[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06101322B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH06101322B2
JPH06101322B2 JP61182223A JP18222386A JPH06101322B2 JP H06101322 B2 JPH06101322 B2 JP H06101322B2 JP 61182223 A JP61182223 A JP 61182223A JP 18222386 A JP18222386 A JP 18222386A JP H06101322 B2 JPH06101322 B2 JP H06101322B2
Authority
JP
Japan
Prior art keywords
battery
propylene
separator
ethylene
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61182223A
Other languages
Japanese (ja)
Other versions
JPS6337560A (en
Inventor
俊哉 桑村
文夫 大尾
豊次 杉本
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61182223A priority Critical patent/JPH06101322B2/en
Publication of JPS6337560A publication Critical patent/JPS6337560A/en
Publication of JPH06101322B2 publication Critical patent/JPH06101322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム等の活性軽金属を負極活物質に用い
た有機電解質電池(以下リチウム電池という)のセパレ
ータの改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement in a separator of an organic electrolyte battery (hereinafter referred to as a lithium battery) using an active light metal such as lithium as a negative electrode active material.

従来の技術 リチウム電池は、高電圧高エネルギー密度であるという
優れた性能を有するため、近年その用途は多様化してお
り、各種民生用機器にも利用されている。しかし活物質
材料にリチウムのような活性軽金属を用いるため、電池
としてはその安全性が極めて重要であり、種々の方法が
検討されている。特に電池が短絡した場合には、内部温
度が急激に上昇して内圧が高まり、電池内容物が噴出す
るという事態が起こり得る可能性があった。万一そのよ
うな事態になれば、電池のみならず、この電池を用いた
使用機器をも損傷することになる。そこでこれを未然に
防止する有効な方法として、短絡時の温度上昇により一
方の電極を包み込んだセパレータを溶融させ、セパレー
タの微細な孔部を塞いで電極間に電流を流れなくし、そ
の結果それ以上の温度上昇を抑えて上述の異常事態の発
生を防ぐことが考えられた。
2. Description of the Related Art Lithium batteries, which have the excellent performance of high voltage and high energy density, have been used in various applications in recent years and are also used in various consumer devices. However, since an active light metal such as lithium is used as the active material, the safety of the battery is extremely important, and various methods have been studied. In particular, when the battery is short-circuited, there is a possibility that the internal temperature rapidly rises and the internal pressure rises, and the battery contents are ejected. Should such a situation occur, not only the battery but also the equipment using the battery will be damaged. Therefore, as an effective method to prevent this, the separator enclosing one electrode due to the temperature rise at the time of short circuit is melted, and the minute holes of the separator are closed to prevent the current from flowing between the electrodes, resulting in further It was considered to prevent the occurrence of the above-mentioned abnormal situation by suppressing the temperature rise of.

この方法に有効なセパレータとしては従来において、平
均繊維径が3μ以上のポリプロピレンのメルトブロー法
による繊維の不織布や微孔性樹脂フィルムがあった。
As a separator effective in this method, conventionally, there is a nonwoven fabric of fibers by a melt-blowing method of polypropylene having an average fiber diameter of 3 μ or more and a microporous resin film.

発明が解決しようとする問題点 しかし微孔性樹脂フィルムの場合、ポリプロピレン繊維
製不織布に比べ、その厚みがポリプロピレン繊維製不織
布の約1/10と薄いため、発熱による微孔の閉塞には安定
した効果が期待できるが、スケールメリットで成り立つ
電池産業の材料としては、コストが高かった。また厚み
も数十ミクロンと薄く、機械的強度が弱いため、電極を
包み込む作業時に破損を生じないように十分な注意を払
う必要があり、製造上の使いこなしが極めて難しかっ
た。
Problems to be Solved by the Invention However, in the case of the microporous resin film, the thickness thereof is about 1/10 that of the polypropylene fiber non-woven fabric, which is thin compared to the polypropylene fiber non-woven fabric. Although it can be expected to be effective, it was costly as a material for the battery industry, which is based on economies of scale. Further, since the thickness is as thin as several tens of microns and the mechanical strength is weak, it is necessary to pay sufficient attention not to cause damage during the work of wrapping the electrode, and it is extremely difficult to use in manufacturing.

一方、ポリプロピレン繊維製不織布は、コスト的に安価
であり、しかし微孔性樹脂フィルムに比べて、繊維間に
生じる孔径が大きいため、この孔が電池は発熱時の熱に
よって溶融して完全に塞がるには150℃以上の温度が必
要であり、このような高温に電池をおくことは、安全性
からみて、特に低沸点の有機溶媒を使用した有機電解質
電池にとっては極めて危険である。これを抑制するた
め、ポリプロピレン繊維製不織布の坪量を増やし、繊維
間に生じる孔径を小さくする方法が考えられるが、この
場合においては、セパレータの厚みが厚くなり、かつセ
パレータ自身の固有抵抗も高くなって、電池の放電性能
を低下させてしまうという問題があった。
On the other hand, polypropylene fiber non-woven fabric is cheaper in cost, but the pore size generated between fibers is larger than that of the microporous resin film, so the pores are completely melted by the heat generated when the battery is heated. Requires a temperature of 150 ° C. or higher, and keeping the battery at such a high temperature is extremely dangerous from the viewpoint of safety, particularly for an organic electrolyte battery using an organic solvent having a low boiling point. In order to suppress this, it is conceivable to increase the basis weight of the polypropylene fiber non-woven fabric and reduce the pore size generated between the fibers, but in this case, the separator becomes thicker and the specific resistance of the separator itself is high. Then, there is a problem that the discharge performance of the battery is deteriorated.

本発明はこのような問題点を解決するもので電池の特性
を低下させることなく、セパレータの微孔を閉塞する際
の溶融温度を下げ、電池の安全性を向上させることを目
的とするものである。
The present invention is intended to solve the above problems and to reduce the melting temperature when closing the fine pores of the separator without lowering the characteristics of the battery, and to improve the safety of the battery. is there.

問題点を解決するための手段 前記の問題点を解決するために本発明は、プロピレン以
外のα−オレフィン成分を含有するポリプロピレン系樹
脂の繊維からなる不織布でセパレータを構成したもので
ある。
Means for Solving the Problems In order to solve the above problems, the present invention provides a separator made of a nonwoven fabric made of fibers of polypropylene resin containing an α-olefin component other than propylene.

ここで、プロピレン以外のα−オレフィン成分を含有す
るポリプロピレン系樹脂とは、プロピレン−エチレン共
重合体、プロピレン−ブテン−1共重合体、プロピレン
−ヘキセン−1共重合体、プロピレン−エチレン−ブテ
ン−1共重合体等のプロピン−αオレフィン1共重合体
又はポリプロピレンとポリエチレンの混合物からなる重
合体組成物等を挙げることができる。これらのうち原料
としての入手の容易さ、コスト面からプロピレン−エチ
レン共重合体及びポリプロピレンとポリエチレンの混合
組成物を用いるのが好ましい。
Here, the polypropylene-based resin containing an α-olefin component other than propylene means a propylene-ethylene copolymer, a propylene-butene-1 copolymer, a propylene-hexene-1 copolymer, a propylene-ethylene-butene-polymer. Examples thereof include a propyne-α-olefin 1 copolymer such as 1 copolymer or a polymer composition comprising a mixture of polypropylene and polyethylene. Among these, it is preferable to use a propylene-ethylene copolymer and a mixed composition of polypropylene and polyethylene from the viewpoint of easy availability as a raw material and cost.

α−オレフィン成分としてエチレンを用いる場合には、
エチレン含有量は1〜5重量%が好ましい。
When ethylene is used as the α-olefin component,
The ethylene content is preferably 1 to 5% by weight.

共重合体中のエチレン含有量が1重量%未満では不織布
の溶融温度を下げる効果が乏しく、逆に5重量%よりも
多量になると不織布の融点が低くなりすぎ、早期のフィ
ルム化現象によりセパレータ表面にクラックの発生を生
じ、このクラック部分より再度電流が流れて電池内に短
絡回路を形成して好ましくない。また不織布を構成する
繊維はその平均繊維径を1.5μm以下の極細とすること
により、不織布の孔径を小さくすることができ、発熱時
の熱で容易に繊維間に生じた孔を塞ぐことができる。
If the ethylene content in the copolymer is less than 1% by weight, the effect of lowering the melting temperature of the non-woven fabric is poor, and if it exceeds 5% by weight, the melting point of the non-woven fabric becomes too low and the separator surface is formed due to an early filming phenomenon. A crack is generated in the crack, and a current again flows from the crack portion to form a short circuit in the battery, which is not preferable. Further, the fibers constituting the non-woven fabric can be made to have an average fiber diameter of 1.5 μm or less, so that the pore size of the non-woven fabric can be made small, and the pores generated between the fibers can be easily closed by the heat at the time of heat generation. .

作用 このようなセパレータであれば、繊維間に形成された孔
が塞がる温度を130℃以下に抑えて電池の安全性を向上
させることができる。また、平均繊維径を従来の3μm
以上から1.5μm以下にすることによりセパレータにお
ける孔部の占有面積はほぼ同一であるが、孔径を小さく
することができ、従来のポリプロピレン繊維製不織布に
比べ坪量を減らすことができ、電池特性も向上させるこ
とが可能となった。
Action With such a separator, the temperature at which the pores formed between the fibers are closed can be suppressed to 130 ° C. or lower, and the safety of the battery can be improved. Also, the average fiber diameter is 3 μm
From the above, the area occupied by the pores in the separator is almost the same by setting the thickness to 1.5 μm or less, but the pore diameter can be made smaller, the basis weight can be reduced as compared with the conventional polypropylene fiber nonwoven fabric, and the battery characteristics can be improved. It has become possible to improve.

実施例 以下、本発明を実施例により詳述する。第1図におい
て、発電要素は、それぞれ帯状に形成された正極合剤
(1)と負極(2)を、本発明の特徴とするプロピレン
−エチレン共重合体樹脂繊維で構成される不織布製セパ
レータ(3)を相互間に介挿し、全体をスパイラル状に
巻回形成したものであり、この発電要素は電池ケース
(4)内に中央に孔を有した円板状絶縁板(5)を上下
に配して収納されている。そして、電池ケース(4)内
に非水電解液、例えばジオキソラン、ジメトキシエタ
ン、γ−ブチロラクトンなどの溶媒に無機電解質を溶解
した電解液を注入し、合成樹脂封口板(6)によって、
電池ケース(4)の開口部が密封される。樹脂封口板
(6)は、その中央部に設けた孔に、耐食性金属から構
成されるリベット端子(7)を圧入固定し、その内面に
は、正極の集電体(8)が電気的に接続されている。従
って、リベット端子(7)は正極端子を兼ねる。金属リ
チウムからなる負極(2)は、そのリチウム表面に集電
体(9)を圧着し、その集電体のリード部は、電池ケー
ス(4)の内底面に電気的に接続され、従って電池ケー
ス(4)は負極端子を兼ねる。次に本発明のセパレータ
の詳細ならびにエチレンの添加量と電池特性、短絡時に
おける安全性について比較検討した結果を示す。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples. In FIG. 1, a power generating element is a separator made of a non-woven fabric, in which a positive electrode mixture (1) and a negative electrode (2) each formed in a strip shape are composed of propylene-ethylene copolymer resin fibers, which is a feature of the present invention ( 3) is inserted between each other, and the whole is wound and formed in a spiral shape. This power generating element has a disc-shaped insulating plate (5) having a hole in the center in a battery case (4), which is vertically arranged. It is arranged and stored. Then, a nonaqueous electrolytic solution, for example, an electrolytic solution in which an inorganic electrolyte is dissolved in a solvent such as dioxolane, dimethoxyethane, or γ-butyrolactone is injected into the battery case (4), and a synthetic resin sealing plate (6) is used.
The opening of the battery case (4) is sealed. The resin sealing plate (6) has a rivet terminal (7) made of corrosion-resistant metal press-fitted and fixed in a hole provided in the central portion thereof, and a positive electrode current collector (8) is electrically attached to the inner surface thereof. It is connected. Therefore, the rivet terminal (7) also serves as the positive terminal. The negative electrode (2) made of metallic lithium has a current collector (9) crimped onto the surface of the lithium, and the lead portion of the current collector is electrically connected to the inner bottom surface of the battery case (4). The case (4) also serves as the negative electrode terminal. Next, the details of the separator of the present invention, the results of comparative examination of the amount of ethylene added, the battery characteristics, and the safety at the time of short circuit are shown.

なお、実験に使用した電池は、直径17.5mm、高さ33.5m
m、電気容量1200mAhの筒型リチウム電池とした。リチウ
ム電池の構成としては、正極活物質にフッ化炭素、電解
液としてγ−ブチロラクトンとジメトキシエタンとの混
合溶媒にホウフッ化リチウムを1モル/l溶解したものを
用いた。
The battery used in the experiment was 17.5 mm in diameter and 33.5 m in height.
A cylindrical lithium battery with m and an electric capacity of 1200 mAh was used. As the constitution of the lithium battery, a positive electrode active material containing fluorocarbon, and an electrolyte containing 1 mol / l of lithium borofluoride dissolved in a mixed solvent of γ-butyrolactone and dimethoxyethane were used.

次表はA〜Kの種類のセパレータの繊維内容とプロピレ
ン以外のα−オレフィン含有量と、不織布を構成する繊
維の平均繊維径、短絡時における電池表面温度及び短絡
に伴う電池内容物噴出割合(各1000個当り)をそれぞれ
示す。
The following table shows the fiber contents of the separators of types A to K, the α-olefin content other than propylene, the average fiber diameter of the fibers constituting the nonwoven fabric, the battery surface temperature at the time of a short circuit, and the battery content ejection ratio due to the short circuit ( Each 1000 pieces) is shown.

表の結果から明らかなように、A及びHで示したプロピ
レン単独重合体の融点は160℃であるのに対し、プロピ
レンとエチレンのランダム共重合体、例えば、エチレン
含有量3.6wt%のそれは140℃と低く、エチレン含有量に
より融点は変化するが、それでもプロピレン単独重合体
のそれよりも低い温度である。
As is clear from the results in the table, the melting points of the propylene homopolymers indicated by A and H are 160 ° C., whereas the random copolymers of propylene and ethylene, for example, those having an ethylene content of 3.6 wt% are 140 ° C. It is as low as ℃, and the melting point changes depending on the ethylene content, but it is still lower than that of the propylene homopolymer.

又、I,Jのポリプロピレンとポリエチレンとの混合組成
物からなる不織布の実質的な微孔閉塞温度は、プロピレ
ン−エチレン共重合体よりも若干(5〜6℃)高まる
が、それでもプロピレン単独重合体樹脂のそれよりは低
融点である。
Further, although the non-woven fabric composed of the mixed composition of polypropylene and polyethylene of I and J has a substantial micropore blocking temperature slightly higher (5 to 6 ° C.) than the propylene-ethylene copolymer, the propylene homopolymer is nonetheless. It has a lower melting point than that of resin.

上記以外にα−オレフィンとしてブテン−1を使用し、
プロピレンとの共重合体樹脂からなる不織布についても
検討したところ、ほぼ同様の結果が得られた。
In addition to the above, butene-1 is used as an α-olefin,
When a non-woven fabric made of a copolymer resin with propylene was also examined, almost the same results were obtained.

第2図はA〜Kの各セパレータを備えたリチウム電池を
20℃において、負荷抵抗60Ωで放電した時の放電特性を
示す。
FIG. 2 shows a lithium battery equipped with each of A to K separators.
The discharge characteristics when discharged with a load resistance of 60Ω at 20 ° C are shown.

第3図は前記の各電池を85℃の高温に7日保存した後、
負荷抵抗60Ωで放電した時の放電特性を示す。両図から
明らかな通り、従来のHのセパレータを用いた電池に比
べ、A〜G及びI〜Kのセパレータを用いた電池は電圧
特性、保存特性面で優れている。
Fig. 3 shows that each of the above batteries was stored at a high temperature of 85 ° C for 7 days.
The following shows the discharge characteristics when discharged with a load resistance of 60Ω. As is clear from both figures, the batteries using the A to G and I to K separators are superior in voltage characteristics and storage characteristics to the batteries using the conventional H separator.

なお、表中のHを除く不織布は、プロピレン単独重合
体、プロピレン−エチレンランダム共重合体、プロピレ
ン−ブテン−1共重合体及びポリプロピレンとポリエチ
レンとの混合物よりなる溶融組成物を溶融紡糸し、これ
を高速の気体によって微細な繊維として移動している捕
集板上に吹きつけて不織布を製造する、いわゆるメルト
ブロー法によって平均繊維1.5μ、坪量20g/m2、厚さ60
μmの不織布としたものである。
The non-woven fabrics except H in the table were melt-spun of a melt composition composed of a propylene homopolymer, a propylene-ethylene random copolymer, a propylene-butene-1 copolymer and a mixture of polypropylene and polyethylene. Is blown as fine fibers by a high-speed gas onto a collection plate to produce a non-woven fabric, the so-called melt-blowing method produces an average fiber of 1.5 μ, basis weight of 20 g / m 2 , and thickness of 60.
This is a non-woven fabric of μm.

従来品Hの平均繊維径のみを1.5μmに変更したエチレ
ン含有量なしのセパレータAを使用した電池において
は、電池表面温度は下がる反面、電池内容物噴出割合は
1.0%となり、従来品Hよりは良好であるが、本発明品
のエチレンの含有ポリプロピレン系樹脂繊維の不織布か
らなるセパレータを使用するものに比べ、悪い傾向を示
した。又エチレン含有ポリプロピレン系樹脂の繊維でも
エチレン含有量が0.5wt%、5.5wt%、6.wt%の場合B,F,
Gでは内容物の噴出があり、電池安全面からは好ましく
なかった。
In the battery using the separator A having no ethylene content in which only the average fiber diameter of the conventional product H is changed to 1.5 μm, the battery surface temperature is lowered, but the battery content ejection ratio is
The ratio was 1.0%, which was better than the conventional product H, but showed a bad tendency as compared with the product using the separator made of the nonwoven fabric of the polypropylene resin fiber containing ethylene of the present invention. Fibers made of ethylene-containing polypropylene resin also have B, F, and B when the ethylene content is 0.5 wt%, 5.5 wt%, and 6. wt%.
In G, the contents were gushed out, which was not preferable from the viewpoint of battery safety.

エチレンの好ましい含有量は、表及び図の結果から1.0
〜5.0wt%である。
From the results in the table and figure, the preferable content of ethylene is 1.0
~ 5.0 wt%.

又、不織布を構成する繊維の平均繊維径は1.0μmとし
ても、1.5μmとほぼ同様な結果が得られた。
Also, even if the average fiber diameter of the fibers forming the nonwoven fabric was 1.0 μm, the same result as 1.5 μm was obtained.

発明の効果 以上のように、本発明によるセパレータ、つまりエチレ
ン等のプロピレン以外のα−オレフィン成分を1〜5wt
%含有するポリプロピレン系樹脂繊維から構成される不
織布は、電池の安全性、及び放電特性等において勝れる
ものである。
Effects of the Invention As described above, the separator according to the present invention, that is, 1 to 5 wt% of the α-olefin component other than propylene such as ethylene.
The non-woven fabric composed of the polypropylene resin fiber contained in 10% is excellent in battery safety, discharge characteristics and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による有機電解質電池の断面
略図、第2図は保存前の各種セパレータを備えた電池の
放電特性を示す図、第3図は85℃に保存した時の各種セ
パレータを備えた電池の放電特性を示す図である。 1……正極合剤、2……負極、3……セパレータ、4…
…電池ケース、5……絶縁板、6……樹脂封止板、7…
…リベット端子、8,9……集電体。
FIG. 1 is a schematic cross-sectional view of an organic electrolyte battery according to an embodiment of the present invention, FIG. 2 is a diagram showing discharge characteristics of a battery including various separators before storage, and FIG. 3 is various types when stored at 85 ° C. It is a figure which shows the discharge characteristic of the battery provided with the separator. 1 ... Positive electrode mixture, 2 ... Negative electrode, 3 ... Separator, 4 ...
… Battery case, 5… Insulation plate, 6… Resin sealing plate, 7…
… Rivet terminals, 8,9 …… Current collectors.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 豊次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鈴木 真 神奈川県横浜市磯子区田中1−15―15 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toyoji Sugimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Makoto Suzuki 1-15-15, Tanaka, Isogo-ku, Yokohama

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】フッ化炭素、二酸化マンガン又は他の金属
酸化物を活物質とした正極と、リチウム等の活性軽金属
を活物質とした負極と、この正負極間に介在したセパレ
ータと、有機電解質とからなる電池であって、セパレー
タがプロピレン以外のα−オレフィン成分を含有するポ
リプロピレン系樹脂よりなり平均繊維径が1.5μm以下
の繊維の不織布からなることを特徴とした有機電解質電
池。
1. A positive electrode using fluorocarbon, manganese dioxide or another metal oxide as an active material, a negative electrode using an active light metal such as lithium as an active material, a separator interposed between the positive and negative electrodes, and an organic electrolyte. Wherein the separator is made of a polypropylene resin containing an α-olefin component other than propylene, and is made of a nonwoven fabric of fibers having an average fiber diameter of 1.5 μm or less.
【請求項2】プロピレン以外のα−オレフィン成分がエ
チレンである特許請求の範囲第1項記載の有機電解質電
池。
2. The organic electrolyte battery according to claim 1, wherein the α-olefin component other than propylene is ethylene.
【請求項3】α−オレフィン成分としてのエチレンの含
有量が1〜5重量%である特許請求の範囲第1項又は第
2項記載の有機電解質電池。
3. The organic electrolyte battery according to claim 1 or 2, wherein the content of ethylene as an α-olefin component is 1 to 5% by weight.
JP61182223A 1986-08-01 1986-08-01 Organic electrolyte battery Expired - Lifetime JPH06101322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182223A JPH06101322B2 (en) 1986-08-01 1986-08-01 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182223A JPH06101322B2 (en) 1986-08-01 1986-08-01 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6337560A JPS6337560A (en) 1988-02-18
JPH06101322B2 true JPH06101322B2 (en) 1994-12-12

Family

ID=16114492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182223A Expired - Lifetime JPH06101322B2 (en) 1986-08-01 1986-08-01 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH06101322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750601B2 (en) * 1987-06-10 1995-05-31 三洋電機株式会社 Non-aqueous electrolyte battery
US6511774B1 (en) * 1997-01-16 2003-01-28 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries
KR100563032B1 (en) * 1999-04-16 2006-03-22 삼성에스디아이 주식회사 Lithium ion polymer battery
JP2002170540A (en) * 2000-11-30 2002-06-14 Tonen Tapyrus Co Ltd Separator
KR20160111547A (en) 2009-03-09 2016-09-26 아사히 가세이 이-매터리얼즈 가부시키가이샤 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device

Also Published As

Publication number Publication date
JPS6337560A (en) 1988-02-18

Similar Documents

Publication Publication Date Title
JP5405568B2 (en) Separator provided with porous coating layer and electrochemical device provided with the same
EP1251573B1 (en) Non-aqueous electrolyte secondary cell
US7981541B2 (en) Nonaqueous electrolyte secondary battery
US9954211B2 (en) Separator, method for producing the same and electrochemical device including the same
TW531916B (en) Lithium ion secondary cell, separator, cell pack, and charging method
JP5384631B2 (en) Separator provided with porous coating layer, method for producing the same, and electrochemical device provided with the same
US20160276652A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2014082216A (en) Organic/inorganic composite porous membrane
KR101009551B1 (en) Electrode assembly and secondary battery using the same
JP3570768B2 (en) Stacked organic electrolyte battery
JPH06101322B2 (en) Organic electrolyte battery
JP4804828B2 (en) Battery separator and lithium ion battery using the same
JP4484191B2 (en) Battery separator and manufacturing method thereof
JPH1055794A (en) Porous film, battery separator, and battery
JP2671387B2 (en) Cylindrical lithium secondary battery
JP3794283B2 (en) Non-aqueous electrolyte battery
JP5016754B2 (en) Battery separator, method for producing the same, and battery using the same
JPH0620673A (en) Separator for battery
JP2001052676A (en) Lithium ion conductor for nonaqueous battery and noaqueous battery
JPH1121371A (en) Porous film and lithium ion secondary battery prepared by using the same
JP3722823B2 (en) Stacked organic electrolyte battery
JP3722824B2 (en) Stacked organic electrolyte battery
JP2002343429A (en) Nonaqueous electrolyte secondary battery
JPH05159766A (en) Nonaqueous electrolyte secondary battery
JPH117935A (en) Separator for nonaqueous electrolyte battery