[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06106313A - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting

Info

Publication number
JPH06106313A
JPH06106313A JP27931492A JP27931492A JPH06106313A JP H06106313 A JPH06106313 A JP H06106313A JP 27931492 A JP27931492 A JP 27931492A JP 27931492 A JP27931492 A JP 27931492A JP H06106313 A JPH06106313 A JP H06106313A
Authority
JP
Japan
Prior art keywords
inner hole
nozzle
powder line
hole body
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27931492A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasai
勝浩 笹井
Yoshimasa Mizukami
義正 水上
Tsuyoshi Matsuda
強志 松田
Yasuhiro Sakamoto
康裕 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27931492A priority Critical patent/JPH06106313A/en
Publication of JPH06106313A publication Critical patent/JPH06106313A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To prevent a blistering and enable an inclusion to float and separate by arranging an inner hole body of gas blowing part in the powder line erosion part and non erosion part of a main body peripheral and keeping SiO content of the inner hole body under the prescribed value. CONSTITUTION:An inner body is arranged as divided corresponding to the powder line erosion part and non erosion part of a main body peripheral and a content of SiO2 is kept under 5wt.%. Because each Ar flow is independently changed, by reducing Ar flow of a lower inner hole body 1b with a flow of a upper inner hole body 1b increased, the gas blowing pressure, which is applied on the powder line part 3 with keeping total flow constant, is reduced. As Ar flow required for preventing nozzle clogging is secured, the pressure applied on the powder line 3 is reduced, preventing crack generation. Quality of the steel plate produced by this method is stable, improving yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼の連続鋳造におい
て、溶鋼をタンディッシュからモールド内へ鋳込むため
に使用されるガス吹き込み型浸漬ノズルに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas injection type immersion nozzle used for casting molten steel from a tundish into a mold in continuous casting of steel.

【0002】[0002]

【従来の技術】現在、連続鋳造においては、溶鋼を酸化
させることなくタンディッシュからモールド内に供給す
るために、浸漬ノズルが利用されている。浸漬ノズルの
材質としては、アルミナ及び炭素を主体とし、これに2
0wt%程度のシリカを含有するものが主流となってい
る。このような浸漬ノズルでは、鋳造時間の経過ととも
に鋼中析出物のアルミナ及び地金がノズル内壁に付着
し、激しい場合にはノズル閉塞を引き起こし鋳造を停止
する場合もあった。
2. Description of the Related Art At present, in continuous casting, an immersion nozzle is used to supply molten steel from a tundish into a mold without oxidizing it. As the material of the immersion nozzle, alumina and carbon are mainly used.
Those containing about 0 wt% silica are the mainstream. In such a submerged nozzle, alumina and metal ingots deposited in steel adhere to the inner wall of the nozzle as the casting time elapses, and when violent, the nozzle may be clogged and the casting may be stopped.

【0003】この問題を解決する手段の1つとして、例
えば、特公昭58−3467号公報に示されるように、
浸漬ノズル内孔と同心円となる多孔質の筒状耐火物(内
孔体)を浸漬ノズル本体に内挿し、この多孔質耐火物内
壁からArその他の不活性ガスを吹き込むことが知られ
ている。しかし、本方法により吹き込まれたArガス
は、一部モールド内で浮上中に凝固界面に捕捉され、気
泡として鋳片内に残留する。
As one of means for solving this problem, for example, as shown in Japanese Patent Publication No. 58-3467,
It is known to insert a porous cylindrical refractory (inner hole body) that is concentric with the inner hole of the immersion nozzle into the main body of the immersion nozzle and blow Ar or another inert gas from the inner wall of the porous refractory. However, the Ar gas blown by this method is partially trapped at the solidification interface while floating in the mold, and remains as bubbles in the slab.

【0004】この気泡は、大きなものほど熱間圧延、冷
間圧延後も圧着されず、鋼板表面にふくれ欠陥として現
れる。ここで、ふくれ欠陥とは熱間圧延、冷間圧延後の
鋼板表面に現れる欠陥で、幅1〜4mm、長さ数mmに
隆起した、あるいはこれら数mmの隆起が点状に連続し
300mmにも渡って連なったものをいう。このふくれ
欠陥は鋼板中の炭素濃度を極力低下させた、例えば炭素
濃度が50ppm以下の極低炭素鋼において、製品中の
固溶炭素を析出物として固定させるためにTiを添加さ
せた鋼種にとりわけ多く発生し、製品歩留まりの大幅な
低下を招いている。
The larger the bubbles, the more they are not pressure-bonded after hot rolling or cold rolling, and appear as swelling defects on the surface of the steel sheet. Here, the blistering defect is a defect that appears on the surface of the steel sheet after hot rolling or cold rolling, and is raised to a width of 1 to 4 mm and a length of several mm, or these raised portions of several mm are continuous in a dot shape to 300 mm. It is a string that has been crossed over. This blistering defect is particularly caused in the steel type in which Ti is added to fix the solid solution carbon in the product as a precipitate in an extremely low carbon steel in which the carbon concentration in the steel sheet is reduced as much as possible, for example, in an extremely low carbon steel having a carbon concentration of 50 ppm or less. It often occurs, causing a significant decrease in product yield.

【0005】そこで、浸漬ノズルの閉塞防止を確実に享
受しつつ、ふくれ欠陥の発生を抑制するために、溶鋼ト
ン当たり4Nl以下に制限したArと残余N2 との混合
ガスを用い、鋳片内部に捕捉されるガス気泡に基づく1
mmφ以上のピンホール数をトン当たり10個以内に低
減させる方法(特開昭62−38747号公報)が報告
され効果を発揮している。
Therefore, in order to surely prevent the immersion nozzle from being blocked and to prevent the occurrence of blistering defects, a mixed gas of Ar and the residual N 2 which is limited to 4 Nl or less per ton of molten steel is used, and the inside of the slab is used. Based on gas bubbles trapped in
A method of reducing the number of pinholes of mmφ or more to 10 or less per ton (Japanese Patent Laid-Open No. 62-38747) has been reported and is effective.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、浸漬ノ
ズルから窒素ガスを吹き込んだ場合には、特に鋳造速度
が速くなり窒素気泡が鋳片の奥深くまで持ち込まれ溶鋼
との接触時間が長くなると、溶鋼中に吸収され、既に存
在する以上に溶鋼中窒素濃度が増加する。この窒素成分
は薄鋼板の加工性、成形性に支障をきたす恐れがあり、
極力低いほうが好ましい。したがって、鋼材特性の一層
の向上が望まれる今日にあっては、窒素濃度が現状以上
に増加した場合には、材質を確保するために添加合金の
量が増加し、精練上のコスト増加をまぬがれない。
However, when nitrogen gas is blown from the immersion nozzle, the casting speed becomes particularly high, and when nitrogen bubbles are brought deep into the slab and the contact time with the molten steel becomes long, the molten steel is Nitrogen concentration in molten steel increases more than it already exists. This nitrogen component may impair the workability and formability of the thin steel sheet,
It is preferably as low as possible. Therefore, in the present day when further improvement of steel material properties is desired, when the nitrogen concentration is increased beyond the current level, the amount of the additive alloy is increased to secure the material, and the cost for refining is not increased. Absent.

【0007】これらの問題点を鑑み、本発明は、ノズル
閉塞の防止に必要なガス吹き込み流量を確保した上で、
大幅な精練コストの増加もなく、また鋼材の材質を損ね
ることなく、常に安定してふくれ欠陥のない加工用鋼板
素材を鋳造できる連続鋳造用浸漬ノズルを提供すること
を目的とするものである。
In view of these problems, the present invention secures a gas blowing flow rate necessary for preventing nozzle clogging, and
An object of the present invention is to provide a continuous casting immersion nozzle capable of casting a stable steel plate material without swelling defects, without any significant increase in refining cost and without damaging the material of the steel material.

【0008】[0008]

【課題を解決するための手段】本発明は、ガス吹き込み
型連続鋳造用浸漬ノズルにおいて、ガス吹き込み部にあ
たる内孔体を本体外周のパウダーライン溶損部と非溶損
部とに対応させて分割して配置するとともに、内孔体の
SiO2 含有率を5wt%以下としたことを特徴とする
連続鋳造用浸漬ノズルに関するものである。
DISCLOSURE OF THE INVENTION According to the present invention, in a gas-blowing-type continuous casting immersion nozzle, an inner hole body corresponding to a gas-blowing portion is divided in correspondence with a powder line melting portion and a non-melting portion on the outer periphery of the main body. The present invention relates to the immersion casting nozzle for continuous casting, characterized in that the SiO 2 content of the inner hole body is 5 wt% or less.

【0009】[0009]

【作用】発明者等は、ノズル閉塞を防止するための浸漬
ノズルからのArガス吹き込みは従来どうり積極的に実
施し、その上でふくれ欠陥につながらない熱延、冷延鋼
板用鋳片を鋳造できる連続鋳造用浸漬ノズルの研究開発
を続けてきた。以下では、最も一般的なアルミナグラフ
ァイト質ノズルについて詳細に説明する。
The inventors of the present invention have positively injected Ar gas from the dipping nozzle to prevent nozzle clogging, and then cast hot-rolled and cold-rolled steel sheet slabs that do not lead to blistering defects. We have continued to research and develop a dipping nozzle for continuous casting. The most common alumina graphite nozzle will be described in detail below.

【0010】鋳片内に捕捉された気泡は、大きなものほ
ど熱間圧延、冷間圧延後にふくれ欠陥につながり易い。
そこで、本発明者等は浸漬ノズル内孔体の劣化によるA
r気泡径の粗大化がふくれ欠陥発生の原因と考え、特に
欠陥発生率の高いTiを含有する極低炭素鋼を鋳造した
浸漬ノズルについて詳細な調査を行った。
The larger the bubbles trapped in the slab, the more easily they will lead to swelling defects after hot rolling and cold rolling.
Therefore, the inventors of the present invention have considered that A
It is considered that the coarsening of the bubble diameter of r is the cause of the occurrence of blistering defects, and in particular, a detailed investigation was carried out on the immersion nozzle cast from the ultra-low carbon steel containing Ti, which has a high defect occurrence rate.

【0011】なお、浸漬ノズル内孔体の組成はシリカ2
6wt%、黒鉛24wt%、アルミナ50wt%であ
る。水中でのAtガス吹き込み試験では、未使用内孔体
の平均気泡径が0.3mmであるのに対し、Tiを含有
する極低炭素鋼を鋳造した内孔体では平均気泡径が2.
0mmにも達していた。
The composition of the pores in the immersion nozzle is silica 2
6 wt%, graphite 24 wt%, alumina 50 wt%. In an At gas blowing test in water, the average pore diameter of the unused inner pores was 0.3 mm, whereas the average pore diameter of the inner pores cast from the ultra-low carbon steel containing Ti had an average pore diameter of 2.
It was as high as 0 mm.

【0012】また、気泡径が粗大化する原因を明らかに
するために浸漬ノズルから内孔体部を切り出し、溶鋼接
触面の組織観察及びEPMAによる面分析を行った。こ
れにより、内孔体中に含まれているシリカが溶鋼中のT
iにより間接的に還元され、組織中から消失すること
で、Ar気泡径が粗大化していることを見出した。
Further, in order to clarify the cause of the coarsening of the bubble diameter, the inner hole portion was cut out from the dipping nozzle, the structure of the molten steel contact surface was observed, and the surface analysis by EPMA was performed. As a result, the silica contained in the inner pores is
It was found that the Ar bubble diameter is coarsened by being indirectly reduced by i and disappearing from the tissue.

【0013】ここで、間接的な反応とは、(1)、
(2)、(3)式で示されるような反応で、シリカが耐
火物中に共存する黒鉛 耐火物中 SiO2 +C=SiO(ガス)+CO(ガス) (1) 耐火物/溶鋼界面 2SiO(ガス)+Ti=TiO2 +2Si (2) 2CO(ガス)+Ti=TiO2 +2 (3) と反応しSiOガスとCOガスを生成し、これらガスが
溶鋼中のTiにより還元されるものである。したがっ
て、Tiを含有する極低炭素鋼に発生するふくれ欠陥を
防止するためには内孔体中のシリカ含有率を低減し、
(1)式の反応を抑制することが有効となる。
Here, the indirect reaction is (1),
Graphite in which silica coexists in the refractory by the reactions represented by the formulas (2) and (3) SiO 2 + C = SiO (gas) + CO (gas) in the refractory (1) refractory / molten steel interface 2SiO ( Gas) + Ti = TiO 2 +2 Si (2) 2CO (gas) + Ti = TiO 2 +2 C (3) to generate SiO gas and CO gas, which are reduced by Ti in the molten steel Is. Therefore, in order to prevent the blistering defect that occurs in the ultra-low carbon steel containing Ti, the silica content in the inner pore body is reduced,
It is effective to suppress the reaction of formula (1).

【0014】しかしながら、シリカを含有しない浸漬ノ
ズル内孔体はシリカ消失に伴う気孔率・気孔径の増大が
ないため、Arガス吹き込み圧力は高いまま維持され
る。このため、パウダーによるノズル本体外周の溶損が
進行する連々鋳後半で、ガス吹き込み圧力に耐えきれず
ノズル外周に縦割れが発生する。
However, since the porosity and the pore diameter of the submerged nozzle inner body not containing silica do not increase with the disappearance of silica, the Ar gas blowing pressure is kept high. For this reason, in the latter half of continuous casting, in which melting of the outer circumference of the nozzle body due to the powder progresses, vertical cracks occur in the outer circumference of the nozzle due to inability to withstand the gas blowing pressure.

【0015】そこで、本発明者等はノズル本体外周のパ
ウダー溶損部への負荷を小さくし、割れ発生を防止する
方法について検討を行った結果、図1に示すように、浸
漬ノズル内孔体を本体外周のパウダーライン溶損部と非
溶損部とに対応させて分割して設けることにより、ノズ
ル外周の縦割れを完全に防止できることを見出した。こ
こに、以下の説明では上記本体外周のパウダーライン溶
損部に対応する内孔体を下部内孔体1b、非溶損部に対
応する内孔体を上部内孔体1aと呼称する。
Therefore, the inventors of the present invention conducted a study on a method for reducing the load on the powder melt-damaged portion on the outer periphery of the nozzle body to prevent the occurrence of cracks. As a result, as shown in FIG. It has been found that vertical cracks on the outer circumference of the nozzle can be completely prevented by providing the divided parts corresponding to the powder line melted part and the non-melted part on the outer circumference of the main body. Here, in the following description, the inner hole body corresponding to the powder line melted portion on the outer periphery of the main body is referred to as the lower inner hole body 1b, and the inner hole body corresponding to the non-melted portion is referred to as the upper inner hole body 1a.

【0016】図2に、従来ノズルの形状を示す。浸漬ノ
ズルのArガス吹き込み圧力ΔP(kgf/cm2
は、内孔体厚みL(cm)、Arガス流量Q(cm3
min/cm2 )、気孔率ε、気孔径d(cm)及びA
rガスの粘度μ(kgf/cm2 ・s)の関数として
(4)式で与えられる。
FIG. 2 shows the shape of a conventional nozzle. Ar gas blowing pressure ΔP (kgf / cm 2 ) of immersion nozzle
Is the inner pore thickness L (cm), Ar gas flow rate Q (cm 3 /
min / cm 2 ), porosity ε, pore diameter d (cm) and A
It is given by the equation (4) as a function of the viscosity of r gas μ (kgf / cm 2 · s).

【0017】一方、ノズル本体2の耐え得る圧力Pmax
(kgf/cm2 )は割れ発生の応力σmax (kgf/
cm2 )を用いて(5)式で求められる。ここで、a
(cm)とb(cm)は各々ノズル本体2の内径と外径
である。
On the other hand, the pressure P max that the nozzle body 2 can withstand
(Kgf / cm 2 ) is the stress σ max (kgf /
cm 2 ) and is calculated by the equation (5). Where a
(Cm) and b (cm) are the inner diameter and the outer diameter of the nozzle body 2, respectively.

【0018】内孔体1のシリカを低減したノズルでは気
孔率ε、気孔径dの増大がないため、(4)式から分か
るようにArガス吹き込み圧力ΔPは高いまま維持され
る。これに対し、連々鋳の進行に伴いパウダーライン3
のノズル外径bが溶損により減少するため、(5)式か
ら分かるようにノズル本体2の強度Pmax は小さくな
る。
Since the porosity ε and the pore diameter d are not increased in the nozzle in which the silica of the inner pore body 1 is reduced, the Ar gas blowing pressure ΔP is kept high as can be seen from the equation (4). On the other hand, powder line 3
Since the outer diameter b of the nozzle is reduced due to melting loss, the strength P max of the nozzle body 2 becomes small as can be seen from the equation (5).

【0019】その結果、連々鋳後半でΔP>Pmax の条
件になり、ノズルに縦割れが発生する。なお、従来ノズ
ルでは、シリカ消失に基づく気孔率、気孔径の増大によ
り、Arガス吹き込み圧力ΔPも低下するため、現状の
使用条件下では連々鋳後半で割れ発生の条件ΔP>P
max を満たすことはない。
As a result, the condition of ΔP> P max is continuously satisfied in the latter half of casting, and vertical cracking occurs in the nozzle. In the conventional nozzle, since the Ar gas blowing pressure ΔP also decreases due to the increase in the porosity and the pore diameter due to the disappearance of silica, under the current usage conditions, the condition for cracking in the latter half of the casting ΔP> P
It never meets max .

【0020】しかし、図1に示すように内孔体を本体外
周のパウダーライン溶損部と非溶損部に対応させて分割
して設ければ、各々のAr流量を独立に変更できるた
め、上部内孔体1aの流量を上げ、下部内孔体1bのA
r流量を減少させれば、全体の流量を一定にした状態で
パウダーライン部3に加わるガス吹き込み圧力を低減で
きる。このため、連々鋳後半で溶損によりパウダーライ
ン3の強度が低下しても、ノズル閉塞防止に必要なAr
流量を確保した上で、パウダーライン3に加わる圧力を
低減し割れ発生を防止できる。なお、上部内孔体1aで
は反対にArガス流量が増し、ガス吹き込み圧力が増大
するが、この部分ではノズル外周の溶損がないためノズ
ル強度の低下がなく割れ発生の問題は生じない。
However, as shown in FIG. 1, if the inner hole body is divided and provided corresponding to the powder line melting portion and the non-melting portion on the outer periphery of the main body, each Ar flow rate can be changed independently. Increase the flow rate of the upper inner hole body 1a to increase the A of the lower inner hole body 1b.
If the flow rate of r is reduced, the gas injection pressure applied to the powder line section 3 can be reduced while keeping the overall flow rate constant. Therefore, even if the strength of the powder line 3 is reduced due to melting loss in the latter half of continuous casting, the Ar required for preventing nozzle clogging is prevented.
After securing the flow rate, the pressure applied to the powder line 3 can be reduced to prevent cracking. On the contrary, in the upper inner hole body 1a, the Ar gas flow rate increases and the gas injection pressure increases, but since there is no melting loss on the outer circumference of the nozzle at this portion, there is no decrease in nozzle strength and there is no problem of cracking.

【0021】以上の結果から、本発明により、割れ発生
を防止すると共に、気孔径拡大が抑制され微細な気泡を
安定して吹き込むことができるため、ふくれ欠陥防止に
非常に有効な浸漬ノズルを提供できる。
From the above results, according to the present invention, it is possible to prevent the occurrence of cracks, suppress the expansion of the pore diameter, and stably blow in fine air bubbles. it can.

【0022】本発明において、内孔体にはふくれ欠陥防
止の観点からシリカを含有しないことが好ましいが、必
要な場合には5wt%以下に限って添加しても良い。こ
れは、シリカ含有率が5wt%以下であれば、反応速度
が非常に遅くなること、さらにシリカが全て消失しても
気泡径が大きくする程気孔率や気孔径が増大しないため
である。
In the present invention, it is preferable that silica is not contained in the inner pore body from the viewpoint of preventing blistering defects, but if necessary, it may be added in an amount of 5 wt% or less. This is because if the silica content is 5 wt% or less, the reaction rate becomes very slow, and further, even if all the silica disappears, the porosity and the pore diameter do not increase as the bubble diameter increases.

【0023】アルミナは耐蝕性を付与する役割を持ち、
内孔体への好ましい配合率は30〜80wt%である。
30wt%未満では耐蝕性が不十分で、80wt%を超
えると熱膨張率が大きくなり耐スポーリング性が低下す
る。
Alumina has a role of imparting corrosion resistance,
The preferable compounding ratio to the inner pore body is 30 to 80 wt%.
If it is less than 30 wt%, the corrosion resistance is insufficient, and if it exceeds 80 wt%, the coefficient of thermal expansion becomes large and the spalling resistance decreases.

【0024】黒鉛は成形性及び耐スポーリング性に優れ
ていることから、内孔体には耐蝕性を低下させない範囲
で黒鉛を添加する。内孔体への黒鉛の配合範囲について
は5〜40wt%程度が好ましい。5wt%未満では成
形性及び耐スポーリング性が低下し、40wt%を超え
ると黒鉛の酸化や溶鋼中への溶出により耐蝕性が低下す
る。また、高熱伝導率のためノズル詰まりを生ずる恐れ
もある。
Since graphite is excellent in moldability and spalling resistance, graphite is added to the inner pores within a range not deteriorating the corrosion resistance. The blending range of graphite in the inner pores is preferably about 5 to 40 wt%. If it is less than 5 wt%, the formability and spalling resistance are lowered, and if it exceeds 40 wt%, the corrosion resistance is lowered due to oxidation of graphite and elution into molten steel. Further, the high thermal conductivity may cause nozzle clogging.

【0025】浸漬ノズル内孔体の基本的な構成成分は以
上であるが、この他にもノズル材質への添加物として既
に知られている材料を、本発明の効果を損なわない範囲
で含有させてもよい。その材料としては、例えば炭化珪
素、ジルコニア、ジルコン、各種金属粉等である。これ
ら構成成分から成る耐火物を用いて、ノズル内孔体を構
成する際、ノズル本体に関しても同一材料を使用するこ
とが望ましいが、溶鋼と接触しない部分に関しては、従
来のシリカを含有する組成の材料を用いることもでき、
また両者の中間的な材質を介在させることも可能であ
る。
Although the basic constituent components of the submerged nozzle inner hole body are as described above, other materials already known as additives to the nozzle material are contained within a range not impairing the effects of the present invention. May be. Examples of the material thereof include silicon carbide, zirconia, zircon, and various metal powders. It is desirable to use the same material for the nozzle body when constructing the nozzle inner hole using a refractory composed of these constituents, but for the part that does not come into contact with the molten steel, the conventional composition containing silica is used. Materials can also be used,
It is also possible to interpose a material intermediate between the two.

【0026】以上の説明は浸漬ノズルの材質として最も
一般的なアルミナグラファイト質に関するものである
が、内孔体材質としてグラファイトとその他の成分、例
えばジルコニア、スピネル、カルシア、マグネシア等を
組み合せたものにおいても、本発明は同様の効果を得る
ことが可能である。
The above description relates to the most common alumina graphite material as the material of the immersion nozzle, but in the case of a combination of graphite and other components such as zirconia, spinel, calcia, magnesia etc. as the material of the inner pore body. However, the present invention can obtain the same effect.

【0027】[0027]

【実施例】以下に、実施例及び比較例を挙げて、本発明
について説明する。
EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示した原料含有物に樹脂バインダー
としてフェノール樹脂を外掛けで15wt%添加して混
練し、アイソスタティックプレスを用いて 1.0t/
cm2の圧力で図1及び図2のノズル形状に成形した。
なお、パウダーライン部の耐火物はジルコニアを75w
t%、Cを25wt%含有するジルコニアグラファイト
質に統一し、その他の部位は全て表1の成分とした。さ
らに、この成形体を1200℃の温度で還元焼成し、連
続鋳造用ガス吹き込み型浸漬ノズル(外径185mm
φ、内径90mmφ、吐出孔径70mmφ、吐出孔角度
35度の逆Y型ノズル)を作製した。
15 wt% of a phenol resin was added as a resin binder to the raw material-containing materials shown in Table 1 by external coating, and the mixture was kneaded.
Molded into a nozzle shape as shown in FIGS. 1 and 2 with a pressure of cm 2 .
The powder line refractory is zirconia 75w
The zirconia graphite material containing t% and C in an amount of 25 wt% was unified, and the other parts were all the components shown in Table 1. Furthermore, this molded body is reduction-fired at a temperature of 1200 ° C., and a gas blowing type immersion nozzle for continuous casting (outer diameter 185 mm
φ, inner diameter 90 mmφ, discharge hole diameter 70 mmφ, discharge hole angle 35 °).

【0030】このようにして得られた浸漬ノズルを用い
て、Tiを0.08wt%含有する炭素濃度30ppm
の極低炭素鋼を400分間鋳造した。この際、Arガス
吹き込み流量は溶鋼トン当たり6Nl一定とした。ま
た、内孔体を本体外周のパウダーライン溶損部と非溶損
部とに対応させて上下に分割したノズルでは、パウダー
ライン部の割れ発生限界圧力1.5kg/cm2 を超え
ないように、下部内孔体のAr流量を制御して鋳造し
た。本発明の実施例及び比較例とも鋳造寸法は、厚み2
45mm×幅1500mmで、8500mm長さに切断
して1コイル単位とした。このスラブを常法により熱間
圧延、冷間圧延し、最終的に厚み0.7mm×幅150
0mmコイルの冷延鋼板とした。ふくれ欠陥防止に対す
る浸漬ノズル耐火物の評価は、水中でのAr吹き込み試
験により得られた気泡径と、冷間圧延後の検査ラインで
目視観察を行い、1コイル当たりに発生するふくれ欠陥
の個数(ふくれ欠陥指標)により評価した。また、浸漬
ノズルの割れ発生については浸漬ノズルに亀裂が生じた
時間を指標として評価した。表2に、実施例及び比較例
の品質評価結果を示す。
Using the immersion nozzle thus obtained, a carbon concentration of 0.08 wt% of Ti and a carbon concentration of 30 ppm
Of ultra low carbon steel was cast for 400 minutes. At this time, the flow rate of Ar gas blown was fixed at 6 Nl per ton of molten steel. Further, in the nozzle in which the inner hole body is divided into upper and lower parts corresponding to the powder line melted part and the non-melted part on the outer periphery of the main body, the cracking limit pressure of the powder line part should not exceed 1.5 kg / cm 2. The casting was performed by controlling the Ar flow rate of the lower inner hole body. In both the example of the present invention and the comparative example, the casting size is 2
45 mm × width 1500 mm, cut into length 8500 mm to make one coil unit. This slab is hot-rolled and cold-rolled by a conventional method, and finally has a thickness of 0.7 mm and a width of 150.
A 0 mm coil cold-rolled steel sheet was used. The evaluation of the immersion nozzle refractory for blistering defect prevention was carried out by visually observing the bubble diameter obtained by an Ar blowing test in water and the inspection line after cold rolling (the number of blistering defects generated per coil ( It was evaluated by the blistering defect index). Further, the occurrence of cracks in the immersion nozzle was evaluated using the time at which the immersion nozzle was cracked as an index. Table 2 shows the quality evaluation results of the examples and comparative examples.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示す如く、実施例では内孔体を本体
外周のパウダーライン溶損部と非溶損部とに対応させて
上下に分割して設け、且つシリカ含有率を5wt%以下
にしたことで、Arガス吹き込み圧力による割れ発生も
なく、常に安定してふくれ欠陥を防止できた。これに対
し、比較例1は内孔体のシリカ含有率が高かったため、
Ar気泡径が拡大し、ふくれ欠陥が発生した。しかし、
内孔体中のシリカ消失により気孔率、気孔径が増大した
ため、内孔体を分割しない形状でも割れの発生はなかっ
た。また、比較例2は内孔体を分割して設けなかったた
め、鋳造後半で強度が低下し、内孔体に亀裂が発生し
た。このため、鋳造開始後320分で鋳造を停止した。
しかし、内孔体のシリカ含有率は5wt%以下であった
ため、ふくれ欠陥は発生しなかった。
As shown in Table 2, in the embodiment, the inner hole body is divided into upper and lower parts corresponding to the powder line melting portion and the non-melting portion on the outer periphery of the main body, and the silica content is 5 wt% or less. By doing so, the occurrence of cracks due to the Ar gas blowing pressure did not occur, and swelling defects could always be prevented in a stable manner. On the other hand, Comparative Example 1 had a high silica content in the inner pore body,
The Ar bubble diameter was enlarged and a swelling defect was generated. But,
Since the porosity and the pore diameter increased due to the disappearance of silica in the inner pores, no crack was generated even in the shape in which the inner pores were not divided. Further, in Comparative Example 2, since the inner hole body was not divided and provided, the strength decreased in the latter half of casting and cracks occurred in the inner hole body. Therefore, the casting was stopped 320 minutes after the start of casting.
However, since the silica content of the inner pores was 5 wt% or less, no blistering defect occurred.

【0033】[0033]

【発明の効果】以上に説明したように、本発明の連続鋳
造用浸漬ノズルによれば、耐蝕性及び耐スポーリング性
を確保した上で、内孔体から微細な気泡を安定して吹き
込むことができる。したがって、ふくれ欠陥の防止に留
まらず、気泡による介在物の浮上分離及びノズル閉塞の
防止をより効率的に行うことができる。以上の効果によ
り、連続鋳造法で製造される鋼板の品質は非常に安定
し、歩留まりも格段に向上する。
As described above, according to the immersion nozzle for continuous casting of the present invention, the corrosion resistance and the spalling resistance are ensured and the fine air bubbles are stably blown from the inner hole. You can Therefore, it is possible not only to prevent the blistering defect but also to more efficiently prevent the floating separation of inclusions and the nozzle blockage due to bubbles. Due to the above effects, the quality of the steel sheet produced by the continuous casting method is very stable and the yield is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である浸漬ノズルの構造の縦断
面を示す。
FIG. 1 shows a vertical cross section of the structure of an immersion nozzle according to an embodiment of the present invention.

【図2】比較例の浸漬ノズルの構造の縦断面を示す。FIG. 2 shows a vertical cross section of a structure of a dipping nozzle of a comparative example.

【符号の説明】[Explanation of symbols]

1 浸漬ノズル内孔体 1a 下部内孔体 1b 上部内孔体 2 浸漬ノズル本体 3 パウダーライン部 1 Immersion nozzle inner hole body 1a Lower inner hole body 1b Upper inner hole body 2 Immersion nozzle body 3 Powder line part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 康裕 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Sakamoto 5-3 Tokai-cho, Tokai-shi, Aichi New Nippon Steel Co., Ltd. Nagoya Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス吹き込み型連続鋳造用浸漬ノズルに
おいて、ガス吹き込み部にあたる内孔体を本体外周のパ
ウダーライン溶損部と非溶損部とに対応させて分割して
配置するとともに、内孔体のSiO2 含有率を5wt%
以下としたことを特徴とする連続鋳造用浸漬ノズル。
1. A gas injection type continuous casting dipping nozzle, wherein an inner hole body corresponding to a gas injection part is divided and arranged corresponding to a powder line melting part and a non-melting part on the outer periphery of the main body, and the inner hole is formed. The SiO 2 content of the body is 5 wt%
An immersion nozzle for continuous casting, characterized in that:
JP27931492A 1992-09-25 1992-09-25 Immersion nozzle for continuous casting Withdrawn JPH06106313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27931492A JPH06106313A (en) 1992-09-25 1992-09-25 Immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27931492A JPH06106313A (en) 1992-09-25 1992-09-25 Immersion nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JPH06106313A true JPH06106313A (en) 1994-04-19

Family

ID=17609446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27931492A Withdrawn JPH06106313A (en) 1992-09-25 1992-09-25 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH06106313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108903A (en) * 2019-01-07 2020-07-16 日本製鉄株式会社 Tundish upper nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108903A (en) * 2019-01-07 2020-07-16 日本製鉄株式会社 Tundish upper nozzle

Similar Documents

Publication Publication Date Title
US4210264A (en) Immersion nozzle for continuous casting of molten steel
EP1671721B1 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
JPH0839214A (en) Nozzle for continuous casting
WO2003064079A1 (en) Immersion nozzle for continuous casting of steel and continuous casting method of steel
CN111940715B (en) Anti-blocking submerged nozzle
CN113458377A (en) Anti-caking tundish breathable water feeding port
JPH06106313A (en) Immersion nozzle for continuous casting
GB2081702A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JPH06106312A (en) Immersion nozzle for continuous casting
JP4054318B2 (en) Continuous casting method for slabs with excellent quality characteristics
JP2991881B2 (en) Immersion nozzle for continuous casting
JP2554320Y2 (en) Immersion nozzle for continuous casting
JP3124421B2 (en) Immersion nozzle for continuous casting
JPH05123840A (en) Immersion nozzle for continuous casting
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP2891757B2 (en) Immersion nozzle
JPH05123839A (en) Immersion nozzle for continuous casting
JPH0515953A (en) Immersion nozzle for continuous casting
JPH05154630A (en) Immersion nozzle for continuous casting
JP3328803B2 (en) Nozzle for continuous casting of steel
JPH0531557A (en) Immersion nozzle for continuous casting
KR950008603B1 (en) Composition of refractories
JPH04147752A (en) Immersion nozzle for continuous casting
KR100448509B1 (en) Filler of steel
JPH05285613A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130