[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06107800A - Production of granular hydrous gel-like polymer and water-absorbing resin - Google Patents

Production of granular hydrous gel-like polymer and water-absorbing resin

Info

Publication number
JPH06107800A
JPH06107800A JP26376192A JP26376192A JPH06107800A JP H06107800 A JPH06107800 A JP H06107800A JP 26376192 A JP26376192 A JP 26376192A JP 26376192 A JP26376192 A JP 26376192A JP H06107800 A JPH06107800 A JP H06107800A
Authority
JP
Japan
Prior art keywords
polymer
water
hydrogel polymer
passage
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26376192A
Other languages
Japanese (ja)
Inventor
Koitsu Hirota
幸逸 廣田
Noboru Nahara
登 名原
Hideyuki Kubo
秀幸 久保
Kazufumi Hirata
和文 平田
Akito Yano
昭人 矢野
Yoshihiko Masuda
善彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP26376192A priority Critical patent/JPH06107800A/en
Publication of JPH06107800A publication Critical patent/JPH06107800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To accomplish classification for obtaining granular hydrous gel-like polymer excellent in uniformity and useful as a sanitary absorbent etc., by feeding a hydrous gel-like polymer to a feed port provided close to one end of a channel having specified penetrating holes on its wall surface to efficiently eliminate the coarse particles contained in the polymer. CONSTITUTION:A hydrous gel-like polymer is fed to a feed port 6 provided close to one end of a channel 3 having penetrating holes 2 2-15mm in at least one-way length on its wall surface, and allowed to move toward a discharge port 7 provided close to the other end of the channel 3. During the process, the hydrous gel-like polymer granules passing through the penetrating holes are recovered, while the coarse particles having been existed in the original polymer and impassable through the holes are discharged through the discharge port 7, thus accomplishing the objective classification of the hydrous gel-like polymer. The polymer passed through the penetrating holes and classified is then dried to obtain the other objective water-absorbing resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒子状含水ゲル状重合体
および吸水性樹脂の製造方法に関するものである。詳し
く述べると本発明は、含水ゲル状重合体中に含まれる粗
大粒子を効率よく除去し、所望粒子径の含水ゲル状重合
体を回収する分級方法、ならびにこのような分級操作を
用いて、乾燥状態が均一でかつ性能の劣化のない吸水性
樹脂を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a particulate hydrogel polymer and a water absorbent resin. More specifically, the present invention efficiently removes coarse particles contained in a hydrogel polymer, and a classification method for recovering a hydrogel polymer having a desired particle size, as well as a drying operation using such a classification operation. The present invention relates to a method for producing a water absorbent resin which is in a uniform state and has no deterioration in performance.

【0002】[0002]

【従来の技術】吸水性樹脂としては、架橋ポリアクリル
酸塩、アクリル酸エステル−酢酸ビニル共重合体のケン
化物、架橋ポリビニルアルコール変性物、架橋イソブチ
レン−無水マレイン酸共重合体、澱粉−アクリル酸グラ
フト重合物等が知られており、生理用ナプキン、紙おむ
つ等の衛生用吸収剤あるいは農園芸用分野、土木業分野
において保水剤、脱水剤等の広い用途に応用されてい
る。
2. Description of the Related Art Water absorbent resins include crosslinked polyacrylic acid salts, saponified acrylic acid ester-vinyl acetate copolymers, crosslinked polyvinyl alcohol modified products, crosslinked isobutylene-maleic anhydride copolymers, starch-acrylic acid. BACKGROUND ART Graft polymers and the like are known and are widely applied to sanitary napkins, sanitary absorbents such as paper diapers, and a wide range of applications such as water retention agents and dehydrating agents in the fields of agriculture and horticulture and the field of civil engineering.

【0003】これらの吸水性樹脂の製法としては、逆相
懸濁重合法として、例えば特開昭56−161,408
号、同57−94,011号、同57−158,209
号および同57−198,714号に記載の方法が知ら
れており、また水溶液重合法として、例えば特開昭57
−34,101号、特公昭48−42,466号、特開
昭58−49,714号、特公昭59−37,003
号、米国特許第4,286,082号および米国特許第
4,625,001号に記載されている方法が知られて
いる。
As a method for producing these water-absorbent resins, a reverse-phase suspension polymerization method is disclosed, for example, in JP-A-56-161,408.
No. 57-94,011, 57-158,209
And 57-198,714 are known, and as an aqueous solution polymerization method, for example, JP-A-57 / 1982
-34,101, Japanese Patent Publication No. 48-42,466, JP-A No. 58-49,714, Japanese Patent Publication No. 59-37,003.
The methods described in US Pat. No. 4,286,082 and US Pat. No. 4,625,001 are known.

【0004】これらの方法により得られた含水ゲル状重
合体は一般に、乾燥・粉砕して製品化されるが、重合直
後の含水ゲル状重合体には粗大粒子が含まれているの
で、そのままの乾燥で安定した製品を得るのが困難であ
る。即ち、より小さい粒子径の含水ゲル状重合体を乾燥
するのに見合った条件では、製品中に未乾燥物が混在
し、逆に粗大粒子を乾燥するのに見合った条件では、よ
り小さい粒子径の含水ゲル状重合体に過度の熱エネルギ
ーが加わり、製品の性能が劣化する。この様な不都合を
解消する為に、含水ゲル状重合体の粒子径を整える方法
が、いくつか提案されている。例えば、含水ゲル状重合
体を多孔板より押し出し破砕する方法(特公昭54−3
2,176号、特開昭50−136,348号等)が知
られているが、従来公知の方法では、細かく解砕され押
し出された含水ゲル状重合体が再付着し、ひも状になっ
たりして粒子状の含水ゲル状重合体を得ることができな
かった。また含水ゲル状重合体を多孔板より押し出し破
砕する際に、含水ゲル状重合体の再付着を防止する目的
で潤滑剤等の添加物を加える方法(特開昭59−30,
826号、特開昭59−119,172号)が知られて
いるが、重合体に残存する添加物が製品の性能に悪影響
を及ぼすことがあった。
The hydrogel polymer obtained by these methods is generally dried and pulverized into a product, but since the hydrogel polymer immediately after the polymerization contains coarse particles, it remains as it is. It is difficult to obtain a dry and stable product. That is, in a condition suitable for drying a hydrogel polymer having a smaller particle size, an undried product is mixed in the product, and conversely, a condition suitable for drying coarse particles has a smaller particle size. Excessive heat energy is added to the water-containing gel-like polymer, resulting in deterioration of product performance. In order to eliminate such inconvenience, several methods of adjusting the particle diameter of the hydrogel polymer have been proposed. For example, a method of extruding a hydrous gel polymer from a porous plate and crushing it (Japanese Patent Publication No. 54-3).
No. 2,176, JP-A No. 50-136,348, etc.) is known, but in the conventionally known method, the hydrogel polymer extruded finely and extruded is redeposited to form a string. However, a particulate hydrogel polymer could not be obtained. Further, when the hydrogel polymer is extruded from a porous plate and crushed, a method of adding an additive such as a lubricant for the purpose of preventing redeposition of the hydrogel polymer (JP-A-59-30,
No. 826 and JP-A-59-119,172) are known, but additives remaining in the polymer sometimes adversely affect the performance of the product.

【0005】さらに含水ゲル状重合体中に含まれる粗大
粒子を分級により除去するために、粉体分級において一
般に用いられるような振動ふるいを用いることも考えら
れるが、操作時においてふるい板上で含水ゲル状重合体
が凝集して粒径が大きくなる傾向があるため、分級操作
は困難であった。
Further, in order to remove coarse particles contained in the water-containing gel polymer by classification, it is possible to use a vibrating sieve which is generally used in powder classification, but it is possible to use water on a sieve plate during operation. The classification operation was difficult because the gelled polymer tends to aggregate to increase the particle size.

【0006】[0006]

【発明が解決しようとする課題】このように従来簡便な
プロセスで、しかも生産性よく粒子状含水ゲル状重合体
を乾燥してしかも吸収倍率が高く、水可溶分の少ない粒
子状含水ゲル状重合体及び吸水性樹脂を製造する方法は
確立されていなかった。
As described above, a particulate hydrogel having a high absorption capacity and a low water-soluble content can be obtained by drying a particulate hydrogel polymer with a conventional simple process and high productivity. A method for producing a polymer and a water absorbent resin has not been established.

【0007】従って本発明は、最終製品に悪影響を及ぼ
すことなく、含水ゲル状重合体から粗大粒子を効率良く
除去して、所望の粒子径の含水ゲル状重合体を回収する
含水ゲル状重合体の分級方法を提供することを目的とす
る。本発明はまた、乾燥効率が良好でかつ吸水倍率が高
く、水可溶分の少ない粒子状含水ゲル状重合体および吸
水性樹脂の製造方法を提供することを目的とするもので
ある。本発明はさらに、乾燥状態が均一で、かつ性能の
劣化が認められない吸水性樹脂の製造方法を提供するこ
とを目的とするものである。
Accordingly, the present invention provides a hydrogel polymer for efficiently removing coarse particles from the hydrogel polymer to recover a hydrogel polymer having a desired particle size without adversely affecting the final product. The purpose is to provide a classification method of. Another object of the present invention is to provide a method for producing a particulate hydrogel polymer and a water-absorbent resin which have good drying efficiency, a high water absorption capacity and a low water-soluble content. A further object of the present invention is to provide a method for producing a water-absorbent resin which has a uniform dry state and is free from deterioration of performance.

【0008】[0008]

【課題を解決しようとするための手段】上記諸目的は、
粗大粒子を含む含水ゲル状重合体から粗大粒子を除去し
て均一な粒子径の含水ゲル状重合体を回収する含水ゲル
状重合体の分級方法であって、壁面に、少なくとも1方
向の長さが2〜15mmの貫通孔を有する通路の一端部
近傍に設けられた供給口に含水ゲル状重合体を供給し、
前記通路の他端部近傍に設けられた排出口に向けて移動
する前記含水ゲル状重合体から前記通路の壁面の貫通口
を通過する含水ゲル状重合体粒子を回収し、前記貫通口
を通過しない粗大粒子を前記排出口から排出することよ
りなる含水ゲル状重合体の分級方法によって達成され
る。
[Means for Solving the Problems]
What is claimed is: 1. A method for classifying a hydrogel polymer, comprising removing coarse particles from a hydrogel polymer containing coarse particles to recover a hydrogel polymer having a uniform particle size, wherein the wall surface has a length of at least one direction. Is supplied to the supply port provided in the vicinity of one end of the passage having a through hole of 2 to 15 mm,
The hydrous gel polymer particles passing through the through hole of the wall surface of the passage are recovered from the hydrous gel polymer moving toward the outlet provided near the other end of the passage, and passed through the through hole. It is achieved by a method for classifying a water-containing gel polymer, which comprises discharging non-coarse coarse particles from the outlet.

【0009】上記諸目的はまた、粗大粒子を含む含水ゲ
ル状重合体を分級し、解砕および/または粉砕した後乾
燥することでなる吸水性樹脂の製造方法であって、壁面
に、少なくとも1方向の長さが2〜15mmの貫通孔を
有する通路の一端部近傍に設けられた供給口に含水ゲル
状重合体を供給し、前記通路の他端部近傍に設けられた
排出口に向けて移動する前記含水ゲル状重合体から前記
通路の壁面の貫通口を通過する含水ゲル状重合体粒子を
回収し、前記貫通口を通過しない粗大粒子を解砕および
/または粉砕して前記回収した含水ゲル状重合体粒子と
混合し、これを乾燥することでなる吸水性樹脂の製造方
法によっても達成される。
The above-mentioned objects are also a method for producing a water-absorbent resin, which comprises classifying a hydrogel polymer containing coarse particles, crushing and / or crushing and then drying the polymer, wherein at least 1 The hydrogel polymer is supplied to a supply port provided in the vicinity of one end of a passage having a through hole having a length in the direction of 2 to 15 mm, and toward the discharge port provided in the vicinity of the other end of the passage. Hydrous gel polymer particles that pass through the through-hole of the wall surface of the passage are recovered from the moving hydro-gel polymer, and coarse particles that do not pass through the through-hole are crushed and / or crushed to recover the water-containing polymer. It can also be achieved by a method for producing a water-absorbent resin by mixing with gel polymer particles and drying the mixture.

【0010】[0010]

【作用】本発明において用いられる含水ゲル状重合体
は、水溶液重合により架橋構造を形成し、含水ゲル状重
合体となる単量体成分を重合することで得られるもので
ある。すなわち、本発明において使用される含水ゲル状
重合体は、架橋構造を有することが必須である。
The hydrogel polymer used in the present invention is obtained by forming a crosslinked structure by aqueous solution polymerization and polymerizing a monomer component to be the hydrogel polymer. That is, it is essential that the hydrogel polymer used in the present invention has a crosslinked structure.

【0011】このような含水ゲル状重合体は、例えば、
特公昭61−36,763号、特公平2−19,122
号に開示されているような(メタ)アクリル酸、そのア
ルカリ金属またはアンモニウム塩および(メタ)アクリ
ルアミドよりなる群から選ばれた少なくとも1種の単量
体を主成分とする単量体組成(I)に、分子内に重合性
二重結合を2個以上有する架橋性単量体(II)が、前
記単量体組成(I)に対して0.001〜50モル%、
好ましくは0.01〜10モル%の比率で配合された単
量体成分を重合してなる架橋構造を有する含水ゲル状重
合体がある。
Such a hydrous gel polymer is, for example,
Japanese Patent Publication No. 61-36,763, Japanese Patent Publication No. 2-19,122
Monomer composition containing at least one monomer selected from the group consisting of (meth) acrylic acid, an alkali metal or ammonium salt thereof and (meth) acrylamide as disclosed in (I). ), The crosslinkable monomer (II) having two or more polymerizable double bonds in the molecule is 0.001 to 50 mol% relative to the monomer composition (I),
Preferably, there is a hydrogel polymer having a crosslinked structure formed by polymerizing monomer components blended in a proportion of 0.01 to 10 mol%.

【0012】本発明において使用される含水ゲル状重合
体の含水率は、含水ゲル状を呈する範囲であれば特に制
限はないが、通常40〜90重量%であり、好ましく
は、50〜80重量%である。なお、本明細書におい
て、含水ゲル状重合体の含水率とは、含水ゲル状重合体
の総重量に占める水の含量を重量%で表わしたものであ
る。
The water content of the hydrogel polymer used in the present invention is not particularly limited as long as it is in the hydrogel state, but is usually 40 to 90% by weight, preferably 50 to 80% by weight. %. In the present specification, the water content of the hydrous gel polymer means the content of water in the total weight of the hydrous gel polymer expressed in% by weight.

【0013】含水ゲル状重合体の形状は、後述する分級
機に供給可能な大きさおよび形状であればよい。本発明
の一実施態様において、上記したような含水ゲル状重合
体は、図1に示すように壁面に貫通孔2を有する円筒若
しくは半円筒状通路3の中心軸に沿って螺旋状攪拌翼4
が巻設された回転軸5が設置されてなる分級機1の前記
通路3の一端部近傍に設けられた供給口6に供給され
る。
The shape of the hydrogel polymer may be any size and shape that can be supplied to the classifier described later. In one embodiment of the present invention, the hydrogel polymer as described above has a spiral stirring blade 4 along a central axis of a cylindrical or semi-cylindrical passage 3 having a through hole 2 on a wall surface as shown in FIG.
Is supplied to a supply port 6 provided in the vicinity of one end of the passage 3 of the classifier 1 in which a rotating shaft 5 around which is wound is installed.

【0014】この分級機1の円筒若しくは半円筒状通路
3に設けられた貫通口2の形状としては、図2(a)〜
(c)に示すようにスリット状のもの、図2(d)に示
すようにメッシュ状のもの、あるいは図2(e)に示す
ように多孔状のものなど各種のものであってもよいが、
このうち分級能の上からスリット状のものが好ましい。
また貫通孔2は円筒若しくは半円筒状通路3の少なくと
も下端部側壁面に設けられていればよいが、通常最下端
部を中心として円周方向に左右に10〜300°、好ま
しくは60〜200°の角度の壁面に設けられている。
The shape of the through-hole 2 provided in the cylindrical or semi-cylindrical passage 3 of the classifier 1 is shown in FIGS.
Various types such as a slit type as shown in (c), a mesh type as shown in FIG. 2 (d), or a porous type as shown in FIG. 2 (e) may be used. ,
Of these, a slit-like one is preferable from the viewpoint of classification ability.
The through hole 2 may be provided at least on the side wall surface of the lower end portion of the cylindrical or semi-cylindrical passage 3, but is usually 10 to 300 ° to the left and right in the circumferential direction around the lowermost end portion, preferably 60 to 200. It is installed on the wall at an angle of °.

【0015】スリット状の貫通孔2としては、図2
(a)に示すように円筒若しくは半円筒状通路3の軸方
向に沿って開口されたもの、図2(b)に示すように円
周方向に沿って開口されたもの、さらには図2(c)に
示すように螺旋状攪拌翼4の螺旋に対応して開口された
ものなどが好ましい態様として考えられる。なお、この
スリット状の貫通孔2は必ずしも等間隔で設けられてい
る必要はないが、所定の間隔をもって設けられているこ
とが望ましい。さらにこのスリットの幅は、通常少なく
とも一方向の長さが2〜15mm、好ましくは5〜12
mm程度のものとされることが望ましい。スリット幅が
2mm未満の場合含水ゲル状重合体の分級効率が極めて
悪くなり、実質上分級機の機能を果たさない虞れがあ
り、一方、スリット幅が15mmを越えるものであると
分級の対象としている粗大なゲルがスリットを通過して
しまい分級機の機能を果さない虞れがあるためである。
また貫通孔2の形状がスリット状以外のものである場合
においても、その大きさは上記スリット状の場合におけ
るものに準ずる大きさのものであることが望ましい。
The slit-shaped through hole 2 is shown in FIG.
As shown in FIG. 2A, one opened along the axial direction of the cylindrical or semi-cylindrical passage 3, one opened along the circumferential direction as shown in FIG. As shown in c), it is considered as a preferable embodiment that the spiral stirring blade 4 is opened corresponding to the spiral. The slit-shaped through holes 2 do not necessarily have to be provided at equal intervals, but it is desirable that they be provided at a predetermined interval. Further, the width of this slit is usually 2 to 15 mm in at least one direction, preferably 5 to 12 mm.
It is desirable that the thickness is about mm. If the slit width is less than 2 mm, the classification efficiency of the hydrogel polymer may be extremely poor, and the function of the classifier may not be fulfilled substantially. On the other hand, if the slit width is more than 15 mm, it may be classified. This is because the coarse gel that is present may pass through the slit and may not function as a classifier.
Further, even when the through hole 2 has a shape other than the slit shape, it is desirable that the size thereof be similar to that in the case of the slit shape.

【0016】またこの分級機1における含水ゲル状重合
体の輸送機構は、前記したように円筒若しくは半円筒状
通路3の中心軸に沿って設置された回転軸に巻設された
螺旋状攪拌翼4であり、この攪拌翼4としては標準型ス
クリュウ状あるいはリボンスクリュウ状の羽根などが用
いられる。標準型スクリュウ状あるいはリボンスクリュ
ウ状の羽根を持つ輸送機構を分級機に配した場合、この
羽根と円筒若しくは半円筒状通路の壁面とのクリアラン
ス(間隔)は、特に限定されるものではないが、0.1
〜10mm程度、より好ましくは1〜5mm程度である
ことが望ましい。このクリアランスが0.1mm未満に
なると、操作時に羽根と通路壁面との間に含水ゲル状重
合体が詰ってしまう虞れが大きく、一方、クリアランス
が10mmを越えるものであると効率的な分級あるいは
輸送ができなくなる虞れが大きい。
Further, the transport mechanism of the hydrogel polymer in the classifier 1 is, as described above, a spiral stirring blade wound around a rotary shaft installed along the central axis of the cylindrical or semicylindrical passage 3. As the stirring blade 4, a standard screw-shaped or ribbon screw-shaped blade or the like is used. When a transport mechanism having standard screw-shaped or ribbon screw-shaped blades is arranged in a classifier, the clearance (distance) between the blades and the wall surface of the cylindrical or semi-cylindrical passage is not particularly limited. 0.1
It is desirable that it is about 10 mm, more preferably about 1 to 5 mm. If this clearance is less than 0.1 mm, there is a great risk that the hydrogel polymer will be clogged between the blade and the wall surface of the passage during operation, while if the clearance exceeds 10 mm, efficient classification or There is a great risk that transportation will not be possible.

【0017】また回転軸5は円筒状若しくは半円筒状通
路3の中心軸に沿って設置されていればよく、この通路
内で回転する螺旋状攪拌翼4を有するものであれば1軸
のものでも多軸のものでもよい。
Further, the rotary shaft 5 may be installed along the central axis of the cylindrical or semi-cylindrical passage 3, and if it has the spiral stirring blades 4 rotating in this passage, it may be a single shaft. But it may be multi-axis.

【0018】本発明において含水ゲル状重合体をこのよ
うな分級機に供給する際の含水ゲル状重合体の温度は、
30〜90℃の範囲であることが望ましい。30℃未満
の温度で供給すると含水ゲル状重合体が分級機に付着
し、貫通孔が目詰まりして十分な分級ができなくなる虞
れが高く、一方90℃を越える温度であると含水ゲル状
重合体の物性の低下を引き起こすので好ましくない。
In the present invention, when the hydrogel polymer is fed to such a classifier, the temperature of the hydrogel polymer is
It is preferably in the range of 30 to 90 ° C. When supplied at a temperature of less than 30 ° C, the hydrous gel polymer adheres to the classifier, and there is a high possibility that the through holes will be clogged and sufficient classification cannot be performed. It is not preferable because it causes deterioration of the physical properties of the polymer.

【0019】本発明において上記のごとき構成の分級機
1の供給口6より供給された含水ゲル状重合体は、回転
軸5を中心として回転する螺旋状攪拌翼4により前記供
給口6から前記通路3の他端部近傍に設けられた排出口
7に向って搬送され、その間に、規定粒子径以下の含水
ゲル状重合体粒子は前記通路3の壁面の貫通口2を通過
して外部へと取出され、一方、前記貫通口を通過しない
規定粒子径より大きな粗大粒子は前記排出口7から排出
される。貫通孔2を通過して外部へと取出された規定粒
子径以下の含水ゲル状重合体粒子を回収することで分級
操作が達せられる。
In the present invention, the water-containing gel-like polymer supplied from the supply port 6 of the classifier 1 having the above-mentioned structure is supplied from the supply port 6 to the passage by the spiral stirring blade 4 rotating about the rotating shaft 5. 3 is conveyed toward an outlet 7 provided in the vicinity of the other end of the gel 3, and during that time, hydrogel polymer particles having a particle size not larger than a specified particle pass through a through hole 2 on the wall surface of the passage 3 to the outside. On the other hand, coarse particles larger than the specified particle size that do not pass through the through-hole are discharged from the discharge port 7. The classification operation can be achieved by collecting the hydrogel polymer particles having a particle size not larger than the specified particle size, which have been taken out through the through holes 2 to the outside.

【0020】本発明において、上記のごとき構成の分級
操作を行なうことにより効率よく含水ゲル状重合体粒子
の分級を行うことができるが上記記載の方法の他にも、
例えば、分級機自体を傾斜することによっても分級効率
と輸送速度を調整することにより所望の分級を行うこと
も可能である。さらに本発明において分級機構としての
壁面に少なくとも一方向の長さが2〜15mm貫通孔を
有する通路の形状は、必ずしも図1に示すような円筒ま
たは半円筒状のものである必要はなく、またこのような
通路上における含水ゲル状重合体の輸送機構としても図
1に示すような螺旋状攪拌翼以外にも同様の輸送ができ
るものであれば使用可能である。
In the present invention, the hydrogel polymer particles can be efficiently classified by performing the classification operation having the above-mentioned constitution.
For example, it is also possible to perform desired classification by tilting the classifier itself and adjusting the classification efficiency and the transportation speed. Further, in the present invention, the shape of the passage having a through hole having a length of 2 to 15 mm in at least one direction on the wall surface as the classifying mechanism does not necessarily have to be a cylinder or a semi-cylindrical shape as shown in FIG. As the transportation mechanism of the water-containing gel polymer on such a passage, other than the spiral stirring blade as shown in FIG. 1, any other transporting mechanism can be used.

【0021】本発明の吸水性樹脂の製造方法は、上記の
ごとき分級操作において貫通孔2を通過し回収された規
定粒子径以下の含水ゲル状重合体粒子に、貫通孔2を通
過せず排出口7から排出された含水ゲル状重合体の粗大
粒子を解砕および/または粉砕した後混合して、乾燥
し、乾燥後必要によりさらに解砕および/または粉砕す
ることを特徴とするものである。
In the method for producing a water-absorbent resin of the present invention, the water-containing gel polymer particles having a particle size equal to or less than the specified particle size which are recovered by passing through the through holes 2 in the classification operation as described above are discharged without passing through the through holes 2. Coarse particles of the hydrogel polymer discharged from the outlet 7 are crushed and / or crushed, then mixed, dried, and further crushed and / or crushed if necessary after drying. .

【0022】本発明の吸水性樹脂の製造方法において、
含水ゲル状重合体の粗大粒子を解砕および/または粉砕
する手段としては、例えばミートチョッパー等多孔板を
有するスクリュウ型押出機やシュレッダー等の粗砕機あ
るいはエッジランナー、カッターミル等の中砕機などが
用いられる。
In the method for producing the water absorbent resin of the present invention,
Examples of means for crushing and / or crushing coarse particles of the water-containing gel polymer include a screw type extruder having a perforated plate such as meat chopper, a coarse crusher such as a shredder, an edge runner, and a middle crusher such as a cutter mill. Used.

【0023】また乾燥は、従来公知の手段によって行な
い得る。例えば、箱型乾燥機、通気箱型乾燥機、通気バ
ンド乾燥機、通気竪型乾燥機あるいは回転乾燥機等が挙
げられる。含水ゲル状重合体を乾燥する際の乾燥温度
は、従来公知の温度でよいが、80〜250℃、好まし
くは100〜200℃の範囲である。250℃を越える
温度では重合体の劣化、分解が起こることがある。乾燥
に要する時間は、上記のいずれの手段を採用した場合で
も、本発明の製造方法は、従来の製造方法に比べ著しく
短くなる。
The drying can be carried out by a conventionally known means. For example, a box dryer, an aeration box dryer, an aeration band dryer, an aeration vertical dryer, a rotary dryer and the like can be mentioned. The drying temperature for drying the hydrogel polymer may be a conventionally known temperature, but is in the range of 80 to 250 ° C, preferably 100 to 200 ° C. If the temperature exceeds 250 ° C, the polymer may be deteriorated or decomposed. The time required for drying is significantly shorter in the production method of the present invention than in the conventional production methods, regardless of which of the above means is adopted.

【0024】本発明の製造方法の特に有利な実施形態
は、特開昭64−26,604号に記載の乾燥方法を実
施することである。この方法は、残存単量体の低い重合
体を得るのに好適な方法であるが、低いレベルの残存単
量体量を達成する際に、その乾燥効率(生産性)が低く
なるという問題があった。上記のような分級工程を経た
粒子状含水ゲル状重合体を用いることで、著しくその乾
燥効率が向上し、本発明の目的とする吸水倍率が高く、
水可溶分が少ないということを満足した上に、著しく残
存単量体の少ない吸水性樹脂を生産性よく得ることがで
きる。
A particularly advantageous embodiment of the production method of the present invention is to carry out the drying method described in JP-A No. 64-26604. This method is a suitable method for obtaining a polymer having a low residual monomer, but when achieving a low level of residual monomer, there is a problem that its drying efficiency (productivity) becomes low. there were. By using the particulate hydrogel polymer that has undergone the classification step as described above, the drying efficiency is significantly improved, and the water absorption ratio targeted by the present invention is high,
In addition to satisfying that the water-soluble content is small, it is possible to obtain a water-absorbent resin having a significantly small amount of residual monomer with high productivity.

【0025】本発明において粉粒状の吸水性樹脂を得る
にあたり上記のごとき乾燥処理ののち粉砕を行なうこと
ができるが、この粉砕には従来公知の粉砕手段を用いる
ことができる。例えば、高速回転式粉砕機(ピンミル、
ハンマミル等)、スクリューミル(コーヒーミル)、ロ
ールミル等が挙げられる。なかでも、本発明の製造方法
によって得られる粒子状含水ゲル状重合体の乾燥物は均
一な乾燥物であるため、未乾燥部分の除去等の工程を経
ることなく、ロールミルで粉砕(解砕)することによっ
て、微粉末の含有量の小さい吸水性樹脂を得ることがで
きる。
In the present invention, the powdery water-absorbent resin can be obtained by the above-mentioned drying treatment and then pulverization, and conventionally known pulverization means can be used. For example, high-speed rotary crusher (pin mill,
Hammer mill etc.), screw mill (coffee mill), roll mill and the like. Among them, since the dried product of the particulate hydrogel polymer obtained by the production method of the present invention is a uniform dried product, without undergoing a step such as removal of the undried portion, pulverization (crushing) with a roll mill By doing so, a water absorbent resin having a small content of fine powder can be obtained.

【0026】なお、本発明の製造方法によって得られる
吸水性樹脂に従来公知の表面処理方法を実施してもよ
い。例えば、吸水性樹脂と吸水性樹脂の有する官能基と
反応し得る少なくとも2個の官能基を有する架橋剤とを
重合、反応させ吸水性樹脂の表面近傍の架橋密度を高く
することにより得られる吸水性樹脂の改質を行う方法が
ある。また本発明の製造方法によって得られる吸水性樹
脂あるいは上記の表面処理を施した吸水性樹脂に従来公
知の造粒方法を実施してもよい。
The water-absorbent resin obtained by the production method of the present invention may be subjected to a conventionally known surface treatment method. For example, water absorption obtained by polymerizing and reacting a water-absorbent resin and a crosslinking agent having at least two functional groups capable of reacting with the functional group of the water-absorbent resin to increase the crosslink density near the surface of the water-absorbent resin. There is a method of modifying the functional resin. The water-absorbent resin obtained by the production method of the present invention or the water-absorbent resin subjected to the above surface treatment may be subjected to a conventionally known granulation method.

【0027】[0027]

【実施例】以下、本発明を実施例および比較例を挙げて
さらに詳細に説明するが、本発明はこれらの例により何
ら限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0028】なお、実施例中の吸収倍率、水可溶分およ
び平均粒子径は以下の方法によって測定した。
The absorption capacity, water-soluble content and average particle size in the examples were measured by the following methods.

【0029】乾燥粉砕物の吸収倍率 JIS標準フルイの網目10メッシュから100メッシ
ュに分級した含水ゲル状重合体の乾燥粉砕物約0.2g
を精秤し、不織布製のティーバッグ式袋(40mm×1
50mm)に均一に入れ、0.9%食塩水に浸漬し60
分後の重量を測定し下記の数式1に従って吸収倍率を求
めた。
Absorption ratio of dry pulverized product Approximately 0.2 g of dry pulverized product of hydrous gel polymer classified according to JIS standard sieve mesh from 10 mesh to 100 mesh
Accurately weighed, and made of non-woven tea bag type bag (40mm × 1
50 mm) and then soak in 0.9% saline 60
The weight after the minutes was measured, and the absorption capacity was calculated according to the following mathematical formula 1.

【0030】[0030]

【数1】 [Equation 1]

【0031】乾燥粉砕物の水可溶分 JIS標準フルイの網目10メッシュから100メッシ
ュに分級した含水ゲル状重合体の乾燥粉砕物約0.5g
を1000mlの脱イオン水中に分散し、16時間攪拌
後、瀘紙(TOYO#6)で瀘過し、少なくとも100
gの瀘液を得た。正確に100gの瀘液を回転蒸発器で
2〜3ml程度まで濃縮し、脱イオン水を追加して、シ
ャーレ(W0 g)に移した。これを120℃で乾固した
(W1 g)。下記の数式2に従って水可溶分を求めた。
Water-soluble content of dry pulverized product Approximately 0.5 g of dry pulverized product of hydrogel polymer classified according to JIS standard sieve mesh from 10 mesh to 100 mesh
Was dispersed in 1000 ml of deionized water, stirred for 16 hours, and then filtered with a paper filter (TOYO # 6) for at least 100
g of filtrate was obtained. Exactly 100 g of the filtrate was concentrated to about 2 to 3 ml with a rotary evaporator, deionized water was added, and the mixture was transferred to a petri dish (W 0 g). This was dried at 120 ° C. (W 1 g). The water-soluble content was determined according to the following mathematical formula 2.

【0032】[0032]

【数2】 [Equation 2]

【0033】粒子状含水ゲル状重合体の平均粒子径 サンプリングした粒子状含水ゲル状重合体(固形分α重
量%)25gを20重量%塩化ナトリウム水溶液120
0g中に投入しスターラーチップを300rpmで回転
させ、60分間攪拌した。攪拌終了後、フルイ(目開き
9.5mm,2.0mm,0.85mm,0.6mm,
0.3mm,0.075mm)に上記分散液を投入し、
上から6000gの20重量%塩化ナトリウム水溶液を
ゆっくり注ぎ、含水ゲル状重合体を分級した。分級され
たそれぞれのフルイ上の含水ゲル状重合体を十分に水切
り後、秤量した。フルイの目開きは、下記の数式3に従
い含水ゲル状重合体の固形分α重量%相当のフルイの目
開きR(α)に換算した。対数確率紙に固形分α重量%
相当の粒子状含水ゲル状重合体の粒度分布をプロットし
た。そのプロットの積算フルイ上%が50重量%に相当
する粒子径をサンプルの平均粒子径とした。
Average Particle Diameter of Particulate Hydrous Gel Polymer 25 g of the sampled particulate hydrogel polymer (solid content α% by weight) is 20% by weight aqueous sodium chloride solution 120
It was put into 0 g and the stirrer chip was rotated at 300 rpm and stirred for 60 minutes. After stirring, sieve (opening 9.5 mm, 2.0 mm, 0.85 mm, 0.6 mm,
0.3 mm, 0.075 mm) into the dispersion,
From above, 6000 g of a 20 wt% sodium chloride aqueous solution was slowly poured, and the hydrogel polymer was classified. The classified water-containing gel polymer on each sieve was thoroughly drained and then weighed. The sieve opening was converted to a sieve opening R (α) corresponding to the solid content α% by weight of the hydrogel polymer according to the following mathematical formula 3. Solid content α weight% on log probability paper
The particle size distribution of the corresponding particulate hydrous gel polymer was plotted. The particle diameter corresponding to 50% by weight on the integrated sieve in the plot was defined as the average particle diameter of the sample.

【0034】[0034]

【数3】 [Equation 3]

【0035】R(α):固形分α重量%の含水ゲル状重
合体に換算した時のフルイの目開き(mm) W :分級、水切り後の含水ゲル状重合体の総重量
(g) γ :20重量%塩化ナトリウム水溶液中で膨潤し
た含水ゲル状重合体が分級されたフルイの目開き(m
m) 実施例1 内容積10リットルの双腕型シグマ翼をもち、温度計を
備えたジャケット付きステンレス製ニーダーに、アクリ
ル酸ナトリウム75mol%およびアクリル酸25mo
l%からなる単量体成分の水溶液5500g(単量体成
分38重量%)と、架橋剤としてのトリメチロールプロ
パントリアクリレート3.49g(0.05mol%対
単量体成分)とを入れ、窒素ガスを吹き込み反応系内を
窒素置換した。次いで、2本のニーダーの羽根を40r
pmで回転させ、ジャケットに35℃の温水を通して加
熱しながら、重合開始剤として過硫酸ナトリウム2.8
gとL−アスコルビン酸0.14gを添加した。重合開
始剤を添加して3分後に重合が開始し、15分後に86
℃の重合ピーク温度に到達した。さらに40rpmで攪
拌を続け、重合開始後30分で含水ゲル状重合体を得
た。この時、含水ゲル状重合体のうち、約12重量%が
10mm以上のサイズの含水ゲル重合体であった。な
お、10mm以上のサイズの含水ゲル状重合体の量は、
500gの含水ゲル状重合体をサンプリングし、目視で
10mm以上のサイズの含水ゲル状重合体を選別し、こ
れを重量%で表示したものである。
R (α): sieve opening (mm) when converted to a water-containing gel polymer having a solid content of α% by weight W: total weight (g) γ of the water-containing gel polymer after classification and draining : Opening of a sieve (m in which a hydrogel polymer swollen in a 20 wt% sodium chloride aqueous solution is classified)
m) Example 1 A stainless steel kneader with a jacket having a double-armed sigma blade with an internal volume of 10 liters and equipped with a thermometer, 75 mol% sodium acrylate and 25 mo acrylic acid.
5500 g of an aqueous solution containing 1% of a monomer component (38% by weight of the monomer component) and 3.49 g of trimethylolpropane triacrylate (0.05 mol% with respect to the monomer component) as a crosslinking agent were added, and nitrogen was added. A gas was blown in to replace the inside of the reaction system with nitrogen. Next, use the two kneader blades 40r
Rotate at pm and heat the jacket with warm water of 35 ° C. while heating it with sodium persulfate 2.8.
g and 0.14 g of L-ascorbic acid were added. Polymerization started 3 minutes after the addition of the polymerization initiator, and after 15 minutes 86
A polymerization peak temperature of ° C was reached. Further, stirring was continued at 40 rpm, and 30 minutes after the initiation of the polymerization, a hydrogel polymer was obtained. At this time, about 12% by weight of the hydrogel polymer was a hydrogel polymer having a size of 10 mm or more. The amount of the hydrogel polymer having a size of 10 mm or more is
This is a sample in which 500 g of the hydrogel polymer was sampled, and the hydrogel polymer having a size of 10 mm or more was visually selected, and this was expressed in% by weight.

【0036】次にこの含水ゲル状重合体をスリット幅8
mm、管径150mmの半円筒状通路及びピッチと管径
の比(P/D)が1のスクリュウ状の羽根からなる分級
機(長さ1500mm)に含水ゲル状重合体を50℃で
120kg/hrの速度で供給し、スクリュウ状羽根を
15rpmの速度で回転して含水ゲル状重合体の輸送量
とスリットを通過する量および平均粒子径を測定した。
結果を表1に示す。
Next, the hydrogel polymer was slit to a width of 8
mm, a semi-cylindrical passage with a pipe diameter of 150 mm, and a classifier (length 1500 mm) consisting of screw-shaped blades with a pitch-to-pipe diameter ratio (P / D) of 1, 120 kg / of hydrogel polymer at 50 ° C. It was supplied at a rate of hr and the screw blade was rotated at a rate of 15 rpm to measure the transport amount of the hydrogel polymer, the amount passing through the slit, and the average particle diameter.
The results are shown in Table 1.

【0037】さらに分級機のスリットを通過せず排出口
より排出された含水ゲル状重合体を粉砕機(平賀工作所
製チョッパー)を用いて粉砕し、スリットを通過した含
水ゲル状重合体と混合して粒子状含水ゲル状重合体を得
た。この粒子状含水ゲル状重合体中の10mm以上のサ
イズの含水ゲル状重合体の量は0%であった。この含水
ゲル状重合体1000gを200mm×280mm×8
0mmの金網に入れ回分式通気流箱型乾燥機(佐竹化学
機械工業製)を用い、160℃の熱風で乾燥したとこ
ろ、表1に示すように水分が6%になる時間は36分と
なった。得られた乾燥物をロールミル(明治機械製)で
粉砕し、1.7ミリパス(JIS標準篩10メッシュパ
ス)の乾燥粉砕物即ち吸水性樹脂粉末を得た。このもの
の吸水倍率および水可溶分を測定し結果を表2に示し
た。各表からわかるように乾燥時間は、分級および粉砕
を行なわないものよりかなり短縮され、物性も向上する
ことがわかった。
Further, the hydrogel polymer discharged from the outlet without passing through the slit of the classifier was pulverized by using a pulverizer (Chopper made by Hiraga Machinery Co., Ltd.) and mixed with the hydrogel polymer passed through the slit. Thus, a particulate hydrogel polymer was obtained. The amount of the hydrous gel polymer having a size of 10 mm or more in this particulate hydrous gel polymer was 0%. 1000 g of this water-containing gel polymer is added to 200 mm × 280 mm × 8
When placed in a 0 mm wire net and dried with hot air at 160 ° C. using a batch-type aerated flow box dryer (manufactured by Satake Kagaku Kikai Kogyo Co., Ltd.), as shown in Table 1, the time when the water content becomes 6% is 36 minutes. It was The obtained dried product was pulverized with a roll mill (manufactured by Meiji Machinery Co., Ltd.) to obtain a dry pulverized product having 1.7 millipass (JIS standard sieve 10 mesh pass), that is, a water absorbent resin powder. The water absorption capacity and water-soluble content of this product were measured, and the results are shown in Table 2. As can be seen from each table, it was found that the drying time was considerably shortened and the physical properties were improved as compared with the case where classification and pulverization were not performed.

【0038】実施例2〜4 実施例1と同様にして重合を行い含水ゲル状重合体を
得、実施例1と同様に分級機に供給しスクリュウ状羽根
の回転数を変えて含水ゲル状重合体の輸送量とスリット
通過量および平均粒子径を測定した。さらに分級機スリ
ットを通過せず排出口より排出された含水ゲル状重合体
を実施例1と同様に粉砕し、スリットを通過した含水ゲ
ル状重合体と混合して乾燥したときの乾燥時間および物
性値を測定した。結果を表1および表2に示す。
Examples 2 to 4 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer, which was fed to a classifier in the same manner as in Example 1 and the rotational speed of the screw blades was changed to give a hydrogel gel. The transport amount of the coalescence, the slit passing amount and the average particle size were measured. Further, the hydrogel polymer discharged from the outlet without passing through the classifier slit was pulverized in the same manner as in Example 1, and the drying time and the physical properties when mixed with the hydrogel polymer passed through the slit and dried. The value was measured. The results are shown in Tables 1 and 2.

【0039】実施例5〜8 実施例1と同様にして重合を行い含水ゲル状重合体を
得、実施例1と同様に分級機に供給し、分級機のスリッ
ト幅を10mmとして、スクリュウ状羽根の回転数を変
えた場合の含水ゲル状重合体の輸送量とスリット通過量
および平均粒子径を測定した。さらに分級機スリットを
通過せず排出口より排出された含水ゲル状重合体を実施
例1と同様に粉砕し、スリットを通過した含水ゲル状重
合体と混合して乾燥したときの乾燥時間および物性値を
測定した。結果を表1および表2に示す。
Examples 5 to 8 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer, which was supplied to the classifier in the same manner as in Example 1, and the slit width of the classifier was set to 10 mm, and the screw blades were used. The transport amount, the slit passage amount, and the average particle size of the hydrogel polymer when the number of rotations was changed were measured. Further, the hydrogel polymer discharged from the outlet without passing through the classifier slit was pulverized in the same manner as in Example 1, and the drying time and the physical properties when mixed with the hydrogel polymer passed through the slit and dried. The value was measured. The results are shown in Tables 1 and 2.

【0040】実施例9〜12 実施例1と同様にして重合を行い含水ゲル状重合体を
得、この含水ゲル状重合体を240kg/hrの速度で
供給し、実施例1と同様に分級機に供給し、分級機のス
リット幅を10mmとして、スクリュウ状羽根の回転数
を変えた場合の含水ゲル状重合体の輸送量とスリット通
過量および平均粒子径を測定した。さらに分級機スリッ
トを通過せず排出口より排出された含水ゲル状重合体を
実施例1と同様に粉砕し、スリットを通過した含水ゲル
状重合体と混合して乾燥したときの乾燥時間および物性
値を測定した。結果を表1および表2に示す。
Examples 9 to 12 Polymerization was carried out in the same manner as in Example 1 to obtain a water-containing gel-like polymer, and this water-containing gel-like polymer was supplied at a rate of 240 kg / hr. And the slit width of the classifier was set to 10 mm, and the transport amount, the slit passage amount, and the average particle diameter of the hydrogel polymer when the rotation speed of the screw blade was changed were measured. Further, the hydrogel polymer discharged from the outlet without passing through the classifier slit was pulverized in the same manner as in Example 1, and the drying time and the physical properties when mixed with the hydrogel polymer passed through the slit and dried. The value was measured. The results are shown in Tables 1 and 2.

【0041】比較例1 実施例1と同様にして重合を行ない含水ゲル状重合体の
平均粒子径を測定し、これをそのまま乾燥したときの乾
燥時間を測定した。結果を表1に示す。さらに、実施例
1と同様に乾燥物の粉砕を行い、吸収倍率および水可溶
分を測定したところ吸収倍率は45倍、水可溶分は11
%であった。
Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 to measure the average particle size of the hydrogel polymer, and the drying time was measured when the polymer was dried as it was. The results are shown in Table 1. Further, the dried product was pulverized in the same manner as in Example 1, and the absorption capacity and the water-soluble content were measured. The absorption capacity was 45 times and the water-soluble content was 11 times.
%Met.

【0042】比較例2〜4 実施例1と同様にして重合を行い含水ゲル状重合体を
得、実施例1と同様に分級機に供給し、分級機のスリッ
ト幅を30mmとして、スクリュウ状羽根の回転数を変
えた場合の含水ゲル状重合体の輸送量とスリット通過量
および平均粒子径を測定した。さらに分級機スリットを
通過せず排出口より排出された含水ゲル状重合体を実施
例1と同様に粉砕し、スリットを通過した含水ゲル状重
合体と混合して乾燥したときの乾燥時間及び物性値を測
定した。結果を表1及び表2に示す。表から明らかなよ
うに、含水ゲル状重合体は大部分スリットを通過してし
まい実質的に分級機の役割を果たさなかった。
Comparative Examples 2 to 4 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer, which was supplied to the classifier in the same manner as in Example 1, and the slit width of the classifier was set to 30 mm and the screw blades were used. The transport amount, the slit passage amount, and the average particle size of the hydrogel polymer when the number of rotations was changed were measured. Further, the hydrogel polymer discharged from the outlet without passing through the classifier slit was pulverized in the same manner as in Example 1, and the drying time and the physical properties when mixed with the hydrogel polymer passing through the slit and dried. The value was measured. The results are shown in Tables 1 and 2. As is clear from the table, most of the hydrous gel polymer passed through the slits and did not substantially function as a classifier.

【0043】比較例5〜8 実施例1と同様にして重合を行い含水ゲル状重合体を
得、実施例1と同様に分級機に供給し、分級機のスリッ
ト幅を1mmとして、スクリュウ状羽根の回転数を変え
た場合の含水ゲル状重合体の輸送量とスリット通過量お
よび平均粒子径を測定した。さらに分級機スリットを通
過せず排出口より排出された含水ゲル状重合体を実施例
1と同様に粉砕し、スリットを通過した含水ゲル状重合
体と混合して乾燥したときの乾燥時間及び物性値を測定
した。結果を表1及び表2に示す。表から明らかなよう
に、含水ゲル状重合体は大部分輸送されてしまい実質的
に分級機の役割を果たさなかった。
Comparative Examples 5 to 8 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer, which was supplied to the classifier in the same manner as in Example 1, and the slit width of the classifier was set to 1 mm, and the screw blade was formed. The transport amount, the slit passage amount, and the average particle size of the hydrogel polymer when the number of rotations was changed were measured. Further, the hydrogel polymer discharged from the outlet without passing through the classifier slit was pulverized in the same manner as in Example 1, and the drying time and the physical properties when mixed with the hydrogel polymer passing through the slit and dried. The value was measured. The results are shown in Tables 1 and 2. As is clear from the table, most of the hydrogel polymer was transported and did not substantially function as a classifier.

【0044】比較例9 実施例1と同様にして重合を行い含水ゲル状重合体を
得、10mm以上のサイズの球状ゲルをふるい分けする
ために、スリット幅8mmの板状のスリット(400m
m×700mm×3mm)を振動させる事により含水ゲ
ル状重合体をふるい分ける事を試みた。含水ゲル状重合
体4kgを板状スリット上に供給し、1分間に1200
回の振動を与えながら5分間分級を試みたところスリッ
トをパスしたゲルの割合は45重量%であり、スリット
上の含水ゲルは凝集する傾向がみられ、十分な分級が行
なえなかった。
Comparative Example 9 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer, and in order to screen spherical gels having a size of 10 mm or more, plate-shaped slits (400 m in width of 8 mm) were prepared.
It was attempted to screen the hydrogel polymer by vibrating (m × 700 mm × 3 mm). 4 kg of hydrous gel polymer was supplied on the plate slit, and 1200 minutes per minute.
When classification was attempted for 5 minutes while giving vibrations once, the proportion of the gel that passed through the slit was 45% by weight, and the hydrous gel on the slit tended to aggregate, and sufficient classification could not be performed.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】以上述べたように本発明によれば、壁面
に貫通孔を有する円筒若しくは半円筒状通路の中心軸に
沿って螺旋状攪拌翼の巻設された回転軸が設置されてな
る分級機の前記通路の一端部近傍に設けられた供給口に
含水ゲル状重合体を供給し、前記螺旋状攪拌翼の回転運
動により前記供給口から前記通路の他端部近傍に設けら
れた排出口に向けて移動する前記含水ゲル状重合体から
前記通路の壁面の貫通口を通過する含水ゲル状重合体粒
子を回収し、前記貫通口を通過しない粗大粒子を前記排
出口から排出するという極めて簡単な操作により、最終
の製品に悪影響を及すことなく、含水ゲル状重合体から
粗大粒子を効率良く除去して、所望の粒子径の含水ゲル
状重合体を回収することができるものである。さらにこ
のように分級を行なった後に、分別された粗大粒子を粉
砕して貫通孔を通過した粒子状含水ゲル状重合体と混合
し、乾燥を行なうことにより吸水性樹脂を製造するもの
であるので、乾燥効率が良好で、しかも得られる吸水性
樹脂は吸収倍率が高く、水可溶分が少ないということを
満足した上に、乾燥状態が均一なものとなる。
As described above, according to the present invention, the rotary shaft around which the spiral stirring blade is wound is installed along the central axis of the cylindrical or semi-cylindrical passage having the through hole in the wall surface. A hydrogel polymer is supplied to a supply port provided in the vicinity of one end of the passage of the classifier, and is discharged from the supply port in the vicinity of the other end of the passage by the rotational movement of the spiral stirring blade. The water-containing gel-like polymer particles that pass through the through-hole of the wall surface of the passage are collected from the water-containing gel-like polymer that moves toward the outlet, and coarse particles that do not pass through the through-hole are discharged from the outlet. By a simple operation, coarse particles can be efficiently removed from the hydrogel polymer without adversely affecting the final product, and the hydrogel polymer having a desired particle size can be recovered. . Furthermore, after carrying out classification in this way, coarse particles that have been separated are pulverized and mixed with the particulate hydrogel polymer that has passed through the through holes, and the water absorbent resin is produced by drying. In addition, the water absorbent resin has good drying efficiency, and the obtained water absorbent resin has a high absorption capacity and a low water-soluble content.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の含水ゲル状重合体の分級方法にお
いて用いられる分級機の一実施例の構成を示す斜視図、
FIG. 1 is a perspective view showing the configuration of an embodiment of a classifier used in the method for classifying a hydrogel polymer according to the present invention,

【図2】(a)〜(e)はそれぞれ、本発明の含水ゲル
状重合体の分級方法において用いられる分級機の筒状通
路における貫通孔の形状の一例を示す斜視図である。
2 (a) to (e) are perspective views each showing an example of the shape of a through hole in a tubular passage of a classifier used in the method for classifying a hydrogel polymer according to the present invention.

【符号の説明】[Explanation of symbols]

1…分級機、 2…貫通孔、 3…円筒若しくは半円筒
状通路、4…螺旋状回転翼、 5…回転軸、6…供給
口、7…排出口。
1 ... Classifier, 2 ... Through hole, 3 ... Cylindrical or semi-cylindrical passage, 4 ... Helical rotor, 5 ... Rotating shaft, 6 ... Supply port, 7 ... Discharge port.

フロントページの続き (72)発明者 平田 和文 兵庫県姫路市網干区興浜字西沖992−1 株式会社日本触媒姫路製造所内 (72)発明者 矢野 昭人 兵庫県姫路市網干区興浜字西沖992−1 株式会社日本触媒姫路製造所内 (72)発明者 増田 善彦 兵庫県姫路市網干区興浜字西沖992−1 株式会社日本触媒姫路研究所内Front page continuation (72) Inventor Kazufumi Hirata 992-1 Nishioki, Okihama, Aboshi-ku, Himeji-shi, Hyogo Nippon Shokubai Co., Ltd. Himeji Factory (72) Akito Yano, Nishiki, Okihama, Aboshi-ku, Himeji-shi, Hyogo 992-1 Nippon Shokubai Co., Ltd. Inside the Himeji Plant (72) Inventor Yoshihiko Masuda Inside the Nippon Shokubai Himeji Research Laboratories 992-1 Nishioki, Okihama, Aboshi Ward, Himeji City, Hyogo Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粗大粒子を含む含水ゲル状重合体から粗
大粒子を除去して均一な粒子径の含水ゲル状重合体を回
収する含水ゲル状重合体の分級方法であって、壁面に、
少なくとも1方向の長さが2〜15mmの貫通孔を有す
る通路の一端部近傍に設けられた供給口に含水ゲル状重
合体を供給し、前記通路の他端部近傍に設けられた排出
口に向けて移動する前記含水ゲル状重合体から前記通路
の壁面の貫通口を通過する含水ゲル状重合体粒子を回収
し、前記貫通口を通過しない粗大粒子を前記排出口から
排出することよりなる含水ゲル状重合体の分級方法。
1. A method for classifying a hydrogel polymer, comprising removing coarse particles from a hydrogel polymer containing coarse particles to recover a hydrogel polymer having a uniform particle size, comprising:
A hydrogel polymer is supplied to a supply port provided near one end of a passage having a through hole having a length of at least one direction of 2 to 15 mm, and is supplied to an outlet provided near the other end of the passage. Water-containing gel-like polymer particles that pass through the through-hole of the wall surface of the passage from the water-containing gel-like polymer that is moved toward, and coarse particles that do not pass through the through-hole are discharged from the discharge port. Method for classifying gel polymer.
【請求項2】 通路が円筒または半円筒状である請求項
1に記載の分級方法。
2. The classification method according to claim 1, wherein the passage has a cylindrical or semi-cylindrical shape.
【請求項3】 含水ゲル状重合体の移動が、円筒または
半円筒状通路の中心軸に沿って設置された螺旋状攪拌翼
の巻設された回転軸の回転運動によって行われる請求項
2に記載の分級方法。
3. The method according to claim 2, wherein the water-containing gel polymer is moved by the rotational movement of the rotating shaft of the spiral stirring blade installed along the central axis of the cylindrical or semi-cylindrical passage. Classification method described.
【請求項4】 貫通孔がスリット状である請求項1に記
載の分級方法。
4. The classification method according to claim 1, wherein the through holes have a slit shape.
【請求項5】 粗大粒子を含む含水ゲル状重合体を分級
し、解砕および/または粉砕した後乾燥することでなる
吸水性樹脂の製造方法であって、壁面に、少なくとも1
方向の長さが2〜15mmの貫通孔を有する通路の一端
部近傍に設けられた供給口に含水ゲル状重合体を供給
し、前記通路の他端部近傍に設けられた排出口に向けて
移動する前記含水ゲル状重合体から前記通路の壁面の貫
通口を通過する含水ゲル状重合体粒子を回収し、前記貫
通口を通過しない粗大粒子を解砕および/または粉砕し
て前記回収した含水ゲル状重合体粒子と混合し、これを
乾燥することでなる吸水性樹脂の製造方法。
5. A method for producing a water-absorbent resin, which comprises classifying a hydrogel polymer containing coarse particles, crushing and / or crushing and then drying, wherein at least one wall surface is coated with at least 1.
The hydrogel polymer is supplied to a supply port provided in the vicinity of one end of a passage having a through hole having a length in the direction of 2 to 15 mm, and toward the discharge port provided in the vicinity of the other end of the passage. Hydrous gel polymer particles that pass through the through-hole of the wall surface of the passage are recovered from the moving hydro-gel polymer, and coarse particles that do not pass through the through-hole are crushed and / or crushed to recover the water-containing polymer. A method for producing a water absorbent resin, which comprises mixing with gel polymer particles and drying the mixture.
【請求項6】 乾燥後、更に解砕および/または粉砕を
行なうものである請求項5に記載の製造方法。
6. The production method according to claim 5, which further comprises crushing and / or crushing after drying.
【請求項7】 乾燥後の解砕および/または粉砕をロー
ル回転型粉砕機で行なうものである請求項5に記載の製
造方法。
7. The production method according to claim 5, wherein the crushing and / or crushing after drying is performed by a roll rotary crusher.
JP26376192A 1992-10-01 1992-10-01 Production of granular hydrous gel-like polymer and water-absorbing resin Pending JPH06107800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26376192A JPH06107800A (en) 1992-10-01 1992-10-01 Production of granular hydrous gel-like polymer and water-absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26376192A JPH06107800A (en) 1992-10-01 1992-10-01 Production of granular hydrous gel-like polymer and water-absorbing resin

Publications (1)

Publication Number Publication Date
JPH06107800A true JPH06107800A (en) 1994-04-19

Family

ID=17393919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26376192A Pending JPH06107800A (en) 1992-10-01 1992-10-01 Production of granular hydrous gel-like polymer and water-absorbing resin

Country Status (1)

Country Link
JP (1) JPH06107800A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009010B2 (en) 2001-12-19 2006-03-07 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP2007533808A (en) * 2004-04-21 2007-11-22 ストックハウゼン ゲーエムベーハー Method for producing absorbent polymer by diffusion drying
JP2009516043A (en) * 2005-11-16 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
WO2011126079A1 (en) 2010-04-07 2011-10-13 株式会社日本触媒 Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
WO2013189770A1 (en) 2012-06-19 2013-12-27 Basf Se Method for the production of water-absorbing polymer particles
US8945716B2 (en) 2012-06-19 2015-02-03 Basf Se Process for producing water-absorbing polymer particles
WO2015030129A1 (en) 2013-08-28 2015-03-05 株式会社日本触媒 Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
WO2015030130A1 (en) 2013-08-28 2015-03-05 株式会社日本触媒 Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
WO2016159144A1 (en) * 2015-04-02 2016-10-06 株式会社日本触媒 Method for producing particulate water-absorbing agent that has polyacrylic acid (salt)-based water-absorbing resin as main component
US9486777B2 (en) 2012-08-29 2016-11-08 Basf Se Process for producing water-absorbing polymer particles
KR20170121154A (en) 2015-02-24 2017-11-01 스미토모 세이카 가부시키가이샤 Water-absorbing-resin production device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009010B2 (en) 2001-12-19 2006-03-07 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP2007533808A (en) * 2004-04-21 2007-11-22 ストックハウゼン ゲーエムベーハー Method for producing absorbent polymer by diffusion drying
US7728045B2 (en) 2004-04-21 2010-06-01 Evonik Stockhausen Gmbh Process for producing an absorbent polymer by means of spread-drying
US7863338B2 (en) 2004-04-21 2011-01-04 Evonik Stockhausen Gmbh Absorbent polymer granulate
JP2012097273A (en) * 2004-04-21 2012-05-24 Evonik Stockhausen Gmbh Method for producing absorbent polymer by diffusion drying
TWI381000B (en) * 2004-04-21 2013-01-01 Evonik Stockhausen Gmbh Process for producing an absorbent polymer by means of spread drying
JP2009516043A (en) * 2005-11-16 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
US7682702B2 (en) 2005-11-16 2010-03-23 Basf Se Process for preparing water-absorbing polymer particles
WO2011126079A1 (en) 2010-04-07 2011-10-13 株式会社日本触媒 Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
EP3115382A1 (en) 2010-04-07 2017-01-11 Nippon Shokubai Co., Ltd. Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
US8945716B2 (en) 2012-06-19 2015-02-03 Basf Se Process for producing water-absorbing polymer particles
JP2015520279A (en) * 2012-06-19 2015-07-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing water-absorbing polymer particles
WO2013189770A1 (en) 2012-06-19 2013-12-27 Basf Se Method for the production of water-absorbing polymer particles
US9486777B2 (en) 2012-08-29 2016-11-08 Basf Se Process for producing water-absorbing polymer particles
WO2015030129A1 (en) 2013-08-28 2015-03-05 株式会社日本触媒 Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
WO2015030130A1 (en) 2013-08-28 2015-03-05 株式会社日本触媒 Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
EP3401070A1 (en) 2013-08-28 2018-11-14 Nippon Shokubai Co., Ltd. A water absorbent resin powder and an absorbent body
EP3520978A1 (en) 2013-08-28 2019-08-07 Nippon Shokubai Co., Ltd. Polyacrylic acid (polyacrylate) superabsorbent polymer powder
KR20170121154A (en) 2015-02-24 2017-11-01 스미토모 세이카 가부시키가이샤 Water-absorbing-resin production device
US10124315B2 (en) 2015-02-24 2018-11-13 Sumitomo Seika Chemicals Co., Ltd. Water-absorbent resin production apparatus
WO2016159144A1 (en) * 2015-04-02 2016-10-06 株式会社日本触媒 Method for producing particulate water-absorbing agent that has polyacrylic acid (salt)-based water-absorbing resin as main component
JPWO2016159144A1 (en) * 2015-04-02 2018-01-18 株式会社日本触媒 Method for producing particulate water-absorbing agent mainly composed of polyacrylic acid (salt) water-absorbing resin
US10537874B2 (en) 2015-04-02 2020-01-21 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbing agent

Similar Documents

Publication Publication Date Title
KR940006901B1 (en) Method for production of particulate hydrated gel polymer and absorbent resin
JP4676625B2 (en) Method for producing water absorbent resin powder
DE60112630T3 (en) A method for producing a water-absorbent resin powder
JP4141526B2 (en) Method for producing water absorbent resin
EP1127895B1 (en) Process for producing powdery water soluble cellulose derivatives
JP2539956B2 (en) Method for producing fluid-stable granules
EP2980128B1 (en) Water-absorbent resin composition production method
EP1470905A1 (en) Method for disintegrating hydrate polymer
JPH06107800A (en) Production of granular hydrous gel-like polymer and water-absorbing resin
JP4460851B2 (en) Method for sizing water-absorbent resin
CN112119112A (en) Method for producing water-absorbent resin
JPH10202187A (en) Method for classifying particulate hydrophilic polymer and screening apparatus
CN108026318B (en) Superabsorbent polymer composition
JPH05339381A (en) Production of water-absorptive resin and water absorbent
WO2014084281A1 (en) Method for producing polyacrylic acid (salt)-based water-absorbing resin
EP3564295A1 (en) Method for preparing super absorbent polymer
JPH02308820A (en) Granulation of highly water absorbing resin
JP2001079829A (en) Water absorbing resin and its preparation
JPH0641319A (en) Production of granular hydrous gelatinous polymer and water absorbing resin
JP3145461B2 (en) Method for producing particulate hydrogel polymer and water absorbent resin
JP4351111B2 (en) Method for crushing hydrous polymer and method for producing water-absorbing resin
CA2208441C (en) Animal excrement treating material and method of manufacturing same
JP2993801B2 (en) Process for producing particulate hydrogel polymer and water absorbent resin
JPH11240914A (en) Production of hydrophilic crosslinked polymer
JPH0655070A (en) Water absorbent, its production and method for reducing water content of water-containing powder or granule with the same