JPH06108259A - Production of amorphous ni-co-b alloy film - Google Patents
Production of amorphous ni-co-b alloy filmInfo
- Publication number
- JPH06108259A JPH06108259A JP25042391A JP25042391A JPH06108259A JP H06108259 A JPH06108259 A JP H06108259A JP 25042391 A JP25042391 A JP 25042391A JP 25042391 A JP25042391 A JP 25042391A JP H06108259 A JPH06108259 A JP H06108259A
- Authority
- JP
- Japan
- Prior art keywords
- plating bath
- amorphous
- alloy film
- plating
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemically Coating (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、無電解メッキ法による
アモルファス合金膜の製造技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing an amorphous alloy film by an electroless plating method.
【0002】[0002]
【従来技術】無電解メッキ法は、非導電体に金属膜形成
が可能でつき廻り性が良く、非常に均一な被膜を得るこ
とができる。特にアモルファス合金膜は、(イ)耐食性
が極めて高い、(ロ)透磁率が高い、(ハ)耐摩耗性に
優れている、(ニ)電気抵抗が高い、(ホ)メッキ膜の
硬さ高い等の優れた点が多く、高性能、高信頼性が要求
される電子材料分野のニ−ズに適している。しかしその
反面、アモルファス合金膜は、準安定状態であるため熱
的に不安定で、熱の影響により結晶化を起こし(結晶化
温度はリンPやボロンBの濃度に比例して高くなる)、
優れた特性が失われるという難点がある。従ってアモル
ファス合金膜の熱的安定性に関する問題は重要で、アモ
ルファス合金膜の応用、実用化を考える際にも深い関連
を持つ。言い換えると従来のアモルファス合金膜よりも
熱的安定性に優れ、用途に応じた機能を付与することの
できるアモルファス合金膜の製造技術の開発が望まれて
いる現状にある。2. Description of the Related Art The electroless plating method can form a metal film on a non-conductive material, has good throwing power, and can obtain a very uniform coating film. In particular, the amorphous alloy film has (a) extremely high corrosion resistance, (b) high magnetic permeability, (c) excellent wear resistance, (d) high electrical resistance, and (e) high hardness of plating film. It is suitable for needs in the electronic material field where high performance and high reliability are required. However, on the other hand, the amorphous alloy film is thermally unstable because it is in a metastable state, and crystallization occurs due to the influence of heat (the crystallization temperature increases in proportion to the concentrations of phosphorus P and boron B).
The disadvantage is that the excellent characteristics are lost. Therefore, the problem regarding the thermal stability of the amorphous alloy film is important and has a deep relationship when considering the application and practical application of the amorphous alloy film. In other words, there is a demand for the development of a technique for producing an amorphous alloy film, which is superior in thermal stability to the conventional amorphous alloy film and can be provided with a function according to the application.
【0003】現在工業的に最も一般的に用いられている
無電解メッキ法によるアモルファス合金膜技術は、次亜
リン酸を還元剤とするカニゼンメッキ法で、これにより
作製されるアモルファスNi−P合金膜(P濃度8〜1
0wt%)は、コンピュ−タ磁気ディスクやドラム、コ
ンデンサ−、非磁性製品、航空機コンプレッサ−の羽等
先端技術分野を中心に幅広く利用されている。しかしな
がら、このNi−P合金膜は、比較的低温で結晶化を起
こすため(200C゜〜250C゜で結晶化)、軟磁性
薄膜や高抵抗薄膜体としての優れた特性が失われる難点
がある。また、被膜組成が二成分系であるため用途に応
じた最適な機能を付与することが困難である、Ni−P
合金の融点が890C゜と比較的低く耐熱性に問題があ
る。ハンダ付け性や耐変色性(耐酸化性)が低い、製作
面においても被膜形成温度が90゜C〜93゜Cと比較
的高い等幾多の問題点があり、応用面にも限界があっ
た。Amorphous alloy film technology by electroless plating, which is most commonly used in industry at present, is the Kanigen plating method using hypophosphorous acid as a reducing agent, which is an amorphous Ni-P alloy produced by this method. Membrane (P concentration 8-1
0 wt%) is widely used mainly in advanced technology fields such as computer magnetic disks, drums, condensers, non-magnetic products, and blades of aircraft compressors. However, since this Ni-P alloy film is crystallized at a relatively low temperature (crystallized at 200 ° C to 250 ° C), there is a problem that excellent characteristics as a soft magnetic thin film or a high resistance thin film are lost. In addition, since the coating composition is a two-component system, it is difficult to give an optimal function according to the application.
The melting point of the alloy is relatively low at 890 ° C and there is a problem in heat resistance. There are many problems such as low solderability and discoloration resistance (oxidation resistance), and relatively high film forming temperature of 90 ° C to 93 ° C on the manufacturing side, and there was a limit to the application side. .
【0004】ところで、メッキ膜のアモルファス化は、
メッキ膜が成長しているときにリンPやボロンBのよう
なメタロイド元素が結晶成長点に吸着、混入することに
よって結晶成長が阻止されることによる。従っていかに
熱的に安定なアモルファスのメッキ膜を作るかは、メッ
キ膜成長時にメタロイド原子をいかに多く吸着させるか
に係わっている。本発明者らは、これまに結晶化阻害元
素としてはリンPよりボロンBの方が効果が大きいこと
を知見している。即ち、Ni−P合金膜では被膜中のP
濃度が8%以上で、Ni−B合金膜では被膜中のB濃度
が4%以上でアモルファス状態となり、また結晶化につ
いてはPを8.9%含んだNi−P合金膜で200C
゜、Bを4.5%含んだNi−B合金膜で300C゜
で、メッキ膜をアモルファス化し、その特性を維持する
効果はPよりBの方が大きいことを確認している。しか
しNi−B合金膜については、これまで被膜中のB濃度
が1wt%のものが実用化されているが、これは熱処理
を行わないメッキしたままの状態で結晶性の合金膜であ
りアモルファス状態が得られない。B(水素化ホウ素ナ
トリウム)を結晶化阻害元素(還元剤)とした無電解メ
ッキは、メッキ浴の管理が困難なため(分解・不安定状
態)、研究例が殆どなく、実用化に至っては全くなされ
ていない現状にある。By the way, the amorphization of the plating film is
This is because the crystal growth is blocked by adsorbing and mixing metalloid elements such as phosphorus P and boron B at the crystal growth points while the plating film is growing. Therefore, how to form a thermally stable amorphous plating film depends on how many metalloid atoms are adsorbed during the growth of the plating film. The present inventors have found that boron B is more effective than phosphorus P as a crystallization inhibiting element. That is, in the Ni-P alloy film, P in the film is
When the concentration is 8% or more, the Ni-B alloy film is in an amorphous state when the B concentration in the coating is 4% or more, and regarding the crystallization, the Ni-P alloy film containing P of 8.9% is 200C.
It has been confirmed that B is larger than P in the effect of making the plating film amorphous and maintaining its characteristics at 300 ° C. with a Ni—B alloy film containing 4.5% of B and 4.5%. However, as for the Ni-B alloy film, one having a B concentration of 1 wt% in the coating film has been practically used so far, but this is a crystalline alloy film in the as-plated state without heat treatment and in an amorphous state. Can't get Since electroless plating using B (sodium borohydride) as a crystallization inhibiting element (reducing agent) is difficult to manage in the plating bath (decomposition / unstable state), there are few research examples, and it has not been put to practical use. It is in the present situation that has not been done at all.
【0005】[0005]
【発明が解決しようとする課題】本発明は、従来技術の
かかる実情と発明者らの知見に基づき、結晶化阻害元素
(還元剤)として高効率のボロンBに着目し、このBを
可及的に多く含ませ、また金属塩としてNi(ニッケ
ル)とCo(コバルト)の二成分即ち被膜組成をNi,
Co,Bの三成分系として、一つには熱安定性に優れ、
二つにはNi/Co比を任意に変えられ、機能性、応用
面での用途を拡大できるアモルファス合金膜を得る技術
(メッキ組成、還元剤の種類とその添加、メッキ条件
等)を製造方法として提供することが、その目的であ
る。The present invention focuses on highly efficient boron B as a crystallization-inhibiting element (reducing agent) based on the actual situation of the prior art and the findings of the inventors, and this B can be achieved. In a large amount, and as a metal salt, a binary composition of Ni (nickel) and Co (cobalt), that is, a coating composition,
As a ternary system of Co and B, one is excellent in thermal stability,
Secondly, the manufacturing method is a technology (plating composition, type of reducing agent and its addition, plating conditions, etc.) to obtain an amorphous alloy film that allows the Ni / Co ratio to be arbitrarily changed and expands the application in terms of functionality and application. The purpose is to provide as.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、無電解メッキ法によるアモルファス合金
膜の製造技術において、金属塩として任意比の塩化ニッ
ケルと塩化コバルト(Ni/Co)、還元剤として水素
化ホウ素ナトリウム溶液(ボロンB溶液)を加えてメッ
キ浴を調整する。その際、必要に応じて安定剤、pH調
整剤、緩衝剤、錯化剤、促進剤、改良剤等の補助成分を
添加してメッキ浴の安定性を増し、還元析出効率を良好
にする。そして前記水素化ホウ素ナトリウム溶液は、無
電解メッキが最適に行われる条件(pH、メッキ温度
等)で、上記メッキ浴中に少量ずつ添加することにより
メッキ浴の分解・不安定状態を回避し、またこのメッキ
浴中に安定剤として鉛塩を添加することにより安定性を
より増大させる。そして被メッキ物をそのメッキ浴に浸
漬する。すると主成分即ち塩化ニッケルと塩化コバルト
の金属イオンが被メッキ物上に析出し、高濃度のボロン
Bを含有する非晶質Ni−Co−B合金膜を形成する。In order to achieve the above object, the present invention provides a technique for producing an amorphous alloy film by an electroless plating method, wherein nickel chloride and cobalt chloride (Ni / Co) in arbitrary ratios as metal salts, A plating bath is adjusted by adding a sodium borohydride solution (boron B solution) as a reducing agent. At that time, if necessary, auxiliary components such as a stabilizer, a pH adjuster, a buffer, a complexing agent, an accelerator and an improving agent are added to increase the stability of the plating bath and improve the reduction precipitation efficiency. Then, the sodium borohydride solution is added to the plating bath little by little under the conditions (pH, plating temperature, etc.) under which electroless plating is optimally performed, thereby avoiding decomposition and instability of the plating bath, Further, the stability is further increased by adding a lead salt as a stabilizer to the plating bath. Then, the object to be plated is immersed in the plating bath. Then, metal ions of the main components, that is, nickel chloride and cobalt chloride, are deposited on the object to be plated to form an amorphous Ni-Co-B alloy film containing high concentration boron B.
【0007】[0007]
【実施例】以下、具体的な実施例について説明する。 (1)メッキ浴組成 主成分 :金属塩として 塩化ニッケル 0.02mol/L 塩化コバルト 0.03mol/L :還元剤として 水素化ホウ素ナトリウム(ボロンB) 0.05mol/L(毎分4×10‐2 mol) 補助成分:安定剤として 鉛塩 10mg/L :錯化剤として 酒石酸ナトリウム 0.4mol/L 上記主成分に上記補助成分を加えてメッキ浴を構成す
る。 (2)還元剤とその添加方式 水素化ホウ素ナトリウム(ボロンB)を還元剤としたメ
ッキ浴は、極めて不安定で、分解しやすいので、上記の
ように安定剤として鉛塩を添加し、さらに図1に示すよ
うな「水素化ホウ素ナトリウムの定量自動連続添加装
置」により毎分4×10‐2 molの少量ずつ添加する
ことにより、極めて安定状態で還元析出を促す。 (3)メッキ条件 メッキ温度 65゜C pH 12.0 (4)供試材(被メッキ物)の浸漬 上記(1)〜(3)で調整された無電解メッキ液に、あ
らかじめ塩化パラジウムによる活性化処理を行った10
×10×0.1mmの白金板をを被メッキ物として浸漬
する。還元析出。 (5)アモルファスNi−Co−B合金被膜の完成EXAMPLES Specific examples will be described below. (1) Plating bath composition Main component: As a metal salt Nickel chloride 0.02 mol / L Cobalt chloride 0.03 mol / L: As a reducing agent Sodium borohydride (boron B) 0.05 mol / L (4 × 10-min / min) 2 mol) Auxiliary component: Lead salt as stabilizer 10 mg / L: Sodium tartrate as complexing agent 0.4 mol / L The above auxiliary component is added to the above main component to form a plating bath. (2) Reducing agent and addition method Since a plating bath using sodium borohydride (boron B) as a reducing agent is extremely unstable and easily decomposed, a lead salt is added as a stabilizer as described above, and By adding a small amount of 4 × 10 −2 mol / min by “Automatic quantitative continuous addition device of sodium borohydride” as shown in FIG. 1, reduction precipitation is promoted in an extremely stable state. (3) Plating conditions Plating temperature 65 ° C pH 12.0 (4) Immersion of test material (object to be plated) Activated by palladium chloride in advance in the electroless plating solution prepared in (1) to (3) above. Was processed 10
A platinum plate of × 10 × 0.1 mm is immersed as an object to be plated. Reduction precipitation. (5) Completion of amorphous Ni-Co-B alloy coating
【0008】[0008]
【実施例によって完成した被膜特性】以上によって得ら
れた被膜の合金組成は、白金板に析出した被膜を硫酸
(1+1)に溶解後、原子吸光光度法によりNi,Co
を、メチレンブル−吸光光度法によりBの量を定量し
た。またその構造解析は、X線回折法と電子線回折のパ
タ−ンにより行った。その結果、合金組成は17Ni−
75Co−8B(wt%)で、その被膜がアモルファス
であることが図2のX線回折と電子線回折パタ−ンより
明かとなった。今、これを熱処理との関係でみる。熱処
理は、真空炉を用い2×10‐7 Torrの真空度で設
定温度まで昇温後(昇温速度8゜C/min)一時間保
持し行った。その結果、同図に示すX線回折パタ−ンよ
り、熱処理温度390゜C以下では非晶質状態を保持
し、400゜C以上の熱処理によりホウ化物の析出が認
められた。400゜C〜600゜Cの処理では、Co2
Bが析出し、Co2 B析出量は熱処理温度に比例し増加
したがX線回折パタ−ンのピ−ク位置、ピ−ク強度比は
ほぼ同一で、合金被膜の結晶構造に大きな相違は認めら
れなかった。また800゜C〜1000゜Cの処理では
Co2 BとCo3 Bの二つのX線回折パタ−ンが観察さ
れた。電子線回折結果では、熱処理まえと300゜Cで
熱処理した合金被膜は非晶質で、600゜Cの熱処理に
より多結晶構造となることを示している。この結果はX
線回折結果と一致している。[Characteristics of coatings completed by Examples] The alloy composition of the coatings obtained as described above was obtained by dissolving the coatings deposited on the platinum plate in sulfuric acid (1 + 1) and then using Ni, Co by atomic absorption spectrometry.
The amount of B was quantified by methylene bull-absorptiometry. The structural analysis was performed by the X-ray diffraction method and the electron diffraction pattern. As a result, the alloy composition was 17Ni-
It was revealed from the X-ray diffraction and electron diffraction patterns of FIG. 2 that the coating film was amorphous with 75Co-8B (wt%). Now, let's look at this in relation to heat treatment. The heat treatment was performed by using a vacuum furnace at a vacuum degree of 2 × 10 −7 Torr to raise the temperature to a set temperature (heating rate 8 ° C./min) and holding for 1 hour. As a result, from the X-ray diffraction pattern shown in the figure, it was confirmed that the amorphous state was maintained at a heat treatment temperature of 390 ° C. or lower, and the boride was precipitated by the heat treatment at 400 ° C. or higher. In the processing of 400 ° C ~ 600 ° C, Co2
Although B was deposited and the amount of Co2 B deposited increased in proportion to the heat treatment temperature, the peak position and peak intensity ratio of the X-ray diffraction pattern were almost the same, and a large difference was observed in the crystal structure of the alloy coating. I couldn't do it. Also, two X-ray diffraction patterns of Co2 B and Co3 B were observed in the treatment at 800 ° C to 1000 ° C. The electron beam diffraction results show that the alloy coating that has been heat-treated before the heat treatment at 300 ° C. is amorphous, and that the heat treatment at 600 ° C. results in a polycrystalline structure. This result is X
It agrees with the line diffraction result.
【0009】図3に示差熱分析結果が示される。一般的
には立ち上がり温度を結晶化温度とする場合が多く、こ
の分析結果からは、アモルファスNi−Co−B合金被
膜が熱の影響により結晶化する温度は416.1゜Cで
ある。The results of the differential thermal analysis are shown in FIG. In general, the rising temperature is often set as the crystallization temperature, and from this analysis result, the temperature at which the amorphous Ni—Co—B alloy coating film is crystallized by the influence of heat is 416.1 ° C.
【0010】上記結果により、本発明によるアモルファ
スNi−Co−B合金被膜は、従来のカニゼンメッキ法
によるアモルファスNi−P合金被膜(P濃度8〜10
wt%で結晶化温度200C゜〜250C゜)に比較し
て熱的に極めて安定であることが確認された。From the above results, the amorphous Ni-Co-B alloy coating film according to the present invention is an amorphous Ni-P alloy coating film (P concentration 8 to 10) obtained by the conventional Kanigen plating method.
It was confirmed that it is extremely thermally stable in comparison with a crystallization temperature of 200 ° C. to 250 ° C. at wt%.
【0011】被膜の表面観察には、走査型顕微鏡を用い
た。図4に被膜のSEM像が示される。これによると、
熱処理温度600゜Cまでは合金の析出状態に大差はな
く、800゜C及び1000゜Cで処理した被膜はその
一部に破壊が観察された。A scanning microscope was used to observe the surface of the coating. An SEM image of the coating is shown in FIG. according to this,
There was no great difference in the precipitation state of the alloy up to the heat treatment temperature of 600 ° C, and the coatings treated at 800 ° C and 1000 ° C were partially broken.
【0012】被膜の膜厚は、白金板に析出した被膜重量
を測定して算出した。その結果2.5μmであった。な
お平均析出速度は13μg・cm‐2 min‐1 であっ
た。The film thickness of the coating film was calculated by measuring the weight of the coating film deposited on the platinum plate. As a result, it was 2.5 μm. The average precipitation rate was 13 μg · cm −2 min −1.
【0013】被膜の硬さは、ビッカ−ス硬度計、ダイナ
ミック超微小硬度計により稜面角度115゜のダイヤモ
ンド三角錐圧子を用い、熱処理との関係で測定した。そ
の結果、図5に示すように、ビッカ−ス硬さ、ダイナミ
ック硬さとも熱処理温度400゜Cにおいて最も高い値
を示した。これはホウ化物(Co2 B)析出によるもの
と思われる。また800゜C及び1000゜Cの熱処理
で減少したが、これは析出物の構造変化(Co3 Bの新
たな析出)や被膜表面の一部破壊等のためと考えられ
る。超微小硬度計により、押し込み深さと荷重の平方根
線図を求め、変曲点より下地の影響を受けはじめる表面
からの距離を検討した。被膜厚さ2.5μmに対し変曲
点は0.4μmであった。下地の影響を受けずに被膜自
体の硬さを測定するには圧子侵入深さ0.4μm以下で
試験を行えばよいことになる。試験荷重1gfにおける
圧子の侵入深さは、未熱処理合金被膜で0.22μm、
200゜Cで0.20μm、300゜Cで0.18μ
m、400゜Cで0.16μm、600゜Cで0.16
μm、800゜Cで0.21μm、1000゜Cで0.
29μmあった。以上の結果より、本発明による被膜に
関しては、試験荷重1gfで測定したダイナミック硬さ
は、下地の影響を受けない被膜自体の硬さといえる。The hardness of the coating was measured by a Vickers hardness meter or a dynamic ultra-fine hardness meter using a diamond triangular pyramid indenter with a ridge angle of 115 ° in relation to heat treatment. As a result, as shown in FIG. 5, both the Vickers hardness and the dynamic hardness showed the highest values at the heat treatment temperature of 400 ° C. This is believed to be due to boride (Co2 B) precipitation. It was also reduced by the heat treatment at 800 ° C and 1000 ° C, which is considered to be due to the structural change of the precipitate (new precipitation of Co3 B) or the partial destruction of the coating surface. The indentation depth and the square root diagram of the load were obtained with an ultra-micro hardness tester, and the distance from the surface where the inflection point began to be affected by the substrate was examined. The inflection point was 0.4 μm for a film thickness of 2.5 μm. In order to measure the hardness of the coating itself without being affected by the base, it is sufficient to perform the test with the indenter penetration depth of 0.4 μm or less. The penetration depth of the indenter at a test load of 1 gf is 0.22 μm for the unheated alloy coating,
0.20μm at 200 ° C, 0.18μ at 300 ° C
m, 400 ° C 0.16 μm, 600 ° C 0.16 μm
μm, 0.21 μm at 800 ° C., 0.1 at 1000 ° C.
It was 29 μm. From the above results, it can be said that, regarding the coating film according to the present invention, the dynamic hardness measured with a test load of 1 gf is the hardness of the coating film itself which is not affected by the base.
【0014】[0014]
【発明の効果】本発明は以上のように、主成分である金
属塩として任意比のNi(ニッケル)とCo(コバル
ト)を、還元剤として結晶化阻害効率の高いボロンB
を、即ち被膜組成をNi,Co,Bの三成分系として、
また補助成分の安定剤として鉛塩を添加してメッキ浴を
調整し、とくに前記還元剤であるボロンBは、メッキ浴
中に少量ずつ添加することによりメッキ浴の分解・不安
定状態を回避したから、浸漬した被メッキ物に極めて安
定状態で還元析出を行え、またメッキ膜形成温度は65
゜Cで、Ni−Pメッキ膜形成温度90゜C〜93゜C
よりも低温度でアモルファス合金膜を得ることができ
る。そして本発明によって得られたアモルファスNi−
Co−B合金膜は、上記の特性で確認されたように、こ
れまでのNi−P合金膜に比較して格段優れた熱安定性
が得られ、軟磁性薄膜や高抵抗薄膜としての優れた特性
が発揮できる。また、被膜組成がNi,Co,Bの三成
分系であるので、Ni,COの比率を自由に変えること
により用途に応じた機能性を付与でき、応用範囲の拡大
を図れる。さらに本発明によって得られた合金膜は、4
00゜Cの熱処理でCo2 Bが析出し、被膜硬さは室温
の時の約2倍となり、耐摩耗性の大幅な向上がみられ
る。その他、ハンダ付け性に優れ、熱による表面変色も
少なく、耐酸化性の点でもNi−P合金膜より優れてい
ることが確認された。INDUSTRIAL APPLICABILITY As described above, the present invention uses boron (B), which has a high crystallization inhibition efficiency, as a reducing agent and an arbitrary ratio of Ni (nickel) and Co (cobalt) as a main metal salt.
That is, the coating composition is a three-component system of Ni, Co and B,
In addition, a lead salt is added as a stabilizer of an auxiliary component to adjust the plating bath, and in particular, the reducing agent boron B is added little by little to the plating bath to avoid decomposition and instability of the plating bath. Therefore, reduction precipitation can be performed on the immersed object in a very stable state, and the plating film formation temperature is 65%.
Ni-P plating film formation temperature 90 ° C to 93 ° C
An amorphous alloy film can be obtained at a lower temperature than that. And the amorphous Ni-obtained by the present invention
As confirmed by the above-mentioned characteristics, the Co-B alloy film has much better thermal stability than the conventional Ni-P alloy film and is excellent as a soft magnetic thin film or a high resistance thin film. The characteristics can be exhibited. Further, since the coating composition is a ternary system of Ni, Co and B, it is possible to impart functionality according to the application by freely changing the ratio of Ni and CO, and it is possible to expand the range of application. Further, the alloy film obtained by the present invention has 4
Co2 B is precipitated by the heat treatment at 00 ° C, the hardness of the coating is about twice as high as that at room temperature, and the wear resistance is greatly improved. In addition, it was confirmed that the Ni-P alloy film was excellent in solderability, had little surface discoloration due to heat, and was superior in oxidation resistance to the Ni-P alloy film.
【0015】上記諸特性並びに利点から、本発明によっ
て得られたアモルファスNi−Co−B合金膜は、高性
能、高信頼性が要求されるエレクトロニクス、航空機部
品等先端技術分野での適用が期待されるものである。From the above various characteristics and advantages, the amorphous Ni-Co-B alloy film obtained by the present invention is expected to be applied in the advanced technical fields such as electronics and aircraft parts, which are required to have high performance and high reliability. It is something.
【図1】本発明法を実施するのに使用する無電解メッキ
浴装置の略図的側面図FIG. 1 is a schematic side view of an electroless plating bath apparatus used to carry out the method of the present invention.
【図2】本発明法によって得られた合金被膜の各種熱処
理温度におけるX線回折と電子線回折パタ−ンを示すグ
ラフFIG. 2 is a graph showing X-ray diffraction and electron beam diffraction patterns of alloy coatings obtained by the method of the present invention at various heat treatment temperatures.
【図3】同上 示差熱分析結果を示すグラフFIG. 3 is a graph showing the results of differential thermal analysis as above.
【図4】同上 SEM像を示し、Aが室温、Bが300
゜C、Cが600゜C、Dが800゜C、Dが1000
゜CにおけるSEM像FIG. 4 shows SEM images of the same as above, where A is room temperature and B is 300.
° C, C is 600 ° C, D is 800 ° C, D is 1000
SEM image at ° C
【図5】同上 熱処理温度と硬さとの関係を示すグラフFIG. 5: Same as above Graph showing relationship between heat treatment temperature and hardness
Claims (2)
膜の製造技術において、金属塩として任意比の塩化ニッ
ケルと塩化コバルト、還元剤として水素化ホウ素ナトリ
ウム溶液を加えてメッキ浴を調整し、前記水素化ホウ素
ナトリウム溶液は、無電解メッキが最適に行われる条件
で、メッキ浴中に少量ずつ添加することによりメッキ浴
の分解・不安定状態を回避しつつ、浸漬した被メッキ物
に高濃度のボロンを含有するアモルファスNi−Co−
B合金膜を製造する方法。1. In the technique for producing an amorphous alloy film by electroless plating, nickel chloride and cobalt chloride in arbitrary ratios as metal salts and sodium borohydride solution as a reducing agent are added to adjust the plating bath, and the hydrogenation is performed. Sodium boron solution is added to the plating bath little by little under the condition that the electroless plating is performed optimally, avoiding decomposition and instability of the plating bath, while high concentration boron is immersed in the immersed object. Amorphous Ni-Co- containing
Method for producing B alloy film.
請求項1のアモルファスNi−Co−B合金膜の製造方
法。2. The method for producing an amorphous Ni—Co—B alloy film according to claim 1, wherein a lead salt is added as a stabilizer to the plating bath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25042391A JPH06108259A (en) | 1991-09-03 | 1991-09-03 | Production of amorphous ni-co-b alloy film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25042391A JPH06108259A (en) | 1991-09-03 | 1991-09-03 | Production of amorphous ni-co-b alloy film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06108259A true JPH06108259A (en) | 1994-04-19 |
Family
ID=17207671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25042391A Pending JPH06108259A (en) | 1991-09-03 | 1991-09-03 | Production of amorphous ni-co-b alloy film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06108259A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01162385A (en) * | 1987-12-18 | 1989-06-26 | Mitsubishi Electric Corp | Manufacture of distortion detector |
JPH02503696A (en) * | 1987-05-12 | 1990-11-01 | マッコーマス,チャールズ,エドワード | Stabilized non-electrolytic bath for wear-resistant metal coatings |
-
1991
- 1991-09-03 JP JP25042391A patent/JPH06108259A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503696A (en) * | 1987-05-12 | 1990-11-01 | マッコーマス,チャールズ,エドワード | Stabilized non-electrolytic bath for wear-resistant metal coatings |
JPH01162385A (en) * | 1987-12-18 | 1989-06-26 | Mitsubishi Electric Corp | Manufacture of distortion detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schlesinger | Electroless deposition of nickel | |
Agarwala et al. | Electroless Ni‐P Based Nanocoating Technology—A Review | |
JP5975996B2 (en) | Electroless nickel alloy plating bath and method for depositing the same | |
Younan et al. | Effect of heat treatment on electroless ternary nickel–cobalt–phosphorus alloy | |
WO2009099067A1 (en) | Plated structure | |
Yu et al. | A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current | |
Resali et al. | Cobalt-nickel-iron nanoparticles coated on stainless steel substrate | |
JP6466521B2 (en) | Electroless plating process | |
TWI445839B (en) | Electroless pure palladium plating solution | |
Tsai et al. | Composition and microstructure control of tin-bismuth alloys in the pulse plating process | |
JPH06108259A (en) | Production of amorphous ni-co-b alloy film | |
Yi et al. | Study on Electrochemical and Magnetic Properties of CoNi Alloy Coating Electrodeposited on Semiconductor Silicon | |
Mallory | Ternary and quaternary electroless nickel alloys | |
JPH0766034A (en) | Soft magnetic material film and manufacture thereof | |
JP3227505B2 (en) | Substitution type electroless gold plating solution | |
JPS6324072A (en) | Electroless palladium-nickel alloy plating liquid | |
JP3989795B2 (en) | Electrolytic hard gold plating solution and plating method using the same | |
JP2005047752A (en) | Method for controlling film structure of zinc oxide film | |
JP7012982B2 (en) | Electroless nickel-phosphorus plating bath | |
JPH0230790A (en) | Method for electrodepositing alloy | |
JPH06104902B2 (en) | Electroless copper nickel alloy plating method | |
JP4868121B2 (en) | Electroplating solution and method for forming amorphous gold-nickel alloy plating film | |
Richardson et al. | Investigation of the electroless deposition process of magnetic nanostructures | |
RU2710611C1 (en) | Method of producing metallic magnetic coatings | |
Zhao et al. | Galvanic replacement deposited copper layer as an efficient activator to realize electroless Ni-P plating on aluminum |