[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06100560B2 - Gas detector - Google Patents

Gas detector

Info

Publication number
JPH06100560B2
JPH06100560B2 JP6661886A JP6661886A JPH06100560B2 JP H06100560 B2 JPH06100560 B2 JP H06100560B2 JP 6661886 A JP6661886 A JP 6661886A JP 6661886 A JP6661886 A JP 6661886A JP H06100560 B2 JPH06100560 B2 JP H06100560B2
Authority
JP
Japan
Prior art keywords
output
gas
sensor
carbon monoxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6661886A
Other languages
Japanese (ja)
Other versions
JPS62223662A (en
Inventor
繁憲 岡村
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6661886A priority Critical patent/JPH06100560B2/en
Publication of JPS62223662A publication Critical patent/JPS62223662A/en
Publication of JPH06100560B2 publication Critical patent/JPH06100560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、ガス敏感性金属酸化物半導体を用いたガス
検出装置の改良に関し、特に、半導体の温度を高温域と
低温域とに周期的に変化させるガス検出装置に関する。
この発明は更に詳細には、1つのガスセンサでメタンや
イソブタン等の可燃性ガスと、一酸化炭素とを同時に検
出するガス検出装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to an improvement in a gas detection device using a gas-sensitive metal oxide semiconductor, and in particular, the semiconductor temperature is periodically changed to a high temperature region and a low temperature region. The present invention relates to a gas detection device that changes.
More specifically, the present invention relates to a gas detection device that simultaneously detects combustible gases such as methane and isobutane and carbon monoxide with one gas sensor.

[従来技術] 特公昭53−43,320号は、SnO2等の金属酸化物半導体を用
いたガスセンサを、高温域と低温域とに交互に加熱し、
低温域の出力から一酸化炭素を選択的に検出する装置を
開示している。発明者は、この装置の高温域での出力を
利用し、メタン等の可燃性ガスを、一酸化炭素と同時に
検出することを検討した。
[Prior Art] JP-B-53-43,320 discloses that a gas sensor using a metal oxide semiconductor such as SnO 2 is heated alternately in a high temperature region and a low temperature region,
An apparatus for selectively detecting carbon monoxide from an output in a low temperature range is disclosed. The inventor examined using the output of this device in a high temperature range to detect a combustible gas such as methane at the same time as carbon monoxide.

ところで可燃性ガスに付いては、検出のデッドタイムへ
の制限が有る。例えば都市ガス用ガス漏れ警報器の自主
検定規程は、1000〜12,500ppmのメタンに対し警報を発
すること、及び12,500ppmのメタンに対し60秒以内に警
報を発することを規定している。一方COの人体への影響
は緩慢で、例えば100〜400ppm程度のCOを5分以内に検
出すればよい。しかしながらセンサの温度を周期的に変
化させる場合、加熱周期が検出速度の律速となり、検出
を速やかに行うには、周期を短縮する必要が有る。ここ
で加熱周期を短縮すると、一酸化炭素と水素との相対感
度が低下し、水素による誤報が生じる。そして通常生じ
得る水素の濃度は1000ppm以下である。即ち一酸化炭素
の検出に対する要請は、100ppm程度の一酸化炭素を1000
ppm程度の水素と区別して検出することに有る。
By the way, regarding combustible gas, there is a limit to the dead time of detection. For example, the voluntary verification rules for gas leak alarms for city gas stipulate that an alarm is issued for methane of 1000 to 12,500 ppm and an alarm is issued for methane of 12,500 ppm within 60 seconds. On the other hand, the effect of CO on the human body is slow, and for example, CO of about 100 to 400 ppm may be detected within 5 minutes. However, when the temperature of the sensor is changed cyclically, the heating cycle is the rate-determining rate of the detection speed, and it is necessary to shorten the cycle in order to perform detection quickly. Here, if the heating cycle is shortened, the relative sensitivity between carbon monoxide and hydrogen is lowered, and a false alarm due to hydrogen occurs. And the concentration of hydrogen that can usually be generated is 1000 ppm or less. That is, the request for the detection of carbon monoxide is about 100 ppm of carbon monoxide.
It is to be distinguished from hydrogen of about ppm.

[発明の課題] この発明の課題は、 (1)1つのガスセンサで、メタン、イソブタン等の可
燃性ガスと、一酸化炭素とを検出すること、 (2)検出周期を短縮すること、 (3)一酸化炭素を水素から選択的に検出することに有
る。
[Problems to be Solved by the Invention] An object of the present invention is to (1) detect combustible gases such as methane and isobutane and carbon monoxide with one gas sensor; (2) shorten the detection cycle; ) To selectively detect carbon monoxide from hydrogen.

[発明の構成] この発明のガス検出装置では、ガスにより抵抗値が変化
する金属酸化物半導体を用いたガスセンサの加熱温度
を、高温域と低温域とに交互に周期的に変化させ、高温
域におけるガスセンサの出力から可燃性ガスを検出す
る。次に低温域でのセンサの出力から、一酸化炭素を予
備的に検出し、その結果によりセンサ温度を高温域と低
温域との中間の温度に変更する。そして低温域でのガス
センサの出力と中間の温度での出力との差から、一酸化
炭素を選択的に検出する。
[Configuration of the Invention] In the gas detection device of the present invention, the heating temperature of the gas sensor using a metal oxide semiconductor whose resistance value changes depending on the gas is periodically changed alternately to a high temperature region and a low temperature region, and the high temperature region is changed. Combustible gas is detected from the output of the gas sensor in. Next, carbon monoxide is preliminarily detected from the output of the sensor in the low temperature region, and the sensor temperature is changed to an intermediate temperature between the high temperature region and the low temperature region based on the result. Then, carbon monoxide is selectively detected from the difference between the output of the gas sensor in the low temperature range and the output of the intermediate temperature.

高温域の出力は主としてメタン,イソブタン,水素等の
可燃性ガス濃度を表し、中間温度の出力は主として水素
濃度を表し、低温域の出力は主として水素と一酸化炭素
の濃度を表す。高温域の出力からメタンやイソブタンを
検出する場合元々水素による誤報は少なく、問題は一酸
化炭素と水素との識別である。そして中間温度のガスセ
ンサ出力は主として水素濃度を表し、低温域のガスセン
サ出力から中間温度のガスセンサ出力を引算するように
補償すれば、一酸化炭素を選択的に検出できる。なおこ
の明細書では、一酸化炭素は可燃性ガスには含まれない
ものとし、水素は可燃性ガスに含めて扱う。これは一酸
化炭素は毒性の強いガスで、他の可燃性ガスと区別して
低濃度での検出が必要だからである。
The output in the high temperature region mainly represents the concentration of combustible gases such as methane, isobutane, hydrogen, etc., the output at the intermediate temperature mainly represents the hydrogen concentration, and the output in the low temperature region mainly represents the concentrations of hydrogen and carbon monoxide. When detecting methane or isobutane from the output in the high temperature range, there are few false alarms due to hydrogen originally, and the problem is the distinction between carbon monoxide and hydrogen. The output of the intermediate temperature gas sensor mainly represents the hydrogen concentration, and carbon monoxide can be selectively detected by compensating so as to subtract the intermediate temperature gas sensor output from the low temperature region gas sensor output. In this specification, carbon monoxide is not included in combustible gas, and hydrogen is included in combustible gas. This is because carbon monoxide is a highly toxic gas, and it is necessary to detect carbon monoxide at a low concentration in distinction from other combustible gases.

[実施例] 以下、メタンとCOとを検出対象として実施例を説明する
が、用いるガスセンサに付いては既に種々のものが知ら
れており、装置の各部分に付いても公知技術の範囲内に
おいて自由に変更することが出来る。例えばガスセンサ
には、金属酸化物半導体中に単一のヒータ兼用電極を埋
設し、この電極の両端間の抵抗変化からガスを検出する
ものが有る。この場合、気体の吸着による半導体の抵抗
変化は、ヒータ兼用電極の並列抵抗の変化として作用す
る。またこの場合、気体の吸着による半導体の熱伝導度
の変化は、センサの温度変化をもたらし、ヒータ兼用電
極の抵抗値を変化させる。さらにサーミスタにより、ガ
スセンサの周囲温度依存性を補償しても良い。またガス
センサとほぼ同等の温度依存性を有する温度補償素子を
設け、センサと直列にブリッジ回路に組み込んでも良
い。
[Examples] Examples will be described below with methane and CO as detection targets. However, various kinds of gas sensors are already known, and each part of the apparatus is within the range of known technology. You can change it freely in. For example, there is a gas sensor in which a single electrode also serving as a heater is embedded in a metal oxide semiconductor, and gas is detected from a change in resistance between both ends of this electrode. In this case, the resistance change of the semiconductor due to the adsorption of gas acts as a change in the parallel resistance of the heater / electrode. Further, in this case, the change in the thermal conductivity of the semiconductor due to the adsorption of the gas brings about a change in the temperature of the sensor, which changes the resistance value of the heater / electrode. Further, the thermistor may compensate the ambient temperature dependency of the gas sensor. Further, a temperature compensating element having a temperature dependency almost equal to that of the gas sensor may be provided and incorporated in the bridge circuit in series with the sensor.

「実施例の構成」 図において、(2)はガスセンサ、(4)、(6)はヒ
ータ兼用の電極で、ここでは金属酸化物半導体としてSn
O2に少量のPd触媒を添加したものを用いる。センサの温
度は高温域の定常値で400℃、低温域の定常値で80℃、
中間温度の定常値で250℃である。なお低温域での温度
は室温としても良い。さらにエタノール等の有機溶剤に
よる誤報が問題となる場合、活性炭等のフィルターを設
けても良い。もち勿論半導体は、ZnOやIn2O3等の、他の
半導体に代えても良い。
[Structure of Example] In the figure, (2) is a gas sensor, (4) and (6) are electrodes that also serve as heaters, and here, Sn is used as a metal oxide semiconductor.
O 2 with a small amount of Pd catalyst added is used. The temperature of the sensor is 400 ℃ in the high temperature range and 80 ℃ in the low temperature range.
The steady-state value at the intermediate temperature is 250 ° C. The temperature in the low temperature region may be room temperature. Further, when false alarm due to an organic solvent such as ethanol becomes a problem, a filter such as activated carbon may be provided. Of course, the semiconductor may be replaced with another semiconductor such as ZnO or In 2 O 3 .

(8)は電源で、その出力(+Vcc)を装置全体の電源
とし、(10)は例えば90秒周期で動作するタイマで、最
初の30秒間はハイ信号(H)を、次の30秒間はロウ信号
(L)を発し、最後の30秒間はM信号(M)を発する。
タイマ(10)は、ハイ信号(H)の終了直前に高温域で
のサンプリング信号(Sh)を、ロウ信号(L)の終了直
前にサンプリング信号(Sl)を発し、M信号(M)の期
間内、好ましくはその終了時付近にサンプリング信号
(Sm)を発する。なお各サンプリング信号(Sh)、(S
l)、(Sm)の発生時には、信号(H)、(L)、
(M)はオフさせてある。また信号(Sl)の発生直後に
はリセット信号(Sl′)を発し、特別の条件がない限り
タイマ(10)は信号(M)の期間を経由せず、信号
(H)へと戻る。
(8) is a power supply, and its output (+ Vcc) is the power supply for the entire device. (10) is, for example, a timer that operates in a 90-second cycle. It outputs a high signal (H) for the first 30 seconds and a second 30 seconds. A low signal (L) is issued, and an M signal (M) is issued for the last 30 seconds.
The timer (10) issues a sampling signal (Sh) in the high temperature range immediately before the end of the high signal (H) and a sampling signal (Sl) immediately before the end of the low signal (L), and the period of the M signal (M) Of these, a sampling signal (Sm) is emitted, preferably near the end of the sampling. Each sampling signal (Sh), (S
l) and (Sm) are generated, signals (H), (L),
(M) is turned off. The reset signal (Sl ') is issued immediately after the signal (Sl) is generated, and the timer (10) returns to the signal (H) without passing through the period of the signal (M) unless there is a special condition.

(12)は3値電源からなるヒータ電源で、センサ(2)
を高温域、低温域、およびその中間温度の3つの温度に
加熱するためのものである。なお低温域におけるヒータ
電源(12)の出力は0としても良い。
(12) is a heater power supply consisting of a three-value power supply, and the sensor (2)
Is for heating to three temperatures of a high temperature range, a low temperature range, and an intermediate temperature thereof. The output of the heater power supply (12) in the low temperature range may be zero.

(14)、(16)は2つのヒータ(4)、(6)を共に加
熱するためのダイオード、(18),(19)は検出電圧
(Vcc)をセンサ(2)に加えるためのアナログスイッ
チで、スイッチ(18)はノーマルオープン、スイッチ
(19)はノーマルクローズであり、オア回路(20)を介
し、信号(Sh)、(Sl)、(Sm)により動作する。(2
2)はアナログスイッチで、後述の温度変更信号(F)
がない場合に、信号(Sl′)によりタイマ(10)をリセ
ットするためのものである。
(14) and (16) are diodes for heating the two heaters (4) and (6) together, and (18) and (19) are analog switches for applying the detection voltage (Vcc) to the sensor (2). Then, the switch (18) is normally open and the switch (19) is normally closed, and it operates by the signals (Sh), (Sl), (Sm) through the OR circuit (20). (2
2) is an analog switch, which is a temperature change signal (F) described later.
When there is no signal, it is for resetting the timer (10) by the signal (Sl ').

(R1)は負荷抵抗(ここでは10KΩ)で、その印加電圧
(Vrl)をセンサ出力とする。センサ出力としては他に
も、センサの電気伝導度、あるいは電圧(Vrl)や電気
伝導度を0.5〜1.4乗、より好ましくは0.6〜1.2乗程度べ
き乗したもの、等を用いることも出来る。しかし負荷抵
抗への印加電圧を用いるのが最も簡易である。
(R 1 ) is a load resistance (10KΩ in this case), and its applied voltage (Vrl) is the sensor output. Besides, as the sensor output, the electric conductivity of the sensor, or the voltage (Vrl) or the electric conductivity to the power of 0.5 to 1.4, more preferably to the power of about 0.6 to 1.2 can be used. However, it is easiest to use the applied voltage to the load resistance.

(24)は比較回路、(26)は信号(Sh)により動作する
D.F.F、(28)はメタンの報知用LEDで、これらにより可
燃性ガス検出手段を構成する。
(24) operates by comparison circuit, (26) operates by signal (Sh)
DFF and (28) are methane notification LEDs, which constitute combustible gas detection means.

(30)は比較回路、(32)は信号(Sl)により動作する
D.F.Fで、これらにより予備検出手段と、温度変更手段
とを兼用する。またD.F.F(32)の出力を、温度変更信
号(F)として用いる。
(30) operates by comparison circuit, (32) operates by signal (Sl)
The DFF serves as both the preliminary detecting means and the temperature changing means. The output of DFF (32) is used as the temperature change signal (F).

(34)はA/D・D/Aコンバータで、信号(Sl)時のセンサ
出力を記録する。なおコンバータ(34)は任意の記録要
素に変更できる。(36)は抵抗(R2)で定まるゲイン
(ここでは0.6)を持った増幅器、(38)はコンバータ
(34)と増幅器(36)との出力の差を得るための増幅
器、(40)はD.F.Fで信号(Sm)により動作する。また
(50)はCO報知用のLEDで、これらにより一酸化炭素検
出手段を構成する。
(34) is an A / D / D / A converter, which records the sensor output during signal (Sl). The converter (34) can be changed to any recording element. (36) is an amplifier having a gain (here, 0.6) determined by the resistance (R 2 ), (38) is an amplifier for obtaining the output difference between the converter (34) and the amplifier (36), and (40) is DFF operates with signal (Sm). Further, (50) is a CO notification LED, which constitutes a carbon monoxide detection means.

(44)はオア回路、(46)がブザーで、D.F.F(26)の
メタン検出信号や、D.F.F(40)の一酸化炭素検出信号
により動作する。
(44) is an OR circuit, and (46) is a buzzer, which operates by the methane detection signal of DFF (26) and the carbon monoxide detection signal of DFF (40).

「センサの特性」 第3図に、400℃でのセンサ(2)の特性を示す。図は8
0℃で定常状態に有るセンサを400℃に加熱した際の、一
酸化炭素、メタン、水素、空気への応答を示し、周囲温
度は20℃、湿度は60%である。なおセンサ(2)には活
性炭フィルターを装着し、エタノールの影響を除いて有
る。メタンへの応答は20秒以内に完了し、相対感度も高
い。
"Characteristics of the sensor" Fig. 3 shows the characteristics of the sensor (2) at 400 ° C. The illustration shows 8
It shows the response to carbon monoxide, methane, hydrogen, and air when a sensor in a steady state at 0 ℃ is heated to 400 ℃. The ambient temperature is 20 ℃ and the humidity is 60%. The sensor (2) was equipped with an activated carbon filter to eliminate the influence of ethanol. The response to methane is completed within 20 seconds and the relative sensitivity is high.

第4図に、400℃の定常状態から80℃へセンサ(2)を
冷却した際の特性を示す。なお測定条件は同様である。
Fig. 4 shows the characteristics when the sensor (2) was cooled from a steady state of 400 ° C to 80 ° C. The measurement conditions are the same.

低温での一酸化炭素や水素に対する応答は緩慢で、30秒
程度の時間では出力は定常値に達せず、一酸化炭素と水
素とを区別出来ない。また出力は、(CO+0.1H2)の0.9
〜0.7乗に比例する。
The response to carbon monoxide and hydrogen at low temperature is slow, and the output does not reach a steady value in about 30 seconds, and carbon monoxide and hydrogen cannot be distinguished. The output is 0.9 of (CO + 0.1H 2 ).
~ Proportional to 0.7.

第5図に、80℃から250℃へ加熱温度を変更した際の特
性を示す。この温度での出力は水素に選択的で、応答も
速く、出力は水素濃度の約0.8乗に比例する。
Fig. 5 shows the characteristics when the heating temperature is changed from 80 ° C to 250 ° C. The output at this temperature is selective to hydrogen and has a fast response, and the output is proportional to the hydrogen power of about 0.8.

「実施例の動作」 第2図により、装置の動作を説明する。センサ(2)は
ハイ信号(H)により30秒間高温に加熱され、ロウ信号
(L)により30秒間低温に保持され、ガスが存在しない
場合、リセット信号(Sl′)によりリセットされて高温
加熱に戻る。
"Operation of Embodiment" The operation of the apparatus will be described with reference to FIG. The sensor (2) is heated to a high temperature for 30 seconds by the high signal (H) and kept at a low temperature for 30 seconds by the low signal (L). When the gas is not present, it is reset by the reset signal (Sl ′) and heated to a high temperature. Return.

ハイ信号(H)の終了時付近には、信号(Sh)により高
温側出力を取り出し、メタンの検出を行なう。
Near the end of the high signal (H), the high temperature side output is taken out by the signal (Sh) and methane is detected.

次にロウ信号(L)の終了時付近で、信号(Sl)により
低温側出力を取り出し、比較回路(30)の基準電位と比
較し、一酸化炭素の予備的検出を行う。ここでセンサ出
力が大きい場合、信号(F)によりタイマ(10)のリセ
ットを阻止し、センサ(2)を中間温度に加熱し、水素
濃度を検出する。そしてコンバータ(34)に記録した低
温域の出力と、増幅器(36)の中間温度での出力との差
を、 V1−0.6Vm として、増幅器(38)で求める。ここにVlは低温域での
出力、Vmは中温域での出力である。また0.6は水素への
補償係数で、第4図、第5図からの理論値は0.7である
が、ここでは0.6とした。このようにして水素の影響を
補償し、一酸化炭素を選択的に検出する。もち論、補償
係数はセンサの特性に応じ、自由に変更できる。
Next, near the end of the row signal (L), the low temperature side output is taken out by the signal (Sl) and compared with the reference potential of the comparison circuit (30) to perform preliminary detection of carbon monoxide. If the sensor output is large, the resetting of the timer (10) is blocked by the signal (F), the sensor (2) is heated to an intermediate temperature, and the hydrogen concentration is detected. Then, the difference between the output in the low temperature range recorded in the converter (34) and the output at the intermediate temperature of the amplifier (36) is determined by the amplifier (38) as V1−0.6Vm. Here, Vl is the output in the low temperature range and Vm is the output in the medium temperature range. Further, 0.6 is a compensation coefficient for hydrogen, and the theoretical value from FIGS. 4 and 5 is 0.7, but here it is set to 0.6. In this way, the effect of hydrogen is compensated and carbon monoxide is selectively detected. The theory and the compensation coefficient can be freely changed according to the characteristics of the sensor.

ところで2つの出力を用いた場合の補償に付いては、種
々のものが公知であり、差に限るものではない。ここで
差を用いたのは、回路構成が最も簡単であること、及び
比を用いると水素と一酸化炭素との共存時に誤差が生じ
ることとによる。即ち低温域の出力と中温域の出力との
比は、同じCO濃度でも、COのみの場合に比べ、COとH2
の共存時の方が小さい。また実施例ではセンサ出力とし
て、負荷抵抗への印加電圧を用いたが、これはセンサの
電気伝導度等に代えてもよい。またセンサ出力には、こ
れらの0.5〜1.4乗等のべき乗、より好ましくは0.6〜1.2
乗等を用いても良い。なお第4図、第5図に関して述べ
たように、センサ出力はガス濃度の0.8乗等に比例し、
べき乗を用いるとガス濃度に比例した出力を用いて補償
を行うことが出来る。しかし、べき乗を行わない方が、
簡単な回路を用いることができ、かつ高濃度の水素への
補償を制限し、検出を安全側にシフトさせることがで
き、好ましい。
By the way, various compensation methods using two outputs are known, and the compensation method is not limited to the difference. The difference is used here because the circuit configuration is the simplest, and when the ratio is used, an error occurs when hydrogen and carbon monoxide coexist. That is, the ratio between the output in the low temperature region and the output in the medium temperature region is smaller when CO and H 2 coexist than when only CO is used, even at the same CO concentration. Further, in the embodiment, the voltage applied to the load resistance is used as the sensor output, but this may be replaced by the electric conductivity of the sensor. In addition, the sensor output is a power such as 0.5 to 1.4, and more preferably 0.6 to 1.2.
You may use a square etc. As described with reference to FIGS. 4 and 5, the sensor output is proportional to the 0.8th power of the gas concentration,
When power is used, compensation can be performed using an output proportional to the gas concentration. However, if you do not use exponentiation,
A simple circuit can be used and the compensation for high concentrations of hydrogen can be limited and the detection can be shifted to the safe side, which is preferable.

この実施例では、中温域への温度変更をタイマ(10)の
リセットを利用して行ったが、補助タイマを用いる等の
他の手段でも実施し得る。また中温域への温度変更の条
件は、種々変更できる。さらに中温域での出力をコンバ
ータ(34)等に記録し、低温域での出力をアナログのま
ま用いても良い。比較回路(24)、(30)に付いても、
これらを単一のものとし、基準電位を切り替えるように
しても良い。また低温域、中温域、高温域の各温度や、
検出の周期等に付いては、センサの特性に応じ適宜に変
更できる。
In this embodiment, the temperature change to the medium temperature range is performed by using the reset of the timer (10), but it may be performed by other means such as using an auxiliary timer. The conditions for changing the temperature to the medium temperature range can be changed variously. Further, the output in the medium temperature range may be recorded in the converter (34) or the like, and the output in the low temperature range may be used as it is as an analog. Even if it is attached to the comparison circuits (24) and (30),
These may be single and the reference potential may be switched. In addition, each temperature of low temperature range, medium temperature range, high temperature range,
The detection cycle and the like can be appropriately changed according to the characteristics of the sensor.

[発明の効果] この発明では、メタン、イソブタン等の可燃性ガスと、
一酸化炭素とを同時に検出できると共に、一酸化炭素へ
の選択性を損なうことなく、検出時間を短縮できる。
[Advantages of the Invention] In the present invention, a combustible gas such as methane or isobutane,
Carbon monoxide can be detected simultaneously, and the detection time can be shortened without impairing the selectivity to carbon monoxide.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例の回路図、第2図はその波形図、第3図
〜第5図は実施例に用いるガスセンサの特性図である。 図に於いて、 (2)ガスセンサ、(4)、(6)ヒータ兼用電極、
(8)電源、(10)タイマ、(12)ヒータ電源、(2
4)、(30)比較回路、(26)、(32)、(40)D.F.F、
(34)A/D・D/Aコンバータ、
FIG. 1 is a circuit diagram of the embodiment, FIG. 2 is a waveform diagram thereof, and FIGS. 3 to 5 are characteristic diagrams of a gas sensor used in the embodiment. In the figure, (2) gas sensor, (4), (6) electrode also serving as a heater,
(8) Power supply, (10) Timer, (12) Heater power supply, (2
4), (30) comparison circuit, (26), (32), (40) DFF,
(34) A / D / D / A converter,

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−103453(JP,A) 特開 昭61−110046(JP,A) 実開 昭56−7056(JP,U) 実開 昭53−138893(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-103453 (JP, A) JP-A-61-110046 (JP, A) Actual opening Sho-56-7056 (JP, U) Actual opening Sho-53- 138893 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガスにより抵抗値が変化する金属酸化物半
導体を用いたガスセンサの加熱温度を、高温域と低温域
とに交互に周期的に変化させるようにしたガス検出装置
において、 高温域におけるガスセンサの出力から可燃性ガスを検出
するための、可燃性ガス検出手段と、 低温域におけるガスセンサの出力から一酸化炭素を予備
的に検出するための予備検出手段と、 予備検出手段の出力により、ガスセンサの加熱温度を高
温域と低温域との中間の温度に変更するための温度変更
手段と、 低温域でのガスセンサの出力と中間の温度での出力との
差から、一酸化炭素に選択的な出力を得るための一酸化
炭素検出手段、 とを設けたことを特徴とするガス検出装置。
1. A gas detection device in which the heating temperature of a gas sensor using a metal oxide semiconductor, the resistance value of which changes depending on gas, is cyclically changed alternately between a high temperature region and a low temperature region. By detecting the flammable gas from the output of the gas sensor, the flammable gas detecting means, the preliminary detecting means for preliminarily detecting carbon monoxide from the output of the gas sensor in the low temperature range, and the output of the preliminary detecting means, Selective for carbon monoxide from the difference between the output of the gas sensor in the low temperature range and the output at the intermediate temperature, as well as the temperature changing means for changing the heating temperature of the gas sensor to an intermediate temperature between the high temperature range and the low temperature range. And a carbon monoxide detecting means for obtaining various outputs, and a gas detecting device.
JP6661886A 1986-03-25 1986-03-25 Gas detector Expired - Lifetime JPH06100560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6661886A JPH06100560B2 (en) 1986-03-25 1986-03-25 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6661886A JPH06100560B2 (en) 1986-03-25 1986-03-25 Gas detector

Publications (2)

Publication Number Publication Date
JPS62223662A JPS62223662A (en) 1987-10-01
JPH06100560B2 true JPH06100560B2 (en) 1994-12-12

Family

ID=13321060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6661886A Expired - Lifetime JPH06100560B2 (en) 1986-03-25 1986-03-25 Gas detector

Country Status (1)

Country Link
JP (1) JPH06100560B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755365B2 (en) * 2000-07-03 2011-08-24 エフアイエス株式会社 Gas detector
JP4585756B2 (en) * 2003-10-31 2010-11-24 富士電機システムズ株式会社 Semiconductor gas sensor and gas monitoring method using semiconductor gas sensor
AU2017311852B2 (en) * 2016-08-15 2022-08-25 Royal Melbourne Institute Of Technology Gas sensor capsule

Also Published As

Publication number Publication date
JPS62223662A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
US6888467B2 (en) Gas detection instrument and method for its operation
JPH0519100B2 (en)
KR870009228A (en) Measuring method of fragrance and apparatus
US5948965A (en) Solid state carbon monoxide sensor
US4992384A (en) Measuring apparatus and method of use for analyzing a gas mixture
JP3329624B2 (en) Gas alarm
US4455378A (en) Method of determining the content of an anesthetic gas in a selected location
JPH06100560B2 (en) Gas detector
JP2805048B2 (en) Gas detector
JP2002524734A (en) Semiconductor gas detection
US3886929A (en) Breath tester null memory system
Toda et al. NO-sensing properties of Au thin film
JPH0713601B2 (en) Gas detector
JP2517228B2 (en) Gas detector
JP3522257B2 (en) Gas detection method and device
EP0701123A1 (en) Formaldehyde vapour detector
JP2791476B2 (en) Gas detector
JP4248126B2 (en) Gas detection method and apparatus
JPH11304746A (en) Gas detecting device
JPH0325266Y2 (en)
JPS6146455Y2 (en)
JP3256827B2 (en) Incomplete combustion detection sensor and incomplete combustion detection device
JPH0330955Y2 (en)
JPH0532760Y2 (en)
JPH0648833Y2 (en) Detectors for organic solvent vapors in the semiconductor industry

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term