JPH06114732A - Grinding wheel side surface shaping method by on-machine discharge truing method - Google Patents
Grinding wheel side surface shaping method by on-machine discharge truing methodInfo
- Publication number
- JPH06114732A JPH06114732A JP4283651A JP28365192A JPH06114732A JP H06114732 A JPH06114732 A JP H06114732A JP 4283651 A JP4283651 A JP 4283651A JP 28365192 A JP28365192 A JP 28365192A JP H06114732 A JPH06114732 A JP H06114732A
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- electrode
- grinding wheel
- disk
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、研削機械用導電性薄
刃砥石の機上放電ツルーイング/ドレッシング方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-machine discharge truing / dressing method for a conductive thin-edged grindstone for a grinding machine.
【0002】[0002]
【従来の技術】従来、導電性薄刃砥石の機上放電ツルー
イング方法としては、例えば特開平4−201073号
の研削機械上(機上)に放電加工用の電極を取付け、そ
の研削機械に装着し使用された導電性薄刃砥石を機械か
ら取り外すことなく、機上で回転しながらその外周部を
接近させるとともに、電極の上面に対し平行移動させな
がら電極との間で放電し導電性薄刃砥石の外周部を整形
する導電性薄刃砥石の機上放電ツルーイング/ドレッシ
ング方法があった。さらに、砥石側面成形法として、特
開昭58−66662号の放電加工法によるメタルボン
ドダイヤモンド砥石の振れ修正法およびその装置があっ
た。2. Description of the Related Art Conventionally, as an on-machine electric discharge truing method of a conductive thin blade grindstone, for example, an electric discharge machining electrode is mounted on a grinding machine (on machine) of Japanese Patent Laid-Open No. 4-201073, and then mounted on the grinding machine. Without removing the used conductive thin-edged grindstone from the machine, while rotating it on the machine to bring the outer peripheral part closer to it, and while moving parallel to the upper surface of the electrode, discharge between the electrode and the outer periphery of the conductive thin-edged grindstone There was an on-machine electric discharge truing / dressing method of a conductive thin-edged grindstone for shaping a part. Further, as a grinding wheel side surface forming method, there is a runout correction method of a metal bond diamond grinding wheel by an electric discharge machining method and a device therefor, which are disclosed in JP-A-58-66662.
【0003】[0003]
【発明が解決しようとする課題】上記特開平4−201
073号の方法では、薄刃砥石の外周部の成形方法につ
いて述べたものであり、この方法で砥石側面ツルーイン
グを行った場合、電極側面形状が砥石側面に転写される
ため、砥石側面振れを除去するだけで高精度な側面整形
が困難であり、かかる薄刃砥石による切断、溝入れ加工
では、砥石側面振れは加工精度の悪化およびチッピング
の増大につながり、しかも研削盤上で砥石側面振れを除
去する方法はないので、砥石取付け時点で側面振れは決
定した。そのため、砥石によって加工精度、チッピング
量がばらつき、安定した加工精度が得られにくい課題が
あった。また、逆テーパ、段付けなどの形状整形は不可
能であった。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method of No. 073 describes the method of forming the outer peripheral portion of the thin blade grindstone. When the side surface truing of the grindstone is performed by this method, the side surface shape of the electrode is transferred to the side surface of the grindstone. It is difficult to shape the side surface with high precision, and in cutting and grooving with such a thin blade grindstone, the side deviation of the grindstone deteriorates the processing accuracy and increases chipping, and moreover the method of removing the side deviation of the grindstone on the grinder. Therefore, the side runout was determined when the whetstone was attached. Therefore, there is a problem that it is difficult to obtain stable processing accuracy because the processing accuracy and the chipping amount vary depending on the grindstone. In addition, shape shaping such as reverse taper or stepping was impossible.
【0004】又、特開昭58−6662号の方法では、
砥石側面の振れを修正するだけで、逆テーパ、段付けな
どの形状を整形することができなかったし、又電極が消
耗した場合、砥石形状が崩れる恐れがあり高精度な側面
整形が困難であった。いずれにしても、上記各方法を用
いて砥石側面ツルーイングし、砥石振れを除去しても、
高精度な砥石形状が得られにくい問題があった。本発明
の課題は、ダイヤモンド及び/又はCBN砥粒を混合し
た超砥粒砥石を含む総形あるいは薄刃砥石である導電性
砥石の高精度側面整形を可能にし、これにより、切断、
溝入れ加工時の砥石側面振れによる加工精度の悪化およ
びチッピングの増大がなくなり、安定した加工精度が得
られ、又砥石側面に逆テーパや段付けを研削盤上で作る
ことができ、砥石を新たに用意する必要がない、機上放
電ツルーイング法による砥石側面整形法を提供すること
にある。Further, in the method of Japanese Patent Laid-Open No. 58-6662,
It was not possible to shape the reverse taper, stepped shape, etc. simply by correcting the run-out of the side surface of the grindstone, and if the electrodes were worn out, the shape of the grindstone could collapse, making it difficult to shape the side surface with high precision. there were. In any case, using the above methods to truing the side of the whetstone and removing the wobbling of the whetstone,
There was a problem that it was difficult to obtain a highly accurate grindstone shape. An object of the present invention is to enable high-precision side surface shaping of a conductive grindstone that is a full-form or thin blade grindstone including a superabrasive grindstone mixed with diamond and / or CBN abrasive grains, thereby cutting,
Deterioration of machining accuracy and increase of chipping due to wobbling of the whetstone side during grooving, stable machining accuracy can be obtained, and reverse taper and step can be made on the whetstone side on the grinder. It is to provide a grinding wheel side surface shaping method by an on-machine electric discharge truing method, which does not need to be prepared.
【0005】[0005]
【課題を解決するための手段】このため本発明は、特許
請求の範囲記載の機上放電ツルーイング法による砥石側
面整形法を提供することによって上述した従来技術の課
題を解決した。Therefore, the present invention has solved the above-mentioned problems of the prior art by providing a grinding wheel side surface shaping method by an on-machine discharge truing method described in the claims.
【0006】[0006]
【実施例】以下添付した図1乃至図3に基づきこの発明
を詳細に説明する。図1は本発明の一実施例方法に使用
される機上放電ツルーイング法による砥石側面整形装置
の構成を示すブロック図である。1はダイヤモンド及び
/又はCBN砥粒を混合した超砥粒砥石を含む総形ある
いは薄刃砥石である導電性砥石で、実施例では砥石全体
がメタルボンドによるダイヤモンド砥粒層を有する外周
面が平坦な導電性薄刃砥石である。2は導電性薄刃砥石
1を回転させる主軸、3は導電性薄刃砥石1の外周面と
の間で放電させる円盤形の放電加工用の円盤状電極、4
は電極3と砥石1間に直流パルス電流を供給する直流パ
ルス電源、5は砥石1と電極3との間に研削液または加
工液を噴出するための加工液ノズル、6は研削盤本体か
ら電極3を絶縁する絶縁材、7は研削盤のテーブル、8
は電極3を回転させるための電極回転装置、9は砥石1
の移動軌跡、10は電極回転装置の傾斜角度、14は電
極3にマイナス直流パルス電圧を供給するマイナス端
子、15は砥石1にプラス電圧を接続するプラス端子を
示したものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the attached FIGS. FIG. 1 is a block diagram showing the configuration of a grindstone side surface shaping device by an on-machine discharge truing method used in an embodiment method of the present invention. Reference numeral 1 is a conductive grindstone which is a full-form or thin-edged grindstone containing a superabrasive grindstone mixed with diamond and / or CBN abrasive grains. It is a conductive thin blade grindstone. Reference numeral 2 is a spindle for rotating the electroconductive thin blade grindstone 1, 3 is a disk-shaped disc-shaped electrode for electric discharge machining for discharging between the outer peripheral surface of the electroconductive thin blade grindstone 1, 4
Is a DC pulse power supply for supplying a DC pulse current between the electrode 3 and the grindstone 1, 5 is a machining liquid nozzle for ejecting a grinding liquid or a machining liquid between the grindstone 1 and the electrode 3, and 6 is an electrode from the grinder body Insulating material that insulates 3, 7 is the table of the grinder, 8
Is an electrode rotating device for rotating the electrode 3, and 9 is a grindstone 1.
The moving locus, 10 is the inclination angle of the electrode rotating device, 14 is a negative terminal for supplying a negative DC pulse voltage to the electrode 3, and 15 is a positive terminal for connecting a positive voltage to the grindstone 1.
【0007】作動においては、研削盤回転軸である主軸
2に装着された導電性薄刃砥石1は、研削作業のために
研削盤の主軸2に装着されたまま回転され、直流パルス
電流又はパルス状の直流電源4に接続されたプラス端子
15から砥石1は、プラス電圧を受電しプラス電極とし
て作用する。一方、研削機械のテーブル7に設置され電
極回転装置8で回転される円盤状電極3は、電源4に接
続されたマイナス端子14からマイナスの電圧を受電し
マイナス電極として作用する。円盤状電極3を回転さ
せ、導電性砥石1と円盤状電極3の間に直流パスル電圧
を印加し、両者間に加工液ノズル5から水溶性研削液を
かけながら放電し、導電性砥石側面11は、図示しない
NC装置により移動されて、回転している円盤状電極3
の円盤外周面31に接近させるとともに、矢印9で示す
ように、円盤外周面31に対し導電性砥石側面11をZ
軸方向及び/又は前記Y軸方向に平行移動させながら両
者間に放電させ、導電性砥石1を整形する。これによ
り、本発明における、砥石側面形状と砥石移動方法の関
係を示す部分側面図である図2にそれぞれ示す(a) スト
レート形(b) 逆テーパ形及び (c)段付け形の砥石側面形
状を得ることができる。In operation, the electroconductive thin blade grindstone 1 mounted on the main shaft 2 which is the rotary shaft of the grinder is rotated while being mounted on the main shaft 2 of the grinder for the purpose of the grinding operation, and the DC pulse current or pulse shape is applied. The grindstone 1 receives a positive voltage from the positive terminal 15 connected to the DC power source 4 and operates as a positive electrode. On the other hand, the disk-shaped electrode 3 installed on the table 7 of the grinding machine and rotated by the electrode rotating device 8 receives a negative voltage from the negative terminal 14 connected to the power source 4 and acts as a negative electrode. The disk-shaped electrode 3 is rotated, a DC pulse voltage is applied between the conductive grindstone 1 and the disk-shaped electrode 3, and a discharge is made while applying a water-soluble grinding liquid from the machining liquid nozzle 5 between the both, and the conductive grindstone side surface 11 Is a disc-shaped electrode 3 which is rotated by being moved by an NC device (not shown).
The disk outer peripheral surface 31 is moved closer to the disk outer peripheral surface 31, and the conductive grindstone side surface 11 is moved toward the disk outer peripheral surface 31 by the Z direction as shown by an arrow 9.
The conductive grindstone 1 is shaped by causing electric discharge between the two while moving in parallel to the axial direction and / or the Y-axis direction. Thereby, in the present invention, (a) straight type (b) reverse taper type and (c) stepped type whetstone side surface shape shown in FIG. 2, which is a partial side view showing the relationship between the whetstone side surface shape and the whetstone moving method, respectively. Can be obtained.
【0008】図2は本発明の第2実施例機上放電ツルー
イング法による砥石側面整形法を示す図1と同様な図で
多数の砥石1、1 の側面11、11 を整形するため、電極回転
軸34は、導電性砥石回転軸21に対してほぼ直交させ
た位置から約10度傾斜させて取付けてある。装置は図
1と同じ部材は同じ符号で示す。図2において、円盤状
電極3の円盤外周縁32に導電性砥石側面11を接近さ
せるとともに、円盤状電極3を回転させ、矢印91で示
すように、円盤状電極3の円盤外周縁32に対し導電性
砥石側面11をZ軸方向及び/又は前記Y軸方向に平行
移動させながら両者間に放電させ、導電性砥石1を整形
する。これにより、多数の砥石1、1 の側面11、11 に、図
3にそれぞれ示す(a) ストレート形(b) 逆テーパ形及び
(c)段付け形の砥石側面形状を得ることができる。この
方法を用いれば、砥石側面振れを除去するとともに、電
極消耗による形状劣化がないので高精度な砥石側面形状
が得られる。また、逆テーパや段付けの形状を研削盤上
で整形することもできる。FIG. 2 is a view similar to FIG. 1 showing a grinding wheel side surface shaping method by an on-machine electric discharge truing method according to a second embodiment of the present invention. In order to shape the side surfaces 11, 11 of a large number of grinding stones 1, 1, electrode rotation is performed. The shaft 34 is attached at an angle of about 10 degrees from a position substantially orthogonal to the conductive grindstone rotating shaft 21. In the apparatus, the same members as those in FIG. 1 are designated by the same reference numerals. In FIG. 2, the conductive grindstone side surface 11 is brought close to the disk outer peripheral edge 32 of the disk electrode 3, and the disk electrode 3 is rotated, as shown by an arrow 91, with respect to the disk outer peripheral edge 32 of the disk electrode 3. The conductive grindstone 1 is shaped by moving the conductive grindstone side surface 11 in parallel with the Z-axis direction and / or the Y-axis direction while causing electric discharge therebetween. As a result, on the side surfaces 11 and 11 of the large number of grindstones 1 and 1, (a) straight type (b) reverse taper type and
(c) It is possible to obtain a stepped grinding wheel side surface shape. By using this method, the side surface runout of the grindstone can be removed, and the shape of the side surface of the grindstone can be obtained with high accuracy because there is no deterioration of the shape due to electrode consumption. Further, the reverse taper or stepped shape can be shaped on a grinding machine.
【0009】(実験例)実験例として、CNC精密平面
研削盤に、外径100mm ;t 0.6 及び5mm のメタルボンド
ダイヤモンド砥石、3KVAの放電電源、外径60mm;t 0.3m
m の銅の円盤形回転電極、放電加工液として水溶性研削
液、被研削材としてアルテイツク(Al2O3-TiC;50x50x4m
m) 、をそれぞれ使用し、GCドレス条件として、ドレ
ッサーGC砥石#600;砥石回転数9000rpm;切り込み量a=
5mm;送り速度f=200mm/min;ドレス距離Ld=100mm、をそれ
ぞれ選定した。放電ツルーイング条件として、砥石/電
極回転数;S=4500/Sθ=1000rpm;送り速度= f=5■50m
m/min;追い込み量Z=0.1 μm/パス;電圧/電流Eo=15
0V/Ip=5■20A;パルス幅τon/ τoff =2/3μs、をそれ
ぞれ選定した。(Experimental example) As an experimental example, a CNC precision surface grinder was equipped with a metal bond diamond grindstone having an outer diameter of 100 mm; t 0.6 and 5 mm, a discharge power source of 3 KVA, an outer diameter of 60 mm; t 0.3 m.
m copper disk-shaped rotating electrode, water-soluble grinding fluid as electrical discharge machining fluid, Alteik as workpiece (Al 2 O 3 -TiC; 50x50x4m
m) and, respectively, as the dressing conditions for GC, dresser GC grinding wheel # 600; grinding wheel rotation speed 9000 rpm; cutting depth a =
5 mm; feed rate f = 200 mm / min; dressing distance Ld = 100 mm were selected. Electric discharge truing conditions are grindstone / electrode rotation speed; S = 4500 / Sθ = 1000 rpm; feed speed = f = 5 ■ 50m
m / min; drive-in amount Z = 0.1 μm / pass; voltage / current Eo = 15
0V / Ip = 5 ■ 20A; pulse width τ on / τ off = 2/3 μs were selected.
【0010】(実験結果)幅0.6mm の薄刃砥石の側面に
対し本法による機上放電ツルーイング法による砥石側面
整形を行い、ツルーイング能力及び側面整形された砥石
形状の評価は、フエライトに形状転写して行った。研削
性能はGC砥石ブロックによる方法と比較した。 その
結果、薄刃砥石の側面に対し機上放電ツルーイング法に
よる砥石側面整形を行った結果、GC砥石ブロックによ
る方法で10μmp-p が、本方法では、約10分で、1 μ
mp-p に減少した。次に幅0.6 及び5mm の砥石に逆テー
パ及び段付けの成形を行い、所望の形状を得ることがで
きた。本方法では、加工圧が僅少なため、砥石の変形、
破損等発生せず、極めて高精度に成形できた。幅0.6mm
の砥石の外周成形を行ったところ、GC砥石ブロックに
よる方法で真円度が約2.2 μm(平均値)が、本方法で
は、真直度が1.6 μmに減少した。さらに、GC砥石ブ
ロックによる方法では砥石側面振れの影響で切断溝の片
側に大きいチッピングが生じたが、本方法では、大きい
チッピングの発生を抑制できた。(Experimental results) The side surface of a thin blade grindstone having a width of 0.6 mm was subjected to side surface shaping by the on-machine discharge truing method according to this method, and the truing ability and the side surface shaped grindstone shape were evaluated by transferring the shape to a ferrite. I went. The grinding performance was compared with the method using the GC wheel block. As a result, the side surface of the thin blade grindstone was subjected to on-machine electric discharge truing to shape the side surface of the grindstone. As a result, the method using the GC grindstone block gave 10 μm pp.
It has been reduced to m pp . Next, the grindstones with widths of 0.6 and 5 mm were subjected to reverse taper and step forming to obtain a desired shape. In this method, since the processing pressure is small, the deformation of the grindstone,
It was possible to mold with extremely high precision without causing damage. Width 0.6 mm
When the outer circumference of the grindstone of No. 2 was molded, the roundness was about 2.2 μm (average value) by the method using the GC grindstone block, but the straightness was reduced to 1.6 μm by this method. Further, in the method using the GC grindstone block, a large chipping was generated on one side of the cutting groove due to the side surface runout of the grindstone, but in the present method, the occurrence of the large chipping could be suppressed.
【0011】[0011]
【発明の効果】以上説明したように、導電性薄刃砥石の
高精度側面整形を可能にしたことにより、切断、溝入れ
加工時の砥石側面振れによる加工精度の悪化およびチッ
ピングの増大がなくなり、安定した加工精度が得られる
ようになった。また、電極回転軸を、導電性砥石回転軸
に対してほぼ直交させた位置から傾斜させることによ
り、砥石側面に逆テーパや段付けを研削盤上で作ること
ができ、砥石を新たに用意する必要がなくなった。As described above, by enabling highly accurate side surface shaping of the conductive thin blade grindstone, the deterioration of the working accuracy and the increase of chipping due to the wobble of the grindstone side surface at the time of cutting and grooving are eliminated, and the stability is stable. The processing precision that has been achieved has come to be obtained. Also, by tilting the electrode rotation axis from a position approximately orthogonal to the conductive grinding wheel rotation axis, it is possible to create a reverse taper or step on the grinding wheel side surface on the grinding machine, and prepare a new grinding wheel. I no longer need it.
【図1】本発明の一実施例方法に使用される機上放電ツ
ルーイング法による砥石側面整形装置の構成を示すブロ
ック図。FIG. 1 is a block diagram showing a configuration of a grindstone side surface shaping device by an on-machine discharge truing method used in an embodiment method of the present invention.
【図2】本発明の第2実施例機上放電ツルーイング法に
よる砥石側面整形法を示す図1と同様な図。FIG. 2 is a view similar to FIG. 1, showing a grinding wheel side surface shaping method by an on-machine discharge truing method according to a second embodiment of the present invention.
【図3】本発明における、砥石側面形状と砥石移動方法
の関係を示す部分側面図。FIG. 3 is a partial side view showing a relationship between a side surface shape of a grindstone and a method for moving the grindstone according to the present invention.
1..導電性薄刃砥石 2..主軸 3..放電加工用の円盤状電極 4..直流パルス電源又はパルス状の直流電源 7..研削機械のテーブル 8..電極回転装置 11、12、13..導電性薄刃砥石側面 14..マイナス端子 15..プラス端子 21..導電性薄刃砥石回転軸 31..円盤状電極の円盤外周面 32..円盤状電極の円盤外周縁 34..円盤状電極回転軸 1. . Conductive thin blade whetstone 2. . Spindle 3. . Disk-shaped electrode for electrical discharge machining 4. . DC pulse power supply or pulsed DC power supply 7. . Grinding machine table 8. . Electrode rotating device 11, 12, 13. . Conductive thin blade whetstone side surface 14. . Negative terminal 15. . Positive terminal 21. . Conductive thin blade grindstone rotating shaft 31. . Disk outer peripheral surface of disk electrode 32. . 34. Disk outer peripheral edge of disk electrode 34. . Disk electrode rotating shaft
Claims (2)
イヤモンド及び/又はCBN砥粒を混合した超砥粒砥石
を含む総形あるいは薄刃砥石である導電性砥石を機械か
ら取り外すことなく機上で回転させ、前記研削機械のテ
ーブルに設置された電極回転装置に、放電加工用の円盤
状電極を前記導電性砥石回転軸に対して前記導電性砥石
回転軸がY軸方向のときは電極回転軸をZ軸方向といっ
たように直交させて取付け、前記導電性砥石に対し直流
パルス電源又はパルス状の直流電源から一方の電圧を供
給し、前記直流パルス電源又はパルス状の直流電源から
前記放電加工用の円盤状電極に他方の電圧を供給し、前
記導電性砥石側面を前記円盤状電極の円盤外周面に接近
させるとともに、前記円盤状電極を回転させ、前記導電
性砥石と前記円盤状電極の間に直流パスル電圧を印加
し、両者間に水溶性研削液をかけながら放電し、前記円
盤外周面に対し前記導電性砥石側面をZ軸方向及び/又
は前記Y軸方向に平行移動させながら放電し前記導電性
砥石を整形することを特徴とする機上放電ツルーイング
法による砥石側面整形法。1. A conductive grindstone, which is a full-form or thin-edged grindstone including a superabrasive grindstone mixed with diamond and / or CBN abrasive grains mounted on a rotary shaft of a grinding machine, is not removed from the machine. The disc-shaped electrode for electric discharge machining is rotated by the electrode rotating device installed on the table of the grinding machine with respect to the conductive grindstone rotating shaft when the conductive grindstone rotating shaft is in the Y-axis direction. The axes are mounted so as to be orthogonal to each other such as the Z-axis direction, one voltage is supplied from the DC pulse power source or the pulse DC power source to the conductive grindstone, and the electric discharge machining is performed from the DC pulse power source or the pulse DC power source. The other voltage is supplied to the disk-shaped electrode for use, the side surface of the conductive grindstone is brought close to the disk outer peripheral surface of the disk-shaped electrode, and the disk-shaped electrode is rotated, and the conductive grindstone and the disk-shaped electrode are rotated. A direct current pulse voltage is applied between the electrodes to discharge while applying a water-soluble grinding liquid between the electrodes, and the side surface of the conductive grindstone is moved in parallel to the disk outer peripheral surface in the Z-axis direction and / or the Y-axis direction. A method for shaping a side surface of a grindstone by an on-machine discharge truing method, characterized in that the conductive grindstone is shaped by discharging while being discharged.
軸に対してほぼ直交させた位置から傾斜させて取付け、
前記導電性砥石側面を前記円盤状電極の円盤外周縁に接
近させるとともに、前記円盤状電極を回転させ、前記導
電性砥石側面に対しZ軸方向及び/又は前記Y軸方向に
平行移動させながら放電し導電性砥石を整形することを
特徴とする請求項1記載の機上放電ツルーイング法によ
る砥石側面整形法。2. The electrode rotating shaft is attached so as to be inclined from a position substantially orthogonal to the conductive grindstone rotating shaft,
Discharge while moving the side surface of the conductive grindstone close to the outer peripheral edge of the disk of the disk-shaped electrode, rotating the disk-shaped electrode, and translating the side surface of the conductive grindstone in the Z-axis direction and / or the Y-axis direction. The method for shaping a side surface of a grindstone by the on-machine discharge truing method according to claim 1, wherein the conductive grindstone is shaped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4283651A JP2601750B2 (en) | 1992-09-30 | 1992-09-30 | Wheel side shaping method by on-machine discharge truing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4283651A JP2601750B2 (en) | 1992-09-30 | 1992-09-30 | Wheel side shaping method by on-machine discharge truing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06114732A true JPH06114732A (en) | 1994-04-26 |
JP2601750B2 JP2601750B2 (en) | 1997-04-16 |
Family
ID=17668287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4283651A Expired - Lifetime JP2601750B2 (en) | 1992-09-30 | 1992-09-30 | Wheel side shaping method by on-machine discharge truing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2601750B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0980735A2 (en) * | 1998-08-19 | 2000-02-23 | Riken | Micro-discharge truing device and fine machining method using the device |
EP1033908A2 (en) | 1999-03-03 | 2000-09-06 | Riken | Plasma discharge truing apparatus and fine-machining methods using the apparatus |
JP2006218571A (en) * | 2005-02-10 | 2006-08-24 | Disco Abrasive Syst Ltd | Dressing board and dressing method |
KR100894576B1 (en) * | 2007-08-02 | 2009-04-24 | (주)케이.티.씨 | A table assembly for small hole electric discharge machine |
CN108161743A (en) * | 2018-01-30 | 2018-06-15 | 深圳大学 | The discharge finishing screeding device and method of brait grinding wheel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038671A (en) * | 1983-08-10 | 1985-02-28 | Nec Corp | Esr measurement automating system |
JPH04201073A (en) * | 1990-11-29 | 1992-07-22 | Nachi Fujikoshi Corp | On board electric discharging trueing/dressing method and device thereof |
-
1992
- 1992-09-30 JP JP4283651A patent/JP2601750B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038671A (en) * | 1983-08-10 | 1985-02-28 | Nec Corp | Esr measurement automating system |
JPH04201073A (en) * | 1990-11-29 | 1992-07-22 | Nachi Fujikoshi Corp | On board electric discharging trueing/dressing method and device thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0980735A2 (en) * | 1998-08-19 | 2000-02-23 | Riken | Micro-discharge truing device and fine machining method using the device |
EP0980735A3 (en) * | 1998-08-19 | 2004-01-21 | Riken | Micro-discharge truing device and fine machining method using the device |
EP1033908A2 (en) | 1999-03-03 | 2000-09-06 | Riken | Plasma discharge truing apparatus and fine-machining methods using the apparatus |
US6447376B1 (en) * | 1999-03-03 | 2002-09-10 | Riken | Plasma discharge truing apparatus and fine-machining methods using the apparatus |
EP1033908A3 (en) * | 1999-03-03 | 2003-11-19 | Riken | Plasma discharge truing apparatus and fine-machining methods using the apparatus |
JP2006218571A (en) * | 2005-02-10 | 2006-08-24 | Disco Abrasive Syst Ltd | Dressing board and dressing method |
KR100894576B1 (en) * | 2007-08-02 | 2009-04-24 | (주)케이.티.씨 | A table assembly for small hole electric discharge machine |
CN108161743A (en) * | 2018-01-30 | 2018-06-15 | 深圳大学 | The discharge finishing screeding device and method of brait grinding wheel |
Also Published As
Publication number | Publication date |
---|---|
JP2601750B2 (en) | 1997-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10337668A (en) | Tool for both cutting and grinding | |
KR20040065985A (en) | Truing method for grinding wheel, its truing device and grinding machine | |
JP2000061839A (en) | Microdischarge truing device and finely machining method using it | |
JP3344558B2 (en) | Electric dressing grinding method and apparatus | |
JPH0343145A (en) | Grinding device | |
JP4104199B2 (en) | Molded mirror grinding machine | |
JP3463796B2 (en) | Plasma discharge truing apparatus and micromachining method using the same | |
JP2660512B2 (en) | On-machine discharge truing method of metal bond whetstone | |
JPH06114732A (en) | Grinding wheel side surface shaping method by on-machine discharge truing method | |
JP2838314B2 (en) | Electrolytic interval dressing grinding method | |
JPH08243927A (en) | Grinding tool and its manufacture and grinding device | |
JP2000246613A (en) | Spherical lens grinding device | |
JPH05277938A (en) | Mounting type discharge truing and its device | |
JPH06114733A (en) | Grinding wheel shaping method by on-machine discharge truing method | |
CN110573301A (en) | method for treating workpiece and grinding and etching machine | |
JPS62152676A (en) | Manufacture of diamond grindstone | |
KR100561771B1 (en) | Plasma discharge truing apparatus and fine-machining methods using the apparatus | |
JPH04201073A (en) | On board electric discharging trueing/dressing method and device thereof | |
KR940006010Y1 (en) | Grinding device | |
JPH07195261A (en) | Spherical grinding method and device thereof | |
JPH0740241A (en) | Grinding method | |
JPH08108364A (en) | Grinding work method | |
JPH01121172A (en) | Grinding attachment equipped with electric discharge forming area for blade edge | |
JP3671250B2 (en) | Diamond grinding wheel and its truing device | |
JPH06335853A (en) | Grinding and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961029 |