JPH06105443A - Fluid carrier - Google Patents
Fluid carrierInfo
- Publication number
- JPH06105443A JPH06105443A JP24832192A JP24832192A JPH06105443A JP H06105443 A JPH06105443 A JP H06105443A JP 24832192 A JP24832192 A JP 24832192A JP 24832192 A JP24832192 A JP 24832192A JP H06105443 A JPH06105443 A JP H06105443A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- magnetic field
- cable
- rotating body
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D2015/0291—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid
Landscapes
- Laying Of Electric Cables Or Lines Outside (AREA)
- Gas Or Oil Filled Cable Accessories (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は流体搬送装置に係り、詳
しくは多相交流ケーブルを冷却する冷却流体を搬送する
流体搬送装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid carrying device, and more particularly to a fluid carrying device for carrying a cooling fluid for cooling a multi-phase AC cable.
【0002】近年、電力ケーブルに発生する熱も大電力
移送に伴いさらに上昇の一途をたどっている。そして、
電力ケーブルの冷却は電力損失を抑制する上で不可欠に
なっており、効率のよい冷却が望まれている。[0002] In recent years, the heat generated in power cables has been increasing more and more with the transfer of large amounts of power. And
Cooling of the power cable is indispensable for suppressing power loss, and efficient cooling is desired.
【0003】[0003]
【従来の技術】三相交流ケーブルにおいてジュール熱等
による熱は電力移送効率に大きなマイナス要因になるた
め、三相交流ケーブルを冷却する方法がとられている。
図15に三相交流ケーブルを冷却する冷却装置を示す。
図15において、三相交流ケーブ31〜33はそれぞれ
搬送管34に沿ってかつ接するように配設されている。
また、三相交流ケーブ31〜33は搬送管34の外周に
等間隔に配置させている。2. Description of the Related Art In a three-phase AC cable, heat due to Joule heat or the like has a large negative effect on power transfer efficiency. Therefore, a method of cooling the three-phase AC cable has been adopted.
FIG. 15 shows a cooling device for cooling the three-phase AC cable.
In FIG. 15, the three-phase AC cables 31 to 33 are arranged along and along the carrier pipe 34, respectively.
Further, the three-phase AC cables 31 to 33 are arranged on the outer circumference of the carrier pipe 34 at equal intervals.
【0004】そして、搬送管34に冷却水等の冷却流体
を流すことによって、三相交流ケーブル31〜33に発
生する熱を冷やすようにしている。この搬送管34を流
れる冷却流体は離れた位置に設けた循環ポンプによって
管路を循環させるようにしている。A cooling fluid such as cooling water is caused to flow through the carrier pipe 34 to cool the heat generated in the three-phase AC cables 31 to 33. The cooling fluid flowing through the carrier pipe 34 is circulated in the pipe line by a circulation pump provided at a remote position.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、冷却流
体を循環させるために循環ポンプが必要になることか
ら、その循環ポンプを設置するための設置場所を確保す
る必要があった。しかも、搬送ポンプを駆動させるため
の駆動電源を確保する必要もあった。However, since a circulation pump is required to circulate the cooling fluid, it is necessary to secure an installation place for installing the circulation pump. Moreover, it was necessary to secure a driving power source for driving the transport pump.
【0006】本発明は上記問題点を解決するためになさ
れたものであって、循環ポンプを使用することなく冷却
流体を循環させることができ、効率のよい省エネタイプ
の流体搬送装置を提供することを目的とする。The present invention has been made to solve the above-mentioned problems, and provides a highly efficient energy-saving fluid transfer device that can circulate a cooling fluid without using a circulation pump. With the goal.
【0007】[0007]
【課題を解決するための手段】図1は本発明の原理説明
図である。多相交流ケーブル1,2,3は搬送管4の外
側に等間隔に配設され、その搬送管4内に冷却流体を流
すようになっている。FIG. 1 is a diagram for explaining the principle of the present invention. The multi-phase AC cables 1, 2 and 3 are arranged outside the carrier pipe 4 at equal intervals, and a cooling fluid is allowed to flow in the carrier pipe 4.
【0008】搬送管4はその管内に回転可能に軸支され
た回転体5が配設されている。回転体5の各先端部には
互いに異なる磁極N,Sを有し、各交流ケーブル1〜3
に流れる交流電流に基づいて発生する回転磁界によっ
て、同回転体5は回転する。The carrier tube 4 has a rotary body 5 rotatably supported in the tube. The rotating body 5 has magnetic poles N and S which are different from each other at each tip thereof, and the AC cables 1 to 3
The rotating body 5 is rotated by a rotating magnetic field generated based on an alternating current flowing through the rotating body 5.
【0009】[0009]
【作用】従って、本発明によれば、各交流ケーブル1〜
3に流れる多相交流電流に基づいて発生する回転磁界に
よって、磁極N,Sを有する回転体5は回転する。この
回転体5の回転により、搬送管4内の冷却流体は一方向
に搬送される。Therefore, according to the present invention, each AC cable 1 to
The rotating body 5 having the magnetic poles N and S is rotated by the rotating magnetic field generated based on the multi-phase alternating current flowing in 3. By the rotation of the rotating body 5, the cooling fluid in the transfer pipe 4 is transferred in one direction.
【0010】その結果、特別な循環用ポンプを用いるこ
となく、冷却流体を循環させることができ、効率のよい
冷却を行うことが可能となる。As a result, the cooling fluid can be circulated without using a special circulation pump, and efficient cooling can be performed.
【0011】[0011]
【実施例】以下、本発明を三相交流電力ケーブルを冷却
するための流体搬送装置に具体化した一実施例を図面に
従って説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a fluid conveying device for cooling a three-phase AC power cable will be described below with reference to the drawings.
【0012】図2,3において、三相交流ケーブル1
1,12,13は搬送管14の外側に互いに等間隔(搬
送管4を中心に120°の間隔)にかつ搬送管14に沿
って配設されている。三相交流ケーブル11〜13はそ
の導体部11a〜13aの断面積が約1000mm2 であ
って、互いに120°の位相がずれた約1000Aの電
流が流れるようになっている。そして、三相交流ケーブ
ル11〜13に流れる三相交流電流によって、搬送管1
4内に回転磁界がつくられる。2 and 3, the three-phase AC cable 1
1, 12 and 13 are arranged outside the carrier pipe 14 at equal intervals (120 ° intervals around the carrier pipe 4) and along the carrier pipe 14. In the three-phase AC cables 11 to 13, the conductors 11a to 13a have cross-sectional areas of about 1000 mm 2 , and currents of about 1000 A, which are 120 ° out of phase with each other, flow. Then, by the three-phase AC current flowing through the three-phase AC cables 11 to 13, the carrier pipe 1
A rotating magnetic field is created within 4.
【0013】回転磁界について詳述する。尚、説明の便
宜上、交流ケーブル11をR相、交流ケーブル12をS
相、交流ケーブル13をT相とする。図5は各相の電流
波形を示し、各相の電流波形はサイン波形であって、共
に最大振幅値はImax となっている。そして、R相に対
してS相は120°、T相は240°位相がずれてい
る。また、各相からの磁界は電流値に比例し、自身の相
を中心に形成される。そして、搬送管14内においては
その各相の磁界が合成される。The rotating magnetic field will be described in detail. For convenience of explanation, the AC cable 11 is the R phase and the AC cable 12 is the S phase.
Phase, AC cable 13 is T phase. FIG. 5 shows the current waveform of each phase, and the current waveform of each phase is a sine waveform, and the maximum amplitude value is Imax. The S phase is 120 ° out of phase with the R phase and the T phase is out of phase with 240 °. Further, the magnetic field from each phase is proportional to the current value and is formed centering on its own phase. Then, in the carrier tube 14, the magnetic fields of the respective phases are combined.
【0014】すなわち、図5に示すのとき、各相の磁
界の向きと大きさは図6(a)となり、全体の合成磁界
の向きは図6(b)に示すようになる。続いて、図5に
示すのとき、各相の磁界の向きと大きさは図7(a)
となり、全体の合成磁界の向きは図7(b)に示すよう
になる。次に、図5に示すのとき、各相の磁界の向き
と大きさは図8(a)となり、全体の合成磁界の向きは
図8(b)に示すようになる。そして、図5の〜と
進んで行くと、図9〜図13に示すように各相の磁界の
向きと大きさも順に変化し、全体の合成磁界の向きも図
において時計回り方向に回転し、回転磁界がつくられ
る。That is, in the case shown in FIG. 5, the direction and magnitude of the magnetic field of each phase are as shown in FIG. 6 (a), and the direction of the overall combined magnetic field is as shown in FIG. 6 (b). Subsequently, as shown in FIG. 5, the direction and magnitude of the magnetic field of each phase are shown in FIG.
Thus, the direction of the overall combined magnetic field is as shown in FIG. 7 (b). Next, as shown in FIG. 5, the direction and magnitude of the magnetic field of each phase are as shown in FIG. 8A, and the direction of the overall combined magnetic field is as shown in FIG. 8B. Then, when proceeding from to in FIG. 5, the directions and magnitudes of the magnetic fields of the respective phases are sequentially changed as shown in FIGS. 9 to 13, and the direction of the overall combined magnetic field is rotated clockwise in the figure, A rotating magnetic field is created.
【0015】搬送管14は半径100mmの非磁性体の
管であって、その管内に冷却流体としての70°C以下
の純水を流すようになっている。搬送管14内には支軸
15が搬送管14の軸心上に配設されている。支軸15
は所定の間隔毎に搬送管14内面との間に設けられた支
持アーム16によって支持されている。The transfer pipe 14 is a non-magnetic pipe having a radius of 100 mm, and pure water of 70 ° C. or less as a cooling fluid is allowed to flow in the pipe. A support shaft 15 is arranged in the transfer tube 14 on the axis of the transfer tube 14. Support shaft 15
Are supported by a support arm 16 provided between the inner surface of the transfer tube 14 and the inner surface of the transfer tube 14 at predetermined intervals.
【0016】支軸15には本実施例では10m間隔に回
転体17が回転可能に軸支されている。回転体17は永
久磁石であって、二翼のスクリュウ形状の成形されてい
る。そして、回転体17の一方の翼17aにはN極、他
方の翼17bにはS極の磁極が発生する。そして、三相
交流ケーブル11〜13に流れる三相交流電流によっ
て、搬送管14内に発生する回転磁界によって、永久磁
石よりなる回転体17は回転することになる。In this embodiment, a rotating body 17 is rotatably supported on the support shaft 15 at intervals of 10 m. The rotating body 17 is a permanent magnet and has a two-blade screw shape. Then, an N pole is generated on one blade 17a of the rotating body 17, and an S pole is generated on the other blade 17b. Then, the three-phase AC currents flowing through the three-phase AC cables 11 to 13 cause the rotating magnetic field generated in the carrier tube 14 to rotate the rotating body 17 made of a permanent magnet.
【0017】このスクリュウ形状の回転体17の回転に
よって、図4に示すように搬送管14内の純水は矢印で
示す方向に搬送される。このように本実施例において
は、搬送管14の外側に等角度間隔に三相交流ケーブル
11〜13を配設し、その各ケーブル11〜13に流れ
る三相交流電流によって搬送管4内に回転磁界を作っ
た。そして、搬送管14内にスクリュウ形状の回転体1
7を設け、回転体17を回転磁界によって回転させるよ
うにした。By the rotation of the screw-shaped rotary member 17, the pure water in the transfer pipe 14 is transferred in the direction shown by the arrow as shown in FIG. As described above, in this embodiment, the three-phase AC cables 11 to 13 are arranged on the outer side of the carrier pipe 14 at equal angular intervals, and the three-phase AC currents flowing through the cables 11 to 13 are rotated in the carrier pipe 4. Made a magnetic field. Then, the screw-shaped rotating body 1 is provided in the carrier pipe 14.
7 is provided, and the rotating body 17 is rotated by the rotating magnetic field.
【0018】従って、回転体17の回転によって、搬送
管14内の冷却用の純水は一方向に搬送されことから、
冷却用純水は管路内を循環し、効率よく搬送管14の外
側に配置した各ケーブル11〜13に発生する熱を冷却
することができる。Therefore, since the pure water for cooling in the transfer pipe 14 is transferred in one direction by the rotation of the rotating body 17,
The pure water for cooling circulates in the pipe, and can efficiently cool the heat generated in each of the cables 11 to 13 arranged outside the carrier pipe 14.
【0019】その結果、従来のように循環用のポンプを
用いる必要がないので、循環ポンプを使用に基づく消費
電力はなく、効率のよい省エネタイプの流体搬送装置と
することができる。しかも、循環ポンプを設ける必要が
ないので、循環ポンプの設置スペースを考える必要がな
くなる。As a result, since it is not necessary to use a circulation pump as in the conventional case, there is no power consumption due to the use of the circulation pump, and an efficient energy-saving type fluid transfer device can be obtained. Moreover, since it is not necessary to provide a circulation pump, it is not necessary to consider the installation space for the circulation pump.
【0020】また、循環用ポンプと併用してもよく、そ
の場合には循環用ポンプの容量を小さくすることができ
る。なお、本発明は前記実施例に限定されるものではな
く、以下の態様で実施してもよい。 (1)回転体17の設置間隔は特に限定されるものでな
く、適宜変更して実施してもよい。 (2)回転体17の形状は回転によって、冷却流体を一
方向に搬送する形状であればどんな形状でもよい。 (3)前記実施例では三相ケーブル11〜13に応用し
たが、搬送管14内に回転磁界を形成するものであれば
何相でもよい。 (4)冷却流体は純水に限定されるものではなく、空
気、冷却用ガス、水、冷却用オイル等、ケーブルを冷却
する流体であって、回転磁界を阻害しないものであるな
らば何でもよい。 (5)搬送管は冷却効率を上げるために、図14にケー
ブル11〜13と接触面積を上げるべく嵌合させる形状
にしてもよい。It may be used in combination with a circulation pump, in which case the capacity of the circulation pump can be reduced. The present invention is not limited to the above embodiment, but may be carried out in the following modes. (1) The installation interval of the rotating body 17 is not particularly limited, and may be appropriately changed and implemented. (2) The shape of the rotating body 17 may be any shape as long as the cooling fluid is conveyed in one direction by rotation. (3) In the above embodiment, the three-phase cables 11 to 13 are applied, but any phase may be used as long as it forms a rotating magnetic field in the carrier tube 14. (4) The cooling fluid is not limited to pure water, but may be air, cooling gas, water, cooling oil, or any other fluid that cools the cable and does not disturb the rotating magnetic field. . (5) In order to improve the cooling efficiency, the carrier pipe may be shaped to fit with the cables 11 to 13 in FIG. 14 in order to increase the contact area.
【0021】[0021]
【発明の効果】以上詳述したように、本発明によれば、
循環ポンプを使用することなく冷却流体を循環させるこ
とができる優れた効果がある。As described in detail above, according to the present invention,
There is an excellent effect that the cooling fluid can be circulated without using a circulation pump.
【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.
【図2】一実施例を示す流体搬送装置の正断面図であ
る。FIG. 2 is a front sectional view of a fluid transfer device showing one embodiment.
【図3】一実施例を示す流体搬送装置の部分斜視図であ
る。FIG. 3 is a partial perspective view of a fluid transfer device showing one embodiment.
【図4】搬送管内に設けた回転体の斜視図である。FIG. 4 is a perspective view of a rotating body provided in a transport pipe.
【図5】三相交流電流の各相の電流波形図である。FIG. 5 is a current waveform diagram of each phase of a three-phase alternating current.
【図6】(a)は各相の磁界の向きと大きさを示す説明
図であり、(b)はその合成磁界の方向を示す説明図で
ある。FIG. 6A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 6B is an explanatory diagram showing the direction of the combined magnetic field.
【図7】(a)は各相の磁界の向きと大きさを示す説明
図であり、(b)はその合成磁界の方向を示す説明図で
ある。FIG. 7A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 7B is an explanatory diagram showing the direction of the composite magnetic field.
【図8】(a)は各相の磁界の向きと大きさを示す説明
図であり、(b)はその合成磁界の方向を示す説明図で
ある。FIG. 8A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 8B is an explanatory diagram showing the direction of the combined magnetic field.
【図9】(a)は各相の磁界の向きと大きさを示す説明
図であり、(b)はその合成磁界の方向を示す説明図で
ある。9A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 9B is an explanatory diagram showing the direction of the combined magnetic field.
【図10】(a)は各相の磁界の向きと大きさを示す説
明図であり、(b)はその合成磁界の方向を示す説明図
である。FIG. 10A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 10B is an explanatory diagram showing the direction of the combined magnetic field.
【図11】(a)は各相の磁界の向きと大きさを示す説
明図であり、(b)はその合成磁界の方向を示す説明図
である。11A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 11B is an explanatory diagram showing the direction of the combined magnetic field.
【図12】(a)は各相の磁界の向きと大きさを示す説
明図であり、(b)はその合成磁界の方向を示す説明図
である。12A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 12B is an explanatory diagram showing the direction of the combined magnetic field.
【図13】(a)は各相の磁界の向きと大きさを示す説
明図であり、(b)はその合成磁界の方向を示す説明図
である。13A is an explanatory diagram showing the direction and magnitude of the magnetic field of each phase, and FIG. 13B is an explanatory diagram showing the direction of the combined magnetic field.
【図14】搬送管の別例を示す搬送管の正断面図であ
る。FIG. 14 is a front sectional view of a carrier pipe showing another example of the carrier pipe.
【図15】従来の流体搬送装置の部分斜視図である。FIG. 15 is a partial perspective view of a conventional fluid transfer device.
1,2,3 多相交流ケーブル 4 搬送管 5 回転体 1,2,3 Multi-phase AC cable 4 Carrier tube 5 Rotating body
Claims (2)
管(4)の外側に配設し、その搬送管(4)内に冷却流
体を流すことによって前記各交流ケーブル(1,2,
3)に発生する熱を冷やすようにした流体搬送装置であ
って、 前記搬送管(4)内において先端部に磁極を有し、回転
することにより搬送管(4)内の冷却流体を一方向に案
内する回転体(5)を回転可能に配設するとともに、各
交流ケーブル(1,2,3)を前記回転体(5)に対し
て回転磁界を与えるように搬送管(4)の外側に配設し
たことを特徴とする流体搬送装置。1. A multi-phase AC cable (1, 2, 3) is arranged outside a carrier pipe (4), and a cooling fluid is caused to flow in the carrier pipe (4), whereby each of the AC cables (1, 2). Two
3) A fluid transfer device for cooling the heat generated in the transfer tube (4), wherein the transfer tube (4) has a magnetic pole at its tip and rotates to rotate the cooling fluid in the transfer tube (4) in one direction. The rotating body (5) for guiding to the rotating body (5) is rotatably arranged, and the AC cables (1, 2, 3) are provided outside the carrier pipe (4) so as to give a rotating magnetic field to the rotating body (5). A fluid transfer device, characterized in that
(11,12,13)であって、その各ケーブル(1
1,12,13)は円筒形の搬送管(14)の外側に互
いに等間隔に配設されたものであり、回転体(17)は
180度向きが異なった二翼のスクリュウ形状の磁石で
あって、一方の翼(17a)の先端部にN極、他方の翼
(17b)の先端部にS極が形成されることを特徴とす
る請求項1に記載の流体搬送装置。2. The multi-phase AC cable is a three-phase AC cable (11, 12, 13), each cable (1
1, 12, 13) are arranged on the outside of a cylindrical carrier pipe (14) at equal intervals, and the rotating body (17) is a two-blade screw-shaped magnet having a different 180 ° orientation. The fluid transfer device according to claim 1, wherein an N pole is formed at a tip portion of one blade (17a) and an S pole is formed at a tip portion of the other blade (17b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24832192A JPH06105443A (en) | 1992-09-17 | 1992-09-17 | Fluid carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24832192A JPH06105443A (en) | 1992-09-17 | 1992-09-17 | Fluid carrier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06105443A true JPH06105443A (en) | 1994-04-15 |
Family
ID=17176344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24832192A Withdrawn JPH06105443A (en) | 1992-09-17 | 1992-09-17 | Fluid carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06105443A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6029742A (en) * | 1994-01-26 | 2000-02-29 | Sun Microsystems, Inc. | Heat exchanger for electronic equipment |
US6388920B2 (en) | 1996-02-29 | 2002-05-14 | Hitachi, Ltd. | Semiconductor memory device having faulty cells |
US6701471B2 (en) | 1995-07-14 | 2004-03-02 | Hitachi, Ltd. | External storage device and memory access control method thereof |
WO2007032391A1 (en) * | 2005-09-13 | 2007-03-22 | Autonetworks Technologies, Ltd. | Electric conductor for vehicle |
JP2008199850A (en) * | 2007-02-15 | 2008-08-28 | Toyota Motor Corp | Load drive apparatus |
-
1992
- 1992-09-17 JP JP24832192A patent/JPH06105443A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6029742A (en) * | 1994-01-26 | 2000-02-29 | Sun Microsystems, Inc. | Heat exchanger for electronic equipment |
US6701471B2 (en) | 1995-07-14 | 2004-03-02 | Hitachi, Ltd. | External storage device and memory access control method thereof |
US7234087B2 (en) | 1995-07-14 | 2007-06-19 | Renesas Technology Corp. | External storage device and memory access control method thereof |
US7721165B2 (en) | 1995-07-14 | 2010-05-18 | Solid State Storage Solutions, Inc. | External storage device and memory access control method thereof |
US6388920B2 (en) | 1996-02-29 | 2002-05-14 | Hitachi, Ltd. | Semiconductor memory device having faulty cells |
US6542405B2 (en) | 1996-02-29 | 2003-04-01 | Hitachi, Ltd. | Semiconductor memory device having faulty cells |
US6728138B2 (en) | 1996-02-29 | 2004-04-27 | Renesas Technology Corp. | Semiconductor memory device having faulty cells |
US7616485B2 (en) | 1996-02-29 | 2009-11-10 | Solid State Storage Solutions Llc | Semiconductor memory device having faulty cells |
US8064257B2 (en) | 1996-02-29 | 2011-11-22 | Solid State Storage Solutions, Inc. | Semiconductor memory device having faulty cells |
US8503235B2 (en) | 1996-02-29 | 2013-08-06 | Solid State Storage Solutions, Inc. | Nonvolatile memory with faulty cell registration |
WO2007032391A1 (en) * | 2005-09-13 | 2007-03-22 | Autonetworks Technologies, Ltd. | Electric conductor for vehicle |
JP2008199850A (en) * | 2007-02-15 | 2008-08-28 | Toyota Motor Corp | Load drive apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10326343B2 (en) | Magnetic-drive axial-flow fluid displacement pump and turbine | |
CN103427576B (en) | Switched reluctance motor | |
RU2651435C1 (en) | Ship's steerable propeller | |
US8536759B2 (en) | AC generator | |
JP2010533475A (en) | MP-TII machine | |
JPH06105443A (en) | Fluid carrier | |
JPH10257752A (en) | Superconducting propeller rotation driver and superconducting power generator | |
US20110025157A1 (en) | System of electrical generation for counter-rotating open-rotor blade device | |
JPS635177A (en) | Generator using hydraulic force | |
JP4857442B2 (en) | Pod type propeller | |
EP0743741B1 (en) | Superconductor motor provided with superconductor shield | |
KR101989233B1 (en) | AC or DC generator using of a multi-circuit brush and distributor | |
US20100141060A1 (en) | Axial motor | |
JP4783945B2 (en) | Water jet propulsion system | |
WO2019113579A1 (en) | Magnetic-drive axial-flow fluid displacement pump and turbine | |
CN210053264U (en) | Permanent magnet machine outer rotor structure | |
JP2015050892A (en) | Power generation system | |
JP4751134B2 (en) | Inductor type motor and vehicle equipped with the same | |
JPH01177496A (en) | Air current generating device | |
JPH0687690U (en) | Completely sealed pump | |
RU2273942C1 (en) | Synchronous generator with excitation by permanent magnets | |
JPH1080113A (en) | Disc-type bearingless motor | |
KR20030086263A (en) | Air impeller and a housing for such an impeller | |
TW201813274A (en) | Infinite multi-energy generation machine having a magnetic energy disk that obtains infinite safe loading current to maintain constant transmission and power generation | |
JPH07117060B2 (en) | Fluid transfer device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |