Nonwoven fabrics composed of only ultrafine fibers, especially webs of ultrafine fibers obtained by the melt-blowing method, are porous materials having a very small pore size, and therefore have a heat insulating property, a bacterial barrier property and a filter. However, since single fibers are generally linear, there is a problem that bulkiness is poor. For this problem, the above-mentioned US Patent No. 301
No. 6599 and Japanese Patent Publication No. 61-30065 disclose mixing of crimped staple fibers with ultrafine fibers to improve bulkiness and obtain excellent heat insulation. Further, JP-A-59-183723 discloses an attempt to improve bulkiness and improve wiper performance by uniformly mixing thick crimped staple fibers with ultrafine fibers. The properties required of a heat insulating material for clothing, which is one of the heat insulating materials, include improvement of moisture permeability and moisture release in addition to improvement of heat retention. For improvement of heat retention, US Patent No. 3016
599, JP-B-61-30065, JP-A-59-
It is effective to increase the bulkiness as disclosed in Japanese Patent No. 183723. However, for improvement of moisture permeability and moisture release, Japanese Patent Publication No. 1-919
Although it is improved by optimizing the lamination of the moisture absorbing layer and the moisture releasing layer as in Japanese Patent No. 0, the problem is seen in terms of cost. An object of the present invention is to provide a special non-woven fabric which is lightweight and has an excellent heat retaining property per thickness and a combination of performances such as improvement of moisture permeability and moisture releasing property, which is excellent as a heat insulating and heat insulating material.

【0004】[0004]

【課題を解決するための手段】上記の課題を達成するた
め、鋭意検討を重ねた結果下記の様な手段にたどり着い
た。すなわち、本発明は、平均繊維径が約10μm以下
の極細繊維に該極細繊維よりも太い平均繊維径を有しか
つ少なくとも1種が捲縮性を有する繊維を2種以上が混
合し互いにもつれた不織布であって、断面方向の吸湿性
の勾配を有する特殊不織布によって課題を達成するもの
である。本発明の極細繊維はポリプロピレン、ポリエチ
レンなどのポリオレフィン、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレートなどのポリエステル、
ナイロン6、ナイロン66などのポリアミドおよびこれ
らの共重合体、ポリ塩化ビニル、アクリル系及びアクリ
ル系共重合体、ポリスチレン、ポリアリレーンスルファ
イド、ポリスルホン、無機繊維などがある。本発明にお
いては軽量化やコストの点からポリプロピレン、ポリエ
チレンなどのポリオレフィン、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレートなどのポリエステル
等を選ぶのが好ましい。
[Means for Solving the Problems] In order to achieve the above-mentioned problems, as a result of intensive studies, the following means have been reached. That is, according to the present invention, two or more kinds of fibers having an average fiber diameter of about 10 μm or less and having an average fiber diameter larger than the ultrafine fibers and at least one kind of crimpability are mixed and entangled with each other. The object is achieved by a non-woven fabric, which is a special non-woven fabric having a hygroscopic gradient in the cross-sectional direction. The ultrafine fibers of the present invention are polypropylene, polyolefin such as polyethylene, polyethylene terephthalate, polyester such as polybutylene terephthalate,
Polyamides such as nylon 6 and nylon 66 and copolymers thereof, polyvinyl chloride, acrylic and acrylic copolymers, polystyrene, polyarylene sulfide, polysulfone, inorganic fibers and the like. In the present invention, polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate are preferably selected from the viewpoints of weight reduction and cost.

【0005】本発明の極細繊維の平均繊維径は約10μ
m以下であることが良く、好ましくは1〜8μmの範囲
であるとよい。平均繊維径が約10μmよりも大きくな
ると不織布強力は高くなるが、反面、断熱性が劣るので
好ましくない。本発明の不織布における極細繊維に混合
される繊維は、極細繊維よりも太い平均繊維径を有する
ことが好ましい。この平均繊維径が極細繊維よりも細く
なるとかさ高性が低下し断熱性が劣るので好ましくな
い。また、極細繊維に混合される繊維は、ポリエステ
ル、ポリオレフィン、アクリル、ポリアミド、レーヨ
ン、ポリノジック、アセテート、ウール、 綿、これら製
造可能な複合繊維等から吸湿性が異なるものを2種以上
利用することが必要である。これは極細繊維に混合され
る繊維の断面方向における吸湿性の差によって水分の移
行を助けるためである。極細繊維に混合される繊維の少
なくとも1種は、5%以上の捲縮性を有していることが
好ましい。極細繊維に混合される繊維の捲縮率が5%未
満であるとかさ高性向上効果が少なく断熱性が劣るので
好ましくない。
The average fiber diameter of the ultrafine fibers of the present invention is about 10 μm.
It is preferably m or less, and more preferably in the range of 1 to 8 μm. When the average fiber diameter is larger than about 10 μm, the strength of the nonwoven fabric is high, but on the other hand, the heat insulating property is inferior, which is not preferable. The fibers mixed with the ultrafine fibers in the nonwoven fabric of the present invention preferably have a larger average fiber diameter than the ultrafine fibers. If the average fiber diameter is smaller than that of the ultrafine fibers, the bulkiness is lowered and the heat insulating property is deteriorated, which is not preferable. As the fibers to be mixed with the ultrafine fibers, it is possible to use two or more kinds of fibers having different hygroscopic properties such as polyester, polyolefin, acrylic, polyamide, rayon, polynosic, acetate, wool, cotton, and composite fibers that can be manufactured. is necessary. This is because the difference in hygroscopicity in the cross-sectional direction of the fibers mixed with the ultrafine fibers helps the migration of water. It is preferable that at least one kind of fibers mixed with the ultrafine fibers has a crimpability of 5% or more. When the crimp ratio of the fibers mixed with the ultrafine fibers is less than 5%, the effect of improving the bulkiness is small and the heat insulating property is poor, which is not preferable.

【0006】本発明の不織布における極細繊維に混合さ
れる繊維の混合率は、10〜90wt%含有されることが
好ましく、より好ましくは30〜80wt%がよい。混合
率が10wt%未満になると断熱性及び透湿性が低下し、
90wt%よりも大きくなると極細繊維による静止空気層
が低下して断熱性が低下するため好ましくない。本発明
の不織布における極細繊維に混合される繊維は、短繊維
であっても長繊維であってもよい。極細繊維中にムラな
く混合するには短繊維の長さは好ましく3〜100m
m、特に10〜80mmが好ましい。また、本発明の不
織布は粉体等の他の成分を含有してもよい。
The mixing ratio of the fibers mixed with the ultrafine fibers in the nonwoven fabric of the present invention is preferably 10 to 90% by weight, more preferably 30 to 80% by weight. If the mixing ratio is less than 10 wt%, the heat insulation and moisture permeability will decrease,
If it exceeds 90 wt%, the static air layer due to the ultrafine fibers is reduced and the heat insulating property is reduced, which is not preferable. The fibers mixed with the ultrafine fibers in the nonwoven fabric of the present invention may be short fibers or long fibers. The length of the short fibers is preferably 3 to 100 m in order to mix them evenly in the ultrafine fibers.
m, especially 10 to 80 mm is preferable. Further, the nonwoven fabric of the present invention may contain other components such as powder.

【0007】本発明の極細繊維を得る方法としてはメル
トブロー法、フラッシュ紡糸法等、特に限定はされない
が、特にメルトブロー法による方法が好ましい。本発明
の不織布を得る方法としては、溶融した熱可塑性樹脂に
高速加熱ガスを吹き付けて平均繊維径が約10μm以下
の極細繊維からなる繊維流を形成し、吸湿性の異なる解
繊された繊維を別々に前記繊維流の両側から繊維流中に
挿入しながら該繊維流を捕集する方法をとる。極細繊維
に混合される繊維の解繊方法はリッケリンロール等で行
う方法、またはスライバー状の繊維をコーミングロール
を用いて行う方法等がある。また、本発明の不織布は極
細繊維に多繊維を混合後、各種接合処理を施してもよ
い。
The method for obtaining the ultrafine fibers of the present invention is not particularly limited, such as the melt blow method and the flash spinning method, but the melt blow method is particularly preferable. As a method for obtaining the nonwoven fabric of the present invention, a molten thermoplastic resin is blown with a high-speed heating gas to form a fiber stream composed of ultrafine fibers having an average fiber diameter of about 10 μm or less, and defibrated fibers having different hygroscopic properties are obtained. The fiber stream is collected while being inserted into the fiber stream from both sides of the fiber stream separately. As a method of defibrating the fibers mixed with the ultrafine fibers, there are a method of using a Rickelin roll or the like, a method of using sliver-like fibers with a combing roll, and the like. Further, the nonwoven fabric of the present invention may be subjected to various joining treatments after mixing the ultrafine fibers with the multifibers.

【0008】[0008]

【実施例】以下に実施例を挙げて本発明を更に具体的に
説明する。実施例及び比較例中に示される諸特性の定義
と測定方法を下記に記す。 ・平均繊維径(μm) サンプルの任意な10箇所を走査型電子顕微鏡で10枚
の写真撮影を行う。1枚の写真につき任意の10本の繊
維の直径を測定し、これを10枚の写真について行う。
合計100本の繊維径の測定値を求め平均値を計算し
た。 ・厚み(mm) 厚み圧縮試験機を用い、1g/cm2 の荷重下で5回測
定し平均値を計算した。 ・引張強力(g/目付) サンプルとして20mm幅×160mm長をとりテンシ
ロンを用い、把持長100mm、荷重容量100kg、
引張速度100mm/minで縦横5回測定しその平均
値を1cm当たり、単位目付(g/m2 )当たりに換算
した。 ・捲縮率(%) サンプルの任意の10箇所の繊維を取り、捲縮長a[試
料繊維の大きい半径の屈曲部をまっすぐにして(2mg
/d荷重下)測定]と、繊維の末捲縮長b[試料繊維を
十分まっすぐにした後(50mg/dの荷重下)測定]
を求め、100(b−a)/bに代入して換算した。 ・混合率(%) 混合された繊維の重量を全不織布重量で割り、100倍
した値とした。 ・保温性 ASTM保温性(恒温法)試験機などで熱板の温度35
℃を維持するのに必要な消費電力量を3回測定し、その
平均値を下記の式でクロー値に換算した。1クロー値と
は環境条件21℃、50%RH、気流10cm/sec
下に安静に座っている人が気持ち良く感じる程度の衣服
の持つ熱絶縁であり、そのときの代謝エネルギーは50
kcal/m2 /hr、皮膚温は33℃である。クロー
値=△t/0.18Q(△t:熱板温度と環境温度の差
(℃)、Q:消費電力量(kcal/m2 ・hr))で
あらわされる。 ・吸湿性勾配 サンプルを表裏2層に剥離分別し、それぞれを27℃に
おいて71%RHから97%RHに移行したときの1時
間後の吸湿量を3回の重量変化測定から求め、大きい方
の値を小さい方の値で割った値を吸湿性勾配とした。 ・水分の移行性(透湿性、放湿性、%RH) 水分の移行性は最高衣服内湿度で表わした。最高衣服内
湿度は特開昭58−021164号公報に示される衣服
内気候シミュレーション装置及び方法を用いて行った。
環境湿度条件は20℃、65%RH、模擬皮膚の温度を
35℃に設定し、測定3回の平均値を算出した。
EXAMPLES The present invention will be described in more detail with reference to the following examples. The definitions and measuring methods of various properties shown in Examples and Comparative Examples are described below. -Average fiber diameter (μm) Take 10 photographs with a scanning electron microscope at 10 arbitrary points of the sample. The diameter of any 10 fibers is measured per photograph and this is done for 10 photographs.
A total of 100 fiber diameters were measured and the average value was calculated. -Thickness (mm) Using a thickness compression tester, measurement was performed 5 times under a load of 1 g / cm 2 , and an average value was calculated.・ Tensile strength (g / unit weight) Take a 20 mm width × 160 mm length as a sample and use Tensilon, gripping length 100 mm, load capacity 100 kg,
The measurement was performed 5 times in length and width at a tensile speed of 100 mm / min, and the average value was converted per 1 cm per unit basis weight (g / m 2 ). Crimping rate (%) Take fibers at any 10 points of the sample and straighten the crimp length a [bend of the sample fiber having a large radius (2 mg
/ D under load) measurement] and end crimp length b of fiber [measurement after straightening sample fiber sufficiently (under load of 50 mg / d)]
Was calculated | required and it substituted by 100 (ba) / b and converted. -Mixing rate (%) The weight of the mixed fibers was divided by the total weight of the non-woven fabrics to obtain 100 times the value.・ Heat retention ASTM heat retention (constant temperature method) tester, etc.
The power consumption required to maintain the temperature was measured three times, and the average value was converted into a claw value by the following formula. 1 claw value is environmental condition 21 ℃, 50% RH, air flow 10cm / sec
It is the heat insulation of clothing that is comfortable enough for a person who sits down comfortably, and the metabolic energy at that time is 50.
kcal / m @ 2 / hr, skin temperature is 33.degree. Claw value = Δt / 0.18Q (Δt: difference between hot plate temperature and ambient temperature (° C.), Q: power consumption (kcal / m 2 · hr))・ Hygroscopicity gradient The sample was separated into two layers on the front and back sides, and the amount of moisture absorption after 1 hour when each sample was transferred from 71% RH to 97% RH at 27 ° C was obtained from three weight change measurements. The value obtained by dividing the value by the smaller value was used as the hygroscopicity gradient. Moisture transfer (moisture permeability, moisture release,% RH) Moisture transfer was expressed as the maximum humidity in clothes. The maximum in-cloth humidity was measured by using the in-cloth climate simulating apparatus and method disclosed in JP-A-58-021164.
The environmental humidity conditions were 20 ° C., 65% RH, the temperature of the simulated skin was set to 35 ° C., and the average value of three measurements was calculated.

【0009】実施例1、比較例1、2、3、4 ポリプロピレンをメルトブロー法により紡糸して平均繊
維径1.9μmの極細繊維群を得た。繊維径25μm、
繊維長64mm、捲縮率23%のポリエチレンテレフタ
レート中空繊維をスライバー状とし、このスライバーの
多数本をコーミングロールで解繊しながら短繊維を飛走
させ先の極細繊維群の紡糸ノズル直下片側から混合させ
た。これと同時に繊維径15μm、繊維長38mm、捲
縮率8%のポリノジック繊維をスライバー状とし、この
スライバーの多数本をコーミングロールで解繊しながら
短繊維を飛走させ先の極細繊維群の紡糸ノズル直下逆側
から混合させた。下方に設けられた移動ネット面状でこ
の混合繊維群を捕集しウエブを得た。このウエブを構成
する繊維に塊がなく、実質的に短繊維状に分散されてお
りポリエチレンテレフタレート中空繊維が多く、ポリノ
ジック繊維が少ない側と、ポリノジック繊維が多く、ポ
リエチレンテレフタレート中空繊維が少ない側の断面方
向に混合される繊維が徐々に異なったものであった。極
細繊維に混合される繊維の混合率はポリエチレンテレフ
タレート中空繊維が約40%、ポリノジック繊維が約3
0%となり合計約70%であった。このウエブを直径5
mm、ピッチ50mmの超音波融着機で接合処理を施し
複合不織布を得た(実施例1)。比較例として繊維を混
合せず極細繊維のみからなる事以外は実施例1に記載し
たと同様にして得た不織布(比較例1)、ポリエチレン
テレフタレート中空繊維を70%混合しポリノジック繊
維は混合しない事以外は実施例1に記載したと同様にし
て得た複合不織布(比較例2)、ポリエチレンテレフタ
レートとポリノジック繊維を均一に混合したスライバー
の多数本をコーミングロールで解繊しながら短繊維を飛
走させ先の極細繊維群の紡糸ノズル直下両側から混合さ
せた事以外は実施例1に記載したと同様にして得た複合
不織布(比較例3)、実施例1のポリエチレンテレフタ
レート中空繊維の代わりに繊維径24μm、繊維長64
mm、捲縮率8%のポリノジック繊維を混合した事以外
は実施例1に記載したと同様にして得た複合不織布(比
較例4)の物性を表1及び表2に併せ示した。
Example 1 and Comparative Examples 1, 2, 3, 4 Polypropylene was spun by a melt blow method to obtain a group of ultrafine fibers having an average fiber diameter of 1.9 μm. Fiber diameter 25μm,
A polyethylene terephthalate hollow fiber with a fiber length of 64 mm and a crimping rate of 23% is made into a sliver shape, and a large number of this sliver is defibrated with a combing roll to cause short fibers to fly and mixed from one side just below the spinning nozzle of the ultrafine fiber group Let At the same time, a polynosic fiber having a fiber diameter of 15 μm, a fiber length of 38 mm, and a crimping rate of 8% is formed into a sliver shape, and short fibers are made to fly while defibrating a large number of this sliver with a combing roll to spun the ultrafine fiber group. The mixture was mixed from directly below the nozzle and on the opposite side. A web was obtained by collecting this mixed fiber group in the form of a moving net provided below. The fibers that make up this web have no lumps and are dispersed substantially in the form of short fibers. There are many polyethylene terephthalate hollow fibers, and there are few polynosic fibers, and there are many polynosic fibers and there is little polyethylene terephthalate hollow fibers. The fibers mixed in the direction were gradually different. The mixing ratio of the fibers mixed with the ultrafine fibers is about 40% for polyethylene terephthalate hollow fibers and about 3 for polynosic fibers.
It was 0%, which was about 70% in total. This web has a diameter of 5
mm and a pitch of 50 mm was used to perform a joining treatment with an ultrasonic fusion machine to obtain a composite nonwoven fabric (Example 1). As a comparative example, a nonwoven fabric (Comparative Example 1) obtained in the same manner as described in Example 1 except that fibers were not mixed and only ultrafine fibers were mixed, 70% of polyethylene terephthalate hollow fibers were mixed, and polynosic fibers were not mixed. A composite non-woven fabric (Comparative Example 2) obtained in the same manner as described in Example 1 except for the above, a plurality of slivers in which polyethylene terephthalate and polynosic fibers are uniformly mixed are defibrated with a combing roll while flying short fibers. A composite non-woven fabric (Comparative Example 3) obtained in the same manner as described in Example 1 except that the ultrafine fiber group was mixed from both sides immediately below the spinning nozzle (Comparative Example 3), a fiber diameter was used instead of the polyethylene terephthalate hollow fiber of Example 1. 24 μm, fiber length 64
Table 1 and Table 2 also show the physical properties of the composite nonwoven fabric (Comparative Example 4) obtained in the same manner as described in Example 1 except that polynosic fibers having a mm and a crimping rate of 8% were mixed.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】表1及び表2から明らかなように、本発明
品は保温性と最高衣服内湿度より見た透湿性や放湿性と
も優れた性能を示すことがわかった。
As is clear from Tables 1 and 2, it was found that the product of the present invention exhibits excellent performance in terms of heat retention and moisture permeability and moisture release as seen from the maximum humidity in clothes.

【0013】実施例2、比較例5、6 ポリエチレンテレフタレートをメルトブロー法により紡
糸して平均繊維径3.5μmの極細繊維群を得た。繊維
径25μm、繊維長64mm、捲縮率23%のポリエチ
レンテレフタレート中空繊維をカードウエブとし、この
ウエブをリッケリンロールで解繊しながら短繊維を飛走
そせ先の極細繊維群の紡糸ノズル直下片側から混合させ
た。これと同時に繊維径15μm、繊維長38mm、捲
縮率8%のポリノジック繊維をカードウエブとし、この
ウエブをリッケリンロールで解繊しながら短繊維を飛走
させ先の極細繊維群の紡糸ノズル直下逆側から混合させ
た。下方に設けられた移動ネット面状でこの混合繊維群
を捕集しウエブを得た。このウエブを混合した繊維を塊
がなく、実質的に単繊維状に分散されておりポリエチレ
ンテレフタレート中空繊維が多く、ポリノジック繊維が
少ない側とポリノジック繊維が多く、ポリエチレンテレ
フタレート中空繊維が少ない側の断面方向に混合される
繊維が徐々に異なったものであった。極細繊維に混合さ
れる繊維の混合率はポリエチレンテレフタレート中空繊
維が約40%、ポリノジック繊維が約30%となり合計
約70%であった。このウエブを直径5mm、ピッチ5
0mmの超音波融着機で接合処理を施し複合不織布を得
た(実施例2)。比較例としてポリエチレンテレフタレ
ート中空繊維とポリノジック繊維の混合率だけが異なる
事以外は実施例2に記載したと同様にして得たもので、
ポリエチレンテレフタレート中空繊維が約5%、ポリノ
ジック繊維が約3%の複合不織布(比較例5)とポリエ
チレンテレフタレート中空繊維が約53%、ポリノジッ
ク繊維が約42%の複合不織布(比較例6)の物性を前
記の表2及び下記の表3に併せ示した。表2から明らか
なように、本発明品は保温性と透湿性や放湿性とも優れ
た性能を示すことがわかった。
Example 2, Comparative Examples 5 and 6 Polyethylene terephthalate was spun by a melt blow method to obtain a group of ultrafine fibers having an average fiber diameter of 3.5 μm. Directly below the spinning nozzle of the ultrafine fiber group where the polyethylene terephthalate hollow fiber having a fiber diameter of 25 μm, a fiber length of 64 mm and a crimping rate of 23% is used as a card web, and the short fibers are made to fly while defibrating the web with a Rickelin roll. Mixed from one side. At the same time, a polynosic fiber having a fiber diameter of 15 μm, a fiber length of 38 mm, and a crimping rate of 8% was used as a card web, and short fibers were made to fly while defibrating this web with a Rickelin roll, immediately below the spinning nozzle of the ultrafine fiber group. Mix from the other side. A web was obtained by collecting this mixed fiber group in the form of a moving net provided below. The fibers mixed with this web are dispersed in a substantially single fiber form without lumps, and there are many polyethylene terephthalate hollow fibers, the side with few polynosic fibers and the side with many polynosic fibers and the side with few polyethylene terephthalate hollow fibers. The fibers mixed in were gradually different. The mixing ratio of fibers mixed with the ultrafine fibers was about 40% for polyethylene terephthalate hollow fibers and about 30% for polynosic fibers, which was about 70% in total. This web has a diameter of 5 mm and a pitch of 5
Bonding treatment was performed with a 0 mm ultrasonic fusion machine to obtain a composite nonwoven fabric (Example 2). As a comparative example, it was obtained in the same manner as described in Example 2 except that the mixing ratio of polyethylene terephthalate hollow fiber and polynosic fiber was different.
Physical properties of a composite non-woven fabric containing about 5% polyethylene terephthalate hollow fibers and about 3% polynosic fibers (Comparative Example 5) and a composite non-woven fabric containing about 53% polyethylene terephthalate hollow fibers and about 42% polynosic fibers (Comparative Example 6) The results are shown in Table 2 above and Table 3 below. As is clear from Table 2, it was found that the product of the present invention exhibits excellent performances in heat retention, moisture permeability and moisture release.

【0014】[0014]

【表3】 [Table 3]

【0015】実施例3、比較例7 ポリエチレンテレフタレートをメルトブロー法により紡
糸して平均繊維径3.5μmの極細繊維群を得た。繊維
径25μmのナイロン6のモノフィラメントを加熱加圧
空気によって飛走させ、先の極細繊維群の紡糸ノズル直
下片側から混合させた。これと同時に繊維径25μm、
繊維長64mm、捲縮率23%のポリエチレンテレフタ
レートと繊維径15μm、繊維長38mm、捲縮率8%
のポリノジック繊維を均一に混合したスライバーの多数
本をコーミングロールで解繊しながら短繊維を飛走させ
先の極細繊維群の紡糸ノズル直下逆側から混合させた。
下方に設けられた移動ネット面状でこの混合繊維群を捕
集しウエブを得た。このウエブを構成する繊維に塊がな
く、実質的に単繊維状に分散されておりナイロン6モノ
フィラメントが多く、ポリエチレンテレフタレート中空
繊維とポリノジック繊維が少ない側とポリエチレンテレ
フタレート中空繊維とポリノジック繊維が多く、ナイロ
ン6モノフィラメントが少ない側の断面方向に混合され
る繊維が徐々に異なったものであった。極細繊維に混合
される繊維の混合率はナイロン6モノフィラメントが約
10%、ポリエチレンテレフタレート中空繊維が約30
%、ポリノジック繊維が約30%となり合計約70%で
あった。このウエブを直径5mm、ピッチ50mmの超
音波融着機で接合処理を施し複合不織布を得た(実施例
3)。比較例として混合される繊維がすべてナイロン6
モノフィラメントである事以外は実施例に記載したと同
様にして得た複合不織布(比較例7)の物性を表2及び
下記の表4に併せ示した。
Example 3 and Comparative Example 7 Polyethylene terephthalate was spun by a melt blow method to obtain a group of ultrafine fibers having an average fiber diameter of 3.5 μm. A nylon 6 monofilament having a fiber diameter of 25 μm was caused to fly by heating and pressurizing air, and mixed from one side immediately below the spinning nozzle of the ultrafine fiber group. At the same time, the fiber diameter is 25 μm,
Polyethylene terephthalate having a fiber length of 64 mm and a crimping rate of 23% and a fiber diameter of 15 μm, a fiber length of 38 mm and a crimping rate of 8%
A large number of slivers in which the polynosic fibers of 1. were uniformly mixed were defibrated with a combing roll, and short fibers were made to fly to mix the fine fibers from the reverse side directly below the spinning nozzle.
A web was obtained by collecting this mixed fiber group in the form of a moving net provided below. The fibers that make up this web have no lumps and are dispersed in a substantially single fiber state, with a large amount of nylon 6 monofilament, a side with few polyethylene terephthalate hollow fibers and polynosic fibers, and a lot of polyethylene terephthalate hollow fibers and polynosic fibers. The fibers mixed in the cross-sectional direction on the side where the amount of 6 monofilaments was small were gradually different. The mixing ratio of ultrafine fibers is about 10% for nylon 6 monofilament and about 30 for polyethylene terephthalate hollow fiber.
%, And polynosic fiber was about 30%, which was about 70% in total. This web was joined by an ultrasonic fusion machine having a diameter of 5 mm and a pitch of 50 mm to obtain a composite nonwoven fabric (Example 3). As a comparative example, all the fibers mixed are nylon 6
The physical properties of the composite nonwoven fabric (Comparative Example 7) obtained in the same manner as described in Examples except that it is a monofilament are also shown in Table 2 and Table 4 below.

【0016】[0016]

【表4】 [Table 4]

【0017】表2、4から明らかなように、捲縮のない
ナイロン6モノフィラメントだけを極細繊維中に混合し
てもかさ高性が効率よく得られず保温性が得られないば
かりか、吸湿性勾配がないため透湿性や放湿性が余りよ
くないものとなった。これに対して、本発明品は厚み当
たりの保温性と透湿性とも優れた性能を示すことがわか
った。
As is clear from Tables 2 and 4, even if only nylon 6 monofilament having no crimp is mixed in the ultrafine fibers, not only the bulkiness cannot be efficiently obtained but the heat retaining property cannot be obtained, but also the hygroscopic property is obtained. Since there is no gradient, the moisture permeability and moisture release properties are not very good. On the other hand, it was found that the product of the present invention exhibits excellent heat retention and moisture permeability per thickness.

【0018】実施例4 実施例2の極細繊維中に短繊維を混合する直下において
融点120℃を有するポリエステル系の粉体を空送して
極細繊維に約10%混合を行うことと超音波融着機で接
合処理を施した後で130℃の熱風を用いて不織布を構
成する繊維とホットメルトパウダーを熱融着する以外は
実施例2と同様にして複合不織布を得た(実施例4)。
この物性を表2に示した。表2、4から明らかなよう
に、繊維以外の他の成分例えばホットメルトパウダーを
利用して不織布を構成する繊維とホットメルトパウダー
を熱融着することで厚み当たりの保温性と透湿性や放湿
性とも優れかつ引張強力も向上することがわかった。
Example 4 Just under mixing short fibers into the ultrafine fibers of Example 2, polyester powder having a melting point of 120 ° C. was fed by air to mix the ultrafine fibers with about 10% and ultrasonic melting. A composite non-woven fabric was obtained in the same manner as in Example 2 except that the fibers constituting the non-woven fabric and the hot-melt powder were heat-sealed by using hot air at 130 ° C. after performing the joining process with the machine (Example 4). .
The physical properties are shown in Table 2. As is clear from Tables 2 and 4, the components other than the fibers, for example, the fibers constituting the non-woven fabric are hot-melted by using the hot-melt powder to heat-bond the hot-melt powder, and the heat-retaining property, the moisture permeability and the release property per unit thickness are obtained. It was found that the wettability is excellent and the tensile strength is also improved.

【0019】[0019]

【発明の効果】本発明の不織布は前述のように構成され
ているので、軽量で優れた保温性と透湿性や放湿性など
の性能を合わせ持つ様な一層タイプの保温断熱材を得る
ことができるようになった。一層タイプであるため張り
合わせが不要でありコスト的にも優れたものとなった。
従ってこの発明の工業的意義は大きいものである。
EFFECT OF THE INVENTION Since the nonwoven fabric of the present invention is constructed as described above, it is possible to obtain a one-layer type heat insulation material which is lightweight and has excellent heat retention and performance such as moisture permeability and moisture release. I can do it now. Since it is a single layer type, it does not require pasting and is excellent in cost.
Therefore, the industrial significance of the present invention is great.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均繊維径が約10μm以下の極細繊維
に該極細繊維よりも太い平均繊維径を有しかつ少なくと
も1種が捲縮性を有する繊維の2種以上が混合し互いに
もつれた不織布であって、断面方向に吸湿性の勾配を有
する事を特徴とする特殊不織布。
1. A non-woven fabric in which two or more kinds of fibers having an average fiber diameter of about 10 μm or less and having an average fiber diameter thicker than the ultrafine fibers and at least one type of which has crimpability are mixed and entangled with each other. A special nonwoven fabric having a hygroscopic gradient in the cross-sectional direction.
JP3099601A 1991-04-03 1991-04-03 Specific nonwoven fabric Pending JPH06116854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099601A JPH06116854A (en) 1991-04-03 1991-04-03 Specific nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099601A JPH06116854A (en) 1991-04-03 1991-04-03 Specific nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH06116854A true JPH06116854A (en) 1994-04-26

Family

ID=14251616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099601A Pending JPH06116854A (en) 1991-04-03 1991-04-03 Specific nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH06116854A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197355A (en) * 2008-02-20 2009-09-03 Teijin Fibers Ltd Dry nonwoven fabric
JP2011006807A (en) * 2009-06-24 2011-01-13 Teijin Fibers Ltd Dry nonwoven fabric and textile product
US7993724B2 (en) 2007-05-09 2011-08-09 Owens Corning Intellectual Capital, Llc Insulation for high temperature applications
US8650913B2 (en) 2005-07-12 2014-02-18 Owens Corning Intellectual Capital, Llc Thin rotary-fiberized glass insulation and process for producing same
WO2021039980A1 (en) 2019-08-30 2021-03-04 株式会社ダイセル Fiber article
WO2021039979A1 (en) 2019-08-30 2021-03-04 株式会社ダイセル Method for producing fiber articles

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8650913B2 (en) 2005-07-12 2014-02-18 Owens Corning Intellectual Capital, Llc Thin rotary-fiberized glass insulation and process for producing same
US7993724B2 (en) 2007-05-09 2011-08-09 Owens Corning Intellectual Capital, Llc Insulation for high temperature applications
JP2009197355A (en) * 2008-02-20 2009-09-03 Teijin Fibers Ltd Dry nonwoven fabric
JP2011006807A (en) * 2009-06-24 2011-01-13 Teijin Fibers Ltd Dry nonwoven fabric and textile product
WO2021039980A1 (en) 2019-08-30 2021-03-04 株式会社ダイセル Fiber article
WO2021039979A1 (en) 2019-08-30 2021-03-04 株式会社ダイセル Method for producing fiber articles
US12104300B2 (en) 2019-08-30 2024-10-01 Daicel Corporation Fiber article
US12180627B2 (en) 2019-08-30 2024-12-31 Daicel Corporation Method for producing fiber articles

Similar Documents

Publication Publication Date Title
JPH0137505B2 (en)
JPH0219223B2 (en)
JPS58191215A (en) Polyethylene hot-melt fiber
CN108486769A (en) A kind of unidirectional moisture-inhibiting, heat-preserving complex material and preparation method thereof
JP4456366B2 (en) Stretchable multi-component nonwoven fabric and production method
KR19990071771A (en) Low Density Microfiber Nonwovens
JPH02127553A (en) Stretchable non-woven fabric and production thereof
JP6575545B2 (en) Stuffed cotton
EP0341871B1 (en) Nonwoven thermal insulating stretch fabric
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
JPH0192415A (en) Heat-bondable fiber and nonwoven fabric thereof
JPH06116854A (en) Specific nonwoven fabric
KR101275671B1 (en) Nonwoven fabric having good retaining warming and preparation method thereof
JPH01260051A (en) Fiber web
JPH0693550A (en) Special nonwoven fabric
US3449486A (en) Method for producing a thermally selfbonded low density nonwoven product
JPS6392722A (en) Heat-weldable fiber and nonwoven cloth made thereof
JP3046671B2 (en) Fiber aggregate
JP2538602B2 (en) Fiber for spunbond nonwovens
JP4000424B2 (en) Long fiber nonwoven fabric and method for producing the same
JP2508833B2 (en) Thermal adhesive composite fiber
JPH0770899A (en) Heat-bonded nonwoven cloth and its production
JP3011760B2 (en) Short fiber non-woven sheet
JP2011202302A (en) Mixed raw cotton for wadding, and wadding
JP2856474B2 (en) High elongation non-woven fabric