[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0610673A - Direct injection type diesel engine - Google Patents

Direct injection type diesel engine

Info

Publication number
JPH0610673A
JPH0610673A JP4172997A JP17299792A JPH0610673A JP H0610673 A JPH0610673 A JP H0610673A JP 4172997 A JP4172997 A JP 4172997A JP 17299792 A JP17299792 A JP 17299792A JP H0610673 A JPH0610673 A JP H0610673A
Authority
JP
Japan
Prior art keywords
injection
combustion chamber
pilot
slit
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4172997A
Other languages
Japanese (ja)
Inventor
Masanori Komori
小森正憲
Shigeru Harufuji
茂 春藤
Kinji Tsujimura
辻村欽司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENSHIYOU SYST KENKYUSHO KK
SHINNENSHO SYSTEM KENKYUSHO
Original Assignee
SHINNENSHIYOU SYST KENKYUSHO KK
SHINNENSHO SYSTEM KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENSHIYOU SYST KENKYUSHO KK, SHINNENSHO SYSTEM KENKYUSHO filed Critical SHINNENSHIYOU SYST KENKYUSHO KK
Priority to JP4172997A priority Critical patent/JPH0610673A/en
Publication of JPH0610673A publication Critical patent/JPH0610673A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0663Details related to the fuel injector or the fuel spray having multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reduce NOx while suppressing generation of the smoke in the whole load range of an engine by partitioning off two combustion chambers with a recessed part on the crown of a piston and an intermediate wall, and taking the countermeasures of communication by a slit or the like, thereby improving the pilot injection. CONSTITUTION:The pilot injection is executed in advance of the main injection in this direct injection type diesel engine. In this case, a first and a second combustion chambers 8, 9 are partitioned off by a recessed part 1b formed inside of an outer circumferential wall 1a on the crown of a piston 1 and an intermediate wall 1c which is vertically provided on the recessed part 1b. The respective combustion chambers 8, 9 are connected to each other by a slit 1d. The main injection is constituted so as to pass the slit 1d. The pilot injection is constituted so as to be collided against the intermediate wall 1c. In addition, both the pilot injection and the main injection are executed except in the high load condition of the engine, while only the main injection is executed in the high load condition. This arrangement improves the pilot injection, and reduces generation of the smoke and NOx.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スモークの発生を低レ
ベルに維持しつつNOX (窒素酸化物)を大幅に低減さ
せるための直接噴射式ディーゼル機関に関する。
The present invention relates to a direct injection diesel engine in order to significantly reduce the NO X (nitrogen oxides) while maintaining the generation of smoke at a low level.

【0002】[0002]

【従来の技術】現在、ディーゼル機関において、スモー
クおよびNOX の低減は重要な課題であり、その低減に
向けて高圧噴射、燃焼方式の改善、排ガス再循環(EG
R)等、種々の提案が行われている。このうちEGR
は、燃費およびスモークの悪化、排ガスによるEGR装
置の腐食或いは機能低下等、耐久性および信頼性の問題
がある。
2. Description of the Related Art At present, reduction of smoke and NO x is an important issue in diesel engines, and in order to reduce them, high pressure injection, improvement of combustion system, exhaust gas recirculation (EG
Various proposals such as R) have been made. Of these, EGR
Have problems of durability and reliability such as deterioration of fuel consumption and smoke, corrosion of EGR device due to exhaust gas or deterioration of function.

【0003】また、燃焼方式の観点からみれば、現在広
く用いられている低圧噴射の場合、噴霧はノズル近傍で
着火した後、全体が火炎に包まれながら進行し、この
時、噴霧は、空気と同時に自己の生成した既燃ガスを巻
き込みながら燃焼するので、噴霧中心部において高温
部、酸素不足部が形成されスモークの生成要因となり、
既燃ガスの巻き込みはマイナス要因として働くと言われ
ている。このためスモークを低減するには、燃料と空気
を迅速に混合する必要があり、スワール、スキッシュ等
により空気利用率を向上する方法が採られているが、こ
れでは着火遅れの間の燃料、空気混合速度も増大するた
め、予混合燃焼の増加により燃焼初期の熱発生率が増大
し、NOX の増大を招くという相反する問題を有してお
り、これがスモークとNOX の同時低減を困難にしてい
る。
From the viewpoint of the combustion system, in the case of low pressure injection which is widely used at present, after the spray is ignited in the vicinity of the nozzle, it progresses while being wrapped in the whole flame. At this time, the spray is air. At the same time, it burns while energizing the burnt gas generated by itself, so a high temperature part and an oxygen deficient part are formed in the center of the spray, which becomes a cause of smoke
It is said that entrainment of burnt gas acts as a negative factor. Therefore, in order to reduce smoke, it is necessary to mix fuel and air quickly, and methods such as swirl and squish are used to improve the air utilization rate. Since the mixing speed also increases, there is a contradictory problem that the heat generation rate in the early stage of combustion increases due to the increase in premixed combustion, leading to an increase in NO X , which makes it difficult to reduce smoke and NO X simultaneously. ing.

【0004】上記問題を解決するために、高圧噴射(例
えば噴射圧1000kg/cm2 以上)、小噴孔径ノズ
ル、浅皿燃焼室および低スワールを組合せる方式が知ら
れている。これを図9により説明すると、1はピスト
ン、2はピストンリング、3はシリンダライナー、4は
ガスケット、5はシリンダヘッド、6はノズル7を有す
る燃料噴射弁を示し、ピストン1の頂部には燃焼室9が
形成されている。ピストン1が上昇し上死点付近に達し
たとき、ノズル7から噴射された燃料の噴霧Fは、壁面
10近傍で一気に着火した後、火炎Hは、燃焼室9中心
に向かって膨張するが、噴射の終了まで中心部は不燃域
として残る。すなわち、噴霧は壁面10に到達するまで
燃焼室9中心に近い不燃域側で十分に空気を巻き込みな
がら進行し、壁面10側では既燃ガスを導入しながら壁
面10に衝突する二段の燃焼経路をたどる。高圧噴射の
場合、噴射時期を大幅に遅らせても火がつくため、噴射
時期遅延との組み合わせで、低圧噴射と比較してスモー
クおよびNOX の同時低減を図ることができる。
In order to solve the above problems, there is known a system in which a high pressure injection (for example, an injection pressure of 1000 kg / cm 2 or more), a small injection hole nozzle, a shallow dish combustion chamber and a low swirl are combined. Referring to FIG. 9, 1 is a piston, 2 is a piston ring, 3 is a cylinder liner, 4 is a gasket, 5 is a cylinder head, and 6 is a fuel injection valve having a nozzle 7. A chamber 9 is formed. When the piston 1 rises and reaches the vicinity of the top dead center, the spray F of the fuel injected from the nozzle 7 ignites at once in the vicinity of the wall surface 10, and then the flame H expands toward the center of the combustion chamber 9, The center remains as a non-combustible area until the end of injection. That is, the spray progresses while sufficiently entraining air on the side of the non-combustible region near the center of the combustion chamber 9 until it reaches the wall surface 10, and on the side of the wall surface 10 there is a two-stage combustion path that collides with the wall surface 10 while introducing burned gas Follow In the case of high-pressure injection, even if the injection timing is significantly delayed, ignition will occur. Therefore, in combination with the injection timing delay, it is possible to reduce smoke and NO X simultaneously as compared with low-pressure injection.

【0005】[0005]

【発明が解決しようとする課題】ところが、噴射時期を
大幅に遅らせていくと、着火遅れ増大により、図10に
示すように、NOX が再び増加しそれ以上噴射時期を遅
らせてもNOX は低減できない。これを改善するため、
着火遅れを短縮し確実に着火させるため、パイロット噴
射が検討されている。図11は、パイロット噴射により
大幅な噴射時期遅延が可能となりNOX が大幅に低減し
た例を示しているが、TDC後、20〜30゜で噴射し
ているため、燃費の悪化が著しくなる。
However [0007], As you significantly delayed injection timing, the ignition delay increased, as shown in FIG. 10, NO X is increased by NO X be delayed any further injection timing again It cannot be reduced. To improve this,
Pilot injection is under consideration to shorten ignition delay and ensure ignition. FIG. 11 shows an example in which the pilot injection can significantly delay the injection timing and greatly reduce the NO X, but since the injection is performed at 20 to 30 ° after TDC, the fuel efficiency is significantly deteriorated.

【0006】また、高圧噴射の場合、図12に示すよう
に、中負荷域でNOX が高くなる傾向があり、これを解
決するために中負荷域においては空気導入を抑え既燃ガ
スの巻き込みを増加させるようなことができれば、NO
X の発生を抑えることができる。
Further, in the case of high-pressure injection, as shown in FIG. 12, NO X tends to be high in the medium load region, and in order to solve this, air introduction is suppressed in the medium load region and entrainment of burned gas is involved. If you can increase the
The generation of X can be suppressed.

【0007】パイロット噴射について更に述べると、低
圧噴射の場合、パイロット噴射を行うと、図13Aに示
すように、パイロット噴霧の燃焼火炎が燃焼室9中心部
から壁面10にかけて広がるため、主噴霧がパイロット
火炎の中を既燃ガスを導入しながら進む(内部EGR)
ので、NOX は下がるがスモークは大幅に悪化する。一
方、高圧噴射の場合、噴霧の持つエネルギーが大きいた
め、図13Bに示すように、パイロット火炎も燃焼室壁
面10近傍で着火、燃焼するため、主噴霧がパイロット
火炎による既燃ガスを導入することはない。また、高圧
噴射でNOX を低減するため、噴射時期を大幅に遅らせ
た場合には、図13Cに示すように、ピストン1の下降
に伴いパイロット噴霧は燃焼室9の外に出る。従って、
高圧噴射でパイロット噴射を行った場合、このままで
は、前記した噴射時期遅延と中負荷域での空気導入を抑
え既燃ガスの巻き込みを増加させNOX 低減を図る課題
とを同時に満足させることは困難である。
To further describe the pilot injection, in the case of low pressure injection, when the pilot injection is performed, the combustion flame of the pilot spray spreads from the center of the combustion chamber 9 to the wall surface 10 as shown in FIG. 13A. Proceed through the flame while introducing burnt gas (internal EGR)
As a result, NO x will fall, but smoke will deteriorate significantly. On the other hand, in the case of high-pressure injection, since the energy of the spray is large, as shown in FIG. 13B, the pilot flame also ignites and burns in the vicinity of the wall surface 10 of the combustion chamber, so the main spray introduces burned gas from the pilot flame. There is no. Further, since the high-pressure injection reduces NO X , when the injection timing is significantly delayed, the pilot spray goes out of the combustion chamber 9 as the piston 1 descends, as shown in FIG. 13C. Therefore,
When pilot injection is performed with high-pressure injection, it is difficult to simultaneously satisfy the above-mentioned problems of delaying the injection timing and suppressing the introduction of air in the medium load range to increase the entrainment of burnt gas to reduce NO X at the same time. Is.

【0008】高圧噴射の場合、噴霧の持つエネルギーが
大きく、着火は燃焼室壁面で起こるため、低圧噴射のよ
うに噴射期間中、噴霧が既燃ガスに巻き込まれるような
ことがなく、ノズル近傍は常に空気層が存在している。
従って、中負荷域で噴霧内に既燃ガスを積極的に導入す
るようなコントロールができればスモークの発生のない
部分負荷でNOX を低減することができ、効率の高い内
部EGRを達成することができるという考えは以前より
提案されている(モータファン1992年、5月号、第
54頁)。しかし、噴霧内に既燃ガスを導入する具体的
な構造については、今まで実用化或いは研究発表された
ものはない。
In the case of high pressure injection, the energy of the spray is large and ignition occurs on the wall surface of the combustion chamber. Therefore, unlike the low pressure injection, the spray is not entrained in the burnt gas during the injection period, and the vicinity of the nozzle is There is always an air layer.
Therefore, if it is possible to control so that the burnt gas is positively introduced into the spray in the medium load range, NO X can be reduced under a partial load without smoke generation, and highly efficient internal EGR can be achieved. The idea that this can be done has been proposed before (motor fan, May 1992, p. 54). However, no practical structure or research announcement has been made so far regarding the specific structure for introducing burnt gas into the spray.

【0009】本発明は、上記問題を解決するものであっ
て、従来のパイロット噴射を改良しエンジンの全負荷域
にわたってスモークの発生を低レベルに維持しつつ、N
Xを大幅に低減できる直接噴射式ディーゼル機関を提
供することを目的とする。
The present invention solves the above problems by improving the conventional pilot injection to maintain the smoke generation at a low level over the entire load range of the engine while maintaining the N level.
And to provide a direct injection diesel engine of O X can be greatly reduced.

【0010】[0010]

【課題を解決するための手段】そのために本発明の直接
噴射式ディーゼル機関は、主噴射に先だってパイロット
噴射を可能にする直接噴射式ディーゼル機関において、
ピストン1の頂部に形成される窪み部1bと、該窪み部
1bに立設される中間壁1cにより区画形成される第1
燃焼室8および第2燃焼室9と、該第1燃焼室8と第2
燃焼室9とを連通するスリット1dとを有し、前記主噴
射はスリット1dを通過するように構成し、前記パイロ
ット噴射は前記中間壁1cに衝突させるように構成し、
エンジン高負荷時以外は、パイロット噴射と主噴射を行
い、エンジン高負荷時には主噴射のみを行わせることを
特徴とする。なお、上記構成に付加した番号は、理解を
容易にするために図面と対比させるためのもので、これ
により本発明の構成が何ら限定されるものではない。
Therefore, the direct injection diesel engine of the present invention is a direct injection diesel engine that enables pilot injection prior to main injection.
A first partition defined by a hollow portion 1b formed at the top of the piston 1 and an intermediate wall 1c provided upright in the hollow portion 1b.
The combustion chamber 8 and the second combustion chamber 9, and the first combustion chamber 8 and the second combustion chamber
A slit 1d communicating with the combustion chamber 9, the main injection is configured to pass through the slit 1d, the pilot injection is configured to collide with the intermediate wall 1c,
It is characterized in that pilot injection and main injection are performed except when the engine load is high, and only main injection is performed when the engine load is high. It should be noted that the numbers added to the above configurations are for comparison with the drawings for easy understanding, and the configurations of the present invention are not limited thereby.

【0011】[0011]

【作用】本発明においては、例えば図1に示すように、
エンジン負荷が高負荷以外の低いときは、パイロット噴
射された噴霧が第1燃焼室8の中間壁1cに衝突し着火
し、次に、主噴霧が噴射され第1燃焼室8内の既燃ガス
を巻き込みながら第1燃焼室8のスリット1dを通り第
2燃焼室9内に入り燃焼する。このため、部分負荷での
NOX の発生が抑制される。一方、高負荷域では、パイ
ロット噴射をやめ主噴霧のみとし、これにより主噴霧
は、第1燃焼室8内の空気を導入しながら第1燃焼室8
のスリット1dを通り第2燃焼室9内の空気を導入しな
がら外周壁1aに衝突し着火燃焼するため、スモークの
悪化を抑えることができる。
In the present invention, for example, as shown in FIG.
When the engine load is low except for a high load, the pilot-injected spray collides with the intermediate wall 1c of the first combustion chamber 8 and ignites, and then the main spray is injected and the burned gas in the first combustion chamber 8 is injected. While passing through the slits 1d of the first combustion chamber 8 to enter the second combustion chamber 9 and burn. Therefore, the generation of NO X at the partial load is suppressed. On the other hand, in the high load region, the pilot injection is stopped and only the main spray is supplied, whereby the main spray introduces the air in the first combustion chamber 8 while
Since the air in the second combustion chamber 9 is introduced through the slit 1d and collides with the outer peripheral wall 1a to ignite and burn, it is possible to suppress the deterioration of smoke.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明の直接噴射式ディーゼル機関の1
実施例を示し、図Aは平面図、図Bは図AのB−B線に
沿って矢印方向に見た断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a direct injection diesel engine 1 according to the present invention.
FIG. 3 is a plan view and FIG. 3B is a sectional view taken along the line BB of FIG.

【0013】1はピストン、2はピストンリング、3は
シリンダライナー、4はガスケット、5はシリンダヘッ
ド、6はノズル7を有する燃料噴射弁を示し、ノズル7
には、燃料を噴射する6つの噴孔が設けられているが、
噴孔の数は限定されるものではない。ピストン1は、頂
部に形成される外周壁1aと、その内側に形成される窪
み部1bと、窪み部1bに立設される中間壁1cと、中
間壁1cに所定の間隔で形成されるスリット1dとを有
し、中間壁1cにより第1燃焼室8と第2燃焼室9が形
成される。そして、ノズル7から噴射されるパイロット
噴霧が中間壁1cに衝突するようにするとともに、主噴
霧はスリット1dを通って外周壁1aに衝突するように
する。
Reference numeral 1 is a piston, 2 is a piston ring, 3 is a cylinder liner, 4 is a gasket, 5 is a cylinder head, and 6 is a fuel injection valve having a nozzle 7.
Has six injection holes to inject fuel,
The number of injection holes is not limited. The piston 1 has an outer peripheral wall 1a formed at the top, a recessed portion 1b formed inside thereof, an intermediate wall 1c standing on the recessed portion 1b, and a slit formed at a predetermined interval in the intermediate wall 1c. 1d, and the first combustion chamber 8 and the second combustion chamber 9 are formed by the intermediate wall 1c. Then, the pilot spray injected from the nozzle 7 collides with the intermediate wall 1c, and the main spray passes through the slit 1d and collides with the outer peripheral wall 1a.

【0014】本発明においては、パイロット噴射と主噴
射とは噴射の位置が異なるため、一般の噴射弁は使用で
きない。そのために、前記燃料噴射弁6は、噴射の位置
を変えることが可能な従来公知の弁を利用する。例え
ば、実公昭63−27093号公報に示されている装置
を図2により説明する。図2Aは燃料噴射弁の断面図、
図2Bは図2AのB方向から見た平面図である。
In the present invention, since the injection positions of the pilot injection and the main injection are different, a general injection valve cannot be used. Therefore, the fuel injection valve 6 uses a conventionally known valve that can change the injection position. For example, the device shown in Japanese Utility Model Publication No. 63-27093 will be described with reference to FIG. FIG. 2A is a sectional view of a fuel injection valve,
2B is a plan view seen from the direction B in FIG. 2A.

【0015】燃料噴射弁6は、外筒12内に嵌挿される
第1の針弁13と、第1の針弁13内に嵌挿される第2
の針弁14と、外筒12のノズル7に形成される第1組
目の噴孔15、15、…と、更にその先端部に形成され
る第2組目の噴孔16、16、…と、外筒12内に形成
される第1の燃料供給路17及び第2の燃料供給路18
とを有し、第1及び第2の針弁13、14はそれぞれ図
示しないスプリングにより図で下方向に付勢されてい
る。第1の燃料供給路17は、外筒12と第1の針弁1
3との間に形成された通路19を経て第1組目の噴孔1
5、15、…と連通可能にされ、第2の燃料供給路18
は、第1の針弁13と第2の針弁14との間に形成され
た通路20、21を経て第2組目の噴孔16、16、…
と連通可能にされている。
The fuel injection valve 6 has a first needle valve 13 fitted in the outer cylinder 12 and a second needle valve 13 fitted in the first needle valve 13.
Of the needle valve 14, the first set of injection holes 15, 15 formed in the nozzle 7 of the outer cylinder 12, and the second set of injection holes 16, 16, formed in the tip thereof. And a first fuel supply passage 17 and a second fuel supply passage 18 formed in the outer cylinder 12.
And the first and second needle valves 13 and 14 are urged downward in the drawing by springs (not shown). The first fuel supply passage 17 includes the outer cylinder 12 and the first needle valve 1.
3 through the passage 19 formed between the first injection hole 1
The second fuel supply passage 18 is made to be able to communicate with 5, 15 ,.
Through the passages 20 and 21 formed between the first needle valve 13 and the second needle valve 14, the second set of injection holes 16, 16 ,.
It is possible to communicate with.

【0016】そして、第1組目の噴孔15、15、…か
ら噴射される主噴霧が、図1Aのスリット1dを通って
外周壁1aに衝突するようにし、第2組目の噴孔16、
16、…から噴射されるパイロット噴霧が、図1Aの中
間壁1cに衝突するように配置する。
The main spray injected from the first set of injection holes 15, 15, ... Is made to collide with the outer peripheral wall 1a through the slit 1d of FIG. 1A, and the second set of injection holes 16 is formed. ,
The pilot sprays injected from 16, ... Are arranged so as to collide with the intermediate wall 1c of FIG. 1A.

【0017】図3は、燃料供給系の構成図を示し、図2
の第1及び第2の燃料供給路17、18は、それぞれ主
噴射制御用電磁弁22およびパイロット噴射制御用電磁
弁23を介してコモンレール24、高圧ポンプ25に接
続され、これらは、電子制御装置26においてエンジン
回転数センサ27およびエンジン負荷センサ28の信号
により制御される。
FIG. 3 is a block diagram of the fuel supply system, and FIG.
The first and second fuel supply passages 17 and 18 are connected to a common rail 24 and a high-pressure pump 25 via a main injection control solenoid valve 22 and a pilot injection control solenoid valve 23, respectively, and these are connected to an electronic control unit. At 26, it is controlled by signals from the engine speed sensor 27 and the engine load sensor 28.

【0018】図4および図5は本発明の直接噴射式ディ
ーゼル機関の他の実施例を示し、図4Aは平面図、図4
Bは図4AのB−B線に沿って矢印方向に見た断面図、
図5は燃料供給系の構成図である。なお、前記実施例と
同一の構成については同一番号を付けて説明を省略す
る。
4 and 5 show another embodiment of the direct injection type diesel engine of the present invention, FIG. 4A is a plan view, and FIG.
4B is a sectional view taken along the line BB of FIG.
FIG. 5 is a configuration diagram of the fuel supply system. The same components as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0019】本実施例においては、主噴射弁6aとパイ
ロット噴射弁6bの2つの弁を使用し、主噴射弁6aの
ノズル7aの噴孔が、スリット1dを通って外周壁1a
に衝突するようにし、パイロット噴射弁6bのノズル7
bの噴孔が、中間壁1cに衝突するように配置する。こ
の場合、図5に示すように1つのポンプ25で主噴射弁
6aとパイロット噴射弁6bに供給するようにしてもよ
いし、それぞれ別のポンプを使用してもよい。
In this embodiment, two valves, a main injection valve 6a and a pilot injection valve 6b, are used, and the injection hole of the nozzle 7a of the main injection valve 6a passes through the slit 1d and the outer peripheral wall 1a.
To the nozzle 7 of the pilot injection valve 6b.
The nozzle hole of b is arranged so as to collide with the intermediate wall 1c. In this case, one pump 25 may be used to supply the main injection valve 6a and the pilot injection valve 6b as shown in FIG. 5, or separate pumps may be used.

【0020】次に、本発明の直接噴射式ディーゼル機関
の制御方法について説明する。図6は制御系の構成図、
図7は制御用データを示す図、図8は制御フローを示す
図である。
Next, the control method of the direct injection type diesel engine of the present invention will be described. 6 is a block diagram of the control system,
FIG. 7 is a diagram showing control data, and FIG. 8 is a diagram showing a control flow.

【0021】エンジン回転数センサ27およびエンジン
負荷センサ28の検出信号は電子制御装置26に入力さ
れ、ここでメモリ29に記憶されている制御用データに
基づいて比較、演算、処理され、その出力信号が主噴射
制御用電磁弁22およびパイロット噴射制御用電磁弁2
3に出力される。メモリ29には、図7に示す制御用デ
ータが記憶され、図8に示す処理が行われる。すなわ
ち、現在のエンジン負荷Lが、所定のエンジン負荷L1
より大きいか否かを判別し、負荷L1 以下では、パイロ
ット噴射をした後、主噴射を行い、負荷L1 を越えると
主噴射のみを行うように主噴射制御用電磁弁22および
パイロット噴射制御用電磁弁23制御するものである。
The detection signals of the engine speed sensor 27 and the engine load sensor 28 are input to the electronic control unit 26, where they are compared, calculated and processed based on the control data stored in the memory 29, and their output signals are output. Is a main injection control solenoid valve 22 and a pilot injection control solenoid valve 2
3 is output. The memory 29 stores the control data shown in FIG. 7, and the processing shown in FIG. 8 is performed. That is, the current engine load L is equal to the predetermined engine load L 1
If it is larger than the load L 1 , the main injection is performed after the pilot injection, and the main injection is performed when the load L 1 is exceeded, and the main injection is performed only when the load L 1 is exceeded. The solenoid valve 23 is controlled.

【0022】従って、エンジン負荷が高負荷以外の低い
ときは、パイロット噴射された噴霧が第1燃焼室8の中
間壁1cに衝突し着火し、次に、主噴霧が噴射され第1
燃焼室8内の既燃ガスを巻き込みながら第1燃焼室8の
スリット1dを通り第2燃焼室9内に入り燃焼する。こ
のため、部分負荷でのNOX の発生が抑制される。な
お、図12で説明したように低負荷域及び中負荷域では
もともとスモーク濃度は十分余裕があり既燃ガス導入に
よるスモークへの悪影響は少ない。一方、高負荷域で
は、パイロット噴射をやめ主噴霧のみとし、これにより
主噴霧は、第1燃焼室8内の空気を導入しながら第1燃
焼室8のスリット1dを通り第2燃焼室9の外周壁1a
に衝突し着火燃焼するため、スモークの悪化を抑えるこ
とができる。なお、高負荷域では図12で説明したよう
にもともとNOX 濃度は低い。
Therefore, when the engine load is low except for a high load, the spray injected as a pilot collides with the intermediate wall 1c of the first combustion chamber 8 and ignites, and then the main spray is injected as the first spray.
While entraining the burned gas in the combustion chamber 8, it enters the second combustion chamber 9 through the slit 1d of the first combustion chamber 8 and burns. Therefore, the generation of NO X at the partial load is suppressed. As described with reference to FIG. 12, the smoke concentration originally has a sufficient margin in the low load region and the medium load region, and the adverse effect on the smoke due to the introduction of the burnt gas is small. On the other hand, in the high load region, the pilot injection is stopped and only the main spray is supplied, whereby the main spray passes through the slit 1d of the first combustion chamber 8 and introduces the air in the first combustion chamber 8 into the second combustion chamber 9. Outer wall 1a
Smoke can be prevented from being deteriorated because it collides with and is ignited and burned. Incidentally, originally NO X concentration as in the high load region described in FIG. 12 is low.

【0023】[0023]

【発明の効果】以上の説明から明らかなように本発明に
よれば、主噴射に先だってパイロット噴射を可能にする
直接噴射式ディーゼル機関において、ピストンの頂部に
形成される窪み部と、該窪み部に立設される中間壁によ
り区画形成される第1燃焼室および第2燃焼室と、該第
1燃焼室と第2燃焼室とを連通するスリットとを有し、
前記主噴射はスリットを通過するように構成し、前記パ
イロット噴射は前記中間壁に衝突させるように構成し、
エンジン高負荷時以外は、パイロット噴射と主噴射を行
い、エンジン高負荷時には主噴射のみを行わせるので、
従来のパイロット噴射を改良しエンジンの全負荷域にわ
たってスモークの発生を低レベルに維持しつつ、NOX
を大幅に低減できる。
As is apparent from the above description, according to the present invention, in a direct injection diesel engine that enables pilot injection prior to main injection, a recess formed at the top of the piston and the recess. A first combustion chamber and a second combustion chamber that are partitioned by an intermediate wall that is erected on the first combustion chamber, and a slit that connects the first combustion chamber and the second combustion chamber,
The main injection is configured to pass through a slit, the pilot injection is configured to collide with the intermediate wall,
Since pilot injection and main injection are performed except when the engine is under high load, and only main injection is performed when the engine is under high load,
While improving the conventional pilot injection and keeping the generation of smoke at a low level over the entire engine load range, NO X
Can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の直接噴射式ディーゼル機関の1実施例
を示し、図Aは平面図、図Bは図AのB−B線に沿って
矢印方向に見た断面図
1 shows an embodiment of a direct injection type diesel engine of the present invention, FIG. A is a plan view, and FIG. B is a sectional view taken along the line BB of FIG.

【図2】図1の実施例に使用される燃料噴射弁を示し、
図Aは断面図、図Bは図AのB方向から見た平面図
2 shows a fuel injection valve used in the embodiment of FIG.
FIG. A is a sectional view, and FIG. B is a plan view seen from the direction B of FIG.

【図3】図1の実施例における燃料供給系の構成図FIG. 3 is a configuration diagram of a fuel supply system in the embodiment of FIG.

【図4】本発明の直接噴射式ディーゼル機関の他の実施
例を示し、図Aは平面図、図Bは図AのB−B線に沿っ
て矢印方向に見た断面図
FIG. 4 shows another embodiment of the direct injection type diesel engine of the present invention, FIG. A is a plan view, and FIG. B is a sectional view taken along the line BB of FIG.

【図5】図4の実施例における燃料供給系の構成図5 is a configuration diagram of a fuel supply system in the embodiment of FIG.

【図6】本発明における制御系の構成図FIG. 6 is a configuration diagram of a control system according to the present invention.

【図7】本発明における制御用データを示す図FIG. 7 is a diagram showing control data in the present invention.

【図8】本発明における制御フローを示す図FIG. 8 is a diagram showing a control flow in the present invention.

【図9】従来の直接噴射式ディーゼル機関の例を示し、
図Aは断面図、図Bは平面図
FIG. 9 shows an example of a conventional direct injection diesel engine,
Figure A is a sectional view and Figure B is a plan view

【図10】燃料噴射時期と、着火遅れ時間、NOX 濃度
およびスモーク濃度との関係を説明するための図
FIG. 10 is a diagram for explaining the relationship between fuel injection timing, ignition delay time, NO X concentration, and smoke concentration.

【図11】パイロット噴射の有無により燃料噴射時期と
NOX 濃度との関係を説明するための図
FIG. 11 is a diagram for explaining the relationship between fuel injection timing and NO X concentration depending on the presence or absence of pilot injection.

【図12】エンジン負荷とNOX 濃度およびスモーク濃
度との関係を説明するための図
FIG. 12 is a diagram for explaining the relationship between engine load and NO X concentration and smoke concentration.

【図13】本発明の課題を説明するためのパイロット噴
射を説明する図
FIG. 13 is a diagram for explaining pilot injection for explaining the problems of the present invention.

【符号の説明】[Explanation of symbols]

1…ピストン、3…シリンダ、5…シリンダヘッド、6
…燃料噴射弁 7…ノズル、8…第1燃焼室、9…第2燃焼室、1a…
外周壁、1b…窪み部 1c…中間壁、1d…スリット
1 ... Piston, 3 ... Cylinder, 5 ... Cylinder head, 6
... fuel injection valve 7 ... nozzle, 8 ... first combustion chamber, 9 ... second combustion chamber, 1a ...
Outer peripheral wall, 1b ... Recessed portion 1c ... Intermediate wall, 1d ... Slit

フロントページの続き (72)発明者 辻村欽司 茨城県つくば市苅間2530番地 財団法人 日本自動車研究所内 株式会社新燃焼シス テム研究所内Front page continuation (72) Inventor Kinji Tsujimura 2530, Kuma, Tsukuba-shi, Ibaraki Japan Automobile Research Institute Co., Ltd. Shin Combustion System Research Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主噴射に先だってパイロット噴射を可能に
する直接噴射式ディーゼル機関において、ピストンの頂
部に形成される窪み部と、該窪み部に立設される中間壁
により区画形成される第1燃焼室および第2燃焼室と、
該第1燃焼室と第2燃焼室とを連通するスリットとを有
し、前記主噴射はスリットを通過するように構成し、前
記パイロット噴射は前記中間壁に衝突させるように構成
し、エンジン高負荷時以外は、パイロット噴射と主噴射
を行い、エンジン高負荷時には主噴射のみを行わせるこ
とを特徴とする直接噴射式ディーゼル機関。
1. A direct injection diesel engine that enables pilot injection prior to main injection, and a first section defined by a recess formed at the top of the piston and an intermediate wall standing upright in the recess. A combustion chamber and a second combustion chamber,
It has a slit that connects the first combustion chamber and the second combustion chamber, the main injection is configured to pass through the slit, the pilot injection is configured to collide with the intermediate wall, A direct-injection diesel engine characterized by performing pilot injection and main injection except during load, and performing only main injection during high engine load.
JP4172997A 1992-06-30 1992-06-30 Direct injection type diesel engine Pending JPH0610673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172997A JPH0610673A (en) 1992-06-30 1992-06-30 Direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172997A JPH0610673A (en) 1992-06-30 1992-06-30 Direct injection type diesel engine

Publications (1)

Publication Number Publication Date
JPH0610673A true JPH0610673A (en) 1994-01-18

Family

ID=15952275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172997A Pending JPH0610673A (en) 1992-06-30 1992-06-30 Direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPH0610673A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100185A (en) * 1998-08-14 2000-08-08 Micron Technology, Inc. Semiconductor processing method of forming a high purity <200> grain orientation tin layer and semiconductor processing method of forming a conductive interconnect line
US6365507B1 (en) 1999-03-01 2002-04-02 Micron Technology, Inc. Method of forming integrated circuitry
US6524951B2 (en) 1999-03-01 2003-02-25 Micron Technology, Inc. Method of forming a silicide interconnect over a silicon comprising substrate and method of forming a stack of refractory metal nitride over refractory metal silicide over silicon
JP2006118427A (en) * 2004-10-21 2006-05-11 Toyota Motor Corp Compression ignition internal combustion engine
US7691750B2 (en) 2003-06-12 2010-04-06 Asm International N.V. Methods of forming films in semiconductor devices with solid state reactants
US7927942B2 (en) 2008-12-19 2011-04-19 Asm International N.V. Selective silicide process
JP2012241640A (en) * 2011-05-20 2012-12-10 Nippon Soken Inc Fuel injection control device
US8813713B2 (en) 2010-12-22 2014-08-26 Caterpillar Inc. Piston with cylindrical wall
JPWO2014196035A1 (en) * 2013-06-05 2017-02-23 トヨタ自動車株式会社 Control device for internal combustion engine
US9657681B2 (en) 2013-06-10 2017-05-23 Toyota Jidosha Kabushiki Kaisha Engine control device
RU2723260C1 (en) * 2019-09-12 2020-06-09 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Device for mixture formation in internal combustion engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155529A (en) * 1983-02-25 1984-09-04 Agency Of Ind Science & Technol Pilot injection device of direct injection type diesel engine
JPS62150052A (en) * 1985-12-23 1987-07-04 Toyota Motor Corp Pilot injection control method for electronically controlled diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155529A (en) * 1983-02-25 1984-09-04 Agency Of Ind Science & Technol Pilot injection device of direct injection type diesel engine
JPS62150052A (en) * 1985-12-23 1987-07-04 Toyota Motor Corp Pilot injection control method for electronically controlled diesel engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100185A (en) * 1998-08-14 2000-08-08 Micron Technology, Inc. Semiconductor processing method of forming a high purity <200> grain orientation tin layer and semiconductor processing method of forming a conductive interconnect line
US6365507B1 (en) 1999-03-01 2002-04-02 Micron Technology, Inc. Method of forming integrated circuitry
US6524951B2 (en) 1999-03-01 2003-02-25 Micron Technology, Inc. Method of forming a silicide interconnect over a silicon comprising substrate and method of forming a stack of refractory metal nitride over refractory metal silicide over silicon
US6951786B2 (en) 1999-03-01 2005-10-04 Micron Technology, Inc. Method of forming a stack of refractory metal nitride over refractory metal silicide over silicon
US7691750B2 (en) 2003-06-12 2010-04-06 Asm International N.V. Methods of forming films in semiconductor devices with solid state reactants
JP2006118427A (en) * 2004-10-21 2006-05-11 Toyota Motor Corp Compression ignition internal combustion engine
US7927942B2 (en) 2008-12-19 2011-04-19 Asm International N.V. Selective silicide process
US8813713B2 (en) 2010-12-22 2014-08-26 Caterpillar Inc. Piston with cylindrical wall
JP2012241640A (en) * 2011-05-20 2012-12-10 Nippon Soken Inc Fuel injection control device
JPWO2014196035A1 (en) * 2013-06-05 2017-02-23 トヨタ自動車株式会社 Control device for internal combustion engine
US9657681B2 (en) 2013-06-10 2017-05-23 Toyota Jidosha Kabushiki Kaisha Engine control device
RU2723260C1 (en) * 2019-09-12 2020-06-09 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Device for mixture formation in internal combustion engines

Similar Documents

Publication Publication Date Title
US7814883B2 (en) Internal combustion engine with auxiliary combustion chamber
JP2003083119A (en) Direct injection type diesel engine
JPH08284665A (en) Combustion control method for engine and its device
JP3827102B2 (en) Fuel injection control method for diesel engine
JPH0610673A (en) Direct injection type diesel engine
JP2010138743A (en) Diesel engine and control method for diesel engine
JP2653556B2 (en) Combustion chamber of direct injection diesel engine
JPH0586864A (en) Combustion chamber of direct injection type diesel engine
JPH05272338A (en) Combustion chamber of direct injection type diesel engine
JP2002285844A (en) Compression self-ignition type internal combustion engine
JP2675935B2 (en) Direct injection diesel engine combustion method
JP2653571B2 (en) Combustion chamber of direct injection diesel engine
JP2561761B2 (en) Direct injection diesel engine
JPH11210472A (en) Structure of combustion chamber in cylinder injection type spark ignition engine
JPH0693863A (en) Direct injection diesel engine
JP2002097960A (en) Combustion method for internal combustion engine
JPH0882219A (en) Combustion mechanism for diesel engine
JP2006336502A (en) Cylinder injection internal combustion engine
JP3743575B2 (en) Fuel injection control device for diesel engine
JP3581540B2 (en) Diesel engine
JPH04219417A (en) Combustion chamber of direct injection type diesel engine
JP2653588B2 (en) Direct injection diesel engine combustion method
JPH0510131A (en) Combustion chamber of directly injecting type diesel engine
JP2000297682A (en) Internal combustion engine of cylinder injection type
JPS61250364A (en) Spark-ignition engine