JPH06104135A - Manufacture of insulator - Google Patents
Manufacture of insulatorInfo
- Publication number
- JPH06104135A JPH06104135A JP4250927A JP25092792A JPH06104135A JP H06104135 A JPH06104135 A JP H06104135A JP 4250927 A JP4250927 A JP 4250927A JP 25092792 A JP25092792 A JP 25092792A JP H06104135 A JPH06104135 A JP H06104135A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- layer
- fine granular
- insulating material
- insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Coils Of Transformers For General Uses (AREA)
- Insulating Of Coils (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば樹脂モールド機
器の樹脂絶縁層等の絶縁物の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an insulating material such as a resin insulating layer of a resin molding device.
【0002】[0002]
【従来の技術】例えばモールド変圧器やモールドPT,
CT等のモールド電気機器にあっては、巻線体を成形型
内に配置した状態で、エポキシ樹脂等の樹脂を成形型内
に注入して硬化させることにより、前記巻線体を覆う樹
脂絶縁層を形成するようにしている。而して、この種の
樹脂としては、シリカやガラス等の中実の微小粒状絶縁
材を混入したものが使用され、これにて、内部に微小粒
状絶縁材が分散した絶縁層が形成されるようになってい
る。2. Description of the Related Art For example, a mold transformer or a mold PT,
In a molded electric device such as a CT, a resin insulation covering the winding body is obtained by injecting a resin such as an epoxy resin into the molding die and curing the resin while the winding body is arranged in the molding die. I am trying to form a layer. Thus, as this type of resin, a resin in which a solid fine granular insulating material such as silica or glass is mixed is used, whereby an insulating layer in which the fine granular insulating material is dispersed is formed. It is like this.
【0003】[0003]
【発明が解決しようとする課題】ところで、上述のよう
に樹脂中に微小粒状絶縁材を混入させた場合、絶縁層の
比誘電率は、見掛上、樹脂単体の比誘電率よりも高い
3.7〜4程度の値となっている。一般に、電力機器の
絶縁構成は複合絶縁になるが、上記モールド機器の場合
には、主絶縁である絶縁樹脂層と外気との複合絶縁構成
となっている。複合絶縁においては、機器に印加された
電圧が誘電率の逆数に比例した電圧で各々の絶縁物に分
担されるため、モールド絶縁の場合、比誘電率が1.0
である外気側に高い電圧が分担されることになり、実際
の機器では鋭角部の多い端部に高い電界が集中する。By the way, when the fine granular insulating material is mixed in the resin as described above, the relative dielectric constant of the insulating layer is apparently higher than that of the resin alone. The value is about 7 to 4. Generally, the insulation structure of electric power equipment is composite insulation, but in the case of the above-mentioned molded equipment, the insulation insulation is a main insulation and the outside insulation is a composite insulation structure. In composite insulation, the voltage applied to the equipment is shared by each insulator with a voltage proportional to the reciprocal of the dielectric constant, so in the case of mold insulation, the relative dielectric constant is 1.0.
That is, a high voltage is shared by the outside air side, and in an actual device, a high electric field is concentrated at the end with many sharp edges.
【0004】このため、適正な沿面絶縁強度を保証する
ためには、上述の機器の端部における電界強度を抑える
必要がある。この電界強度を緩和するには、絶縁樹脂層
に対して、その外側部の比誘電率を1.0に近付けるよ
うな誘電傾斜を形成すれば良いが、従来では、樹脂絶縁
層にこのような誘電傾斜を形成する適切な方法が存在し
なかった。Therefore, in order to ensure a proper creeping insulation strength, it is necessary to suppress the electric field strength at the end of the above-mentioned equipment. In order to reduce the electric field strength, it is sufficient to form a dielectric gradient in the insulating resin layer so that the relative dielectric constant of the outer portion approaches 1.0. There was no suitable way to create a dielectric gradient.
【0005】従って、本発明の目的は、樹脂絶縁物に誘
電傾斜を形成することを可能とする絶縁物の製造方法を
提供するにある。Therefore, it is an object of the present invention to provide a method of manufacturing an insulating material, which makes it possible to form a dielectric gradient in the resin insulating material.
【0006】[0006]
【課題を解決するための手段】本発明の絶縁物の製造方
法は、成形型内に、中空あるいは中実の微小粒状絶縁材
を混合した樹脂を注入し硬化させることにより、内部に
前記微小粒状絶縁材が分散した絶縁物を製造する方法で
あって、前記成形型内を、前記微小粒状絶縁材の通過を
制限するためのメッシュにより仕切った状態で、前記樹
脂を注入するようにしたところに特徴を有する。According to the method for producing an insulating material of the present invention, a resin mixed with a hollow or solid fine granular insulating material is injected into a molding die and cured to form the fine granular material inside. A method for producing an insulating material in which an insulating material is dispersed, wherein the molding die is partitioned by a mesh for limiting passage of the fine granular insulating material, and the resin is injected. It has characteristics.
【0007】[0007]
【作用】上記手段によれば、成形型内がメッシュにより
仕切られているので、成形型内に注入された樹脂に混合
された微小粒状絶縁材は、そのメッシュにより通過が制
限されることにより、メッシュで仕切られた樹脂層間で
の分布状態が異なるようになる。ここで、中空の微小粒
状絶縁材を含む樹脂層の誘電率は、見掛上樹脂本来の比
誘電率に比べて小さくなり、一方、中実の微小粒状絶縁
材を含む樹脂層の誘電率は、見掛上樹脂本来の比誘電率
に比べて大きくなる。According to the above means, since the inside of the molding die is partitioned by the mesh, the passage of the fine granular insulating material mixed with the resin injected into the molding die is restricted by the mesh, The distribution state between the resin layers separated by the mesh becomes different. Here, the dielectric constant of the resin layer containing the hollow fine granular insulating material is apparently smaller than the relative dielectric constant of the resin, while the dielectric constant of the resin layer containing the solid fine granular insulating material is Apparently, the relative permittivity becomes larger than the original relative permittivity of the resin.
【0008】従って、樹脂に混合する微小粒状絶縁材の
粒径や、その微小粒状絶縁材の中空,中実の選択、メッ
シュの穴径、仕切り位置、樹脂注入位置等を適宜設定す
ることによって、樹脂絶縁物に任意の誘電傾斜を形成す
ることが可能となる。Therefore, by appropriately setting the particle size of the fine granular insulating material to be mixed with the resin, the hollow or solid selection of the fine granular insulating material, the hole diameter of the mesh, the partition position, the resin injection position, etc. It is possible to form an arbitrary dielectric gradient in the resin insulator.
【0009】[0009]
【実施例】以下、本発明を樹脂モールド変圧器に適用し
た一実施例について、図面を参照して説明する。まず、
図2において、樹脂モールド変圧器の巻線1は、図示し
ない絶縁被覆を施してなる導体2を多数回巻回して構成
されている。そして、この巻線1は、絶縁物としての樹
脂モールド層3によりモールドされている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a resin mold transformer will be described below with reference to the drawings. First,
In FIG. 2, the winding 1 of the resin-molded transformer is formed by winding a conductor 2 having an insulating coating (not shown) many times. The winding 1 is molded with a resin mold layer 3 as an insulator.
【0010】前記樹脂モールド層3は、例えばエポキシ
樹脂等の樹脂中に後述するような4種類の微小粒状絶縁
物を分散させて成り、この場合、巻線1に近い内側から
順に、内層4,中間層5,外層6の3つの層から構成さ
れている。また、外層6と中間層5との境界部には、第
1のメッシュ7が設けられ、中間層5と内層4との境界
部には、第2のメッシュ8が設けられている。この樹脂
モールド層3は、詳しくは後述する方法により製造さ
れ、前記各層4,5,6間で前記微小粒状絶縁物の分布
状態を相違させることにより、各層4,5,6が異なる
比誘電率となるように構成されている。The resin mold layer 3 is made by dispersing four kinds of fine granular insulators, which will be described later, in a resin such as an epoxy resin. In this case, the inner layer 4, which is closer to the winding 1, is arranged in this order. It is composed of three layers, an intermediate layer 5 and an outer layer 6. A first mesh 7 is provided at the boundary between the outer layer 6 and the intermediate layer 5, and a second mesh 8 is provided at the boundary between the intermediate layer 5 and the inner layer 4. This resin mold layer 3 is manufactured by a method described in detail below, and by making the distribution state of the fine granular insulating material different between the layers 4, 5, 6 so that the layers 4, 5, 6 have different dielectric constants. Is configured to be.
【0011】次に、上記樹脂モールド層3を形成する手
順について、図1も参照して述べる。図1は、樹脂モー
ルド層3の形成時の様子を模式的に示している。ここ
で、樹脂注入装置9には樹脂材料10が収容されている
のであるが、この樹脂材料10には、例えばシリカやガ
ラス等からなるビーズ状の4種類の微小粒状絶縁物11
〜14が混合されている。Next, the procedure for forming the resin mold layer 3 will be described with reference to FIG. FIG. 1 schematically shows how the resin mold layer 3 is formed. Here, a resin material 10 is housed in the resin injecting device 9, and the resin material 10 contains four kinds of bead-shaped minute granular insulators 11 made of, for example, silica or glass.
~ 14 are mixed.
【0012】具体的には、微小粒状絶縁物11及び12
は中空状に形成され(図面では便宜上白丸で示す)、そ
のうち、微小粒状絶縁物11は中心粒径が100μmと
大径(大きな白丸)とされ、微小粒状絶縁物12は中心
粒径が50μmと中間の径(中くらいの白丸)とされて
いる。そして、微小粒状絶縁物13及び14は中実状に
形成され(図面では便宜上黒丸で示す)、そのうち、微
小粒状絶縁物13は中心粒径が50μmと中間の径(中
くらいの黒丸)とされ、微小粒状絶縁物14は中心粒径
が10μmと小径(小さい黒丸)とされている。Specifically, fine granular insulators 11 and 12
Are formed in a hollow shape (indicated by white circles for convenience in the drawing), of which the fine granular insulating material 11 has a center particle diameter of 100 μm and a large diameter (large white circle), and the fine granular insulating material 12 has a center particle diameter of 50 μm. It is said to have an intermediate diameter (medium white circle). Then, the fine granular insulators 13 and 14 are formed in a solid shape (indicated by black circles for convenience in the drawing), of which the fine granular insulator 13 has a central particle diameter of 50 μm and an intermediate diameter (medium black circle), The fine granular insulator 14 has a central diameter of 10 μm and a small diameter (small black circle).
【0013】樹脂モールドを行うにあたっては、前記樹
脂モールド層3の外形に相当するキャビティを有する図
示しない成形型内に、上記巻線1を配置すると共に、上
記第1のメッシュ7及び第2のメッシュ8を、所定の位
置(各層4,5,6の境界となるべき位置)に配置す
る。ここで、第1のメッシュ7は、穴径が80μmとさ
れ、第2のメッシュ8は、穴径が30μmとされてい
る。When carrying out resin molding, the winding 1 is placed in a molding die (not shown) having a cavity corresponding to the outer shape of the resin molding layer 3, and the first mesh 7 and the second mesh are formed. 8 is arranged at a predetermined position (a position which should be a boundary between the layers 4, 5 and 6). Here, the first mesh 7 has a hole diameter of 80 μm, and the second mesh 8 has a hole diameter of 30 μm.
【0014】この状態で、樹脂注入装置9により、成形
型内に上記した樹脂材料10を外層6側から注入する。
成形型内に充填された樹脂材料10を加熱,硬化させる
ことにより、樹脂モールド層3が形成されるのである
が、このとき、成形型内が第1及び第2のメッシュ7及
び8により仕切られているので、樹脂材料10に混合さ
れている微小粒状絶縁材11〜14は、それらメッシュ
7及び8により通過が制限されることになる。In this state, the resin material 10 is injected from the outer layer 6 side into the mold by the resin injection device 9.
The resin mold layer 3 is formed by heating and curing the resin material 10 filled in the molding die. At this time, the molding die is partitioned by the first and second meshes 7 and 8. Therefore, passage of the fine granular insulating materials 11 to 14 mixed with the resin material 10 is restricted by the meshes 7 and 8.
【0015】即ち、第1のメッシュ7は穴径が80μm
とされているので、中間径及び小径の微小粒状絶縁材1
2,13及び14は通過するが、大径の微小粒状絶縁材
11は、第1のメッシュ7を通過できず、外層6部分に
とどまるようになる。そして、第2のメッシュ8は穴径
が30μmとされているので、小径の微小粒状絶縁材1
4のみが通過し、中間径の微小粒状絶縁材12及び13
は通過できずに中間層5部分にとどまることになる。That is, the first mesh 7 has a hole diameter of 80 μm.
Therefore, the intermediate and small diameter fine granular insulating material 1
2, 13, and 14 pass through, but the large-diameter fine granular insulating material 11 cannot pass through the first mesh 7 and remains in the outer layer 6 portion. Since the second mesh 8 has a hole diameter of 30 μm, the small-diameter fine granular insulating material 1
4 only passes through and has a medium-diameter fine granular insulating material 12 and 13
Will not be able to pass through and will remain in the mid layer 5.
【0016】これにより、図1に示すように、樹脂中に
大径な中空微小粒状絶縁物11を分散してなる外層6、
樹脂中に中間径の中空微小粒状絶縁物12及び中実微小
粒状絶縁物13を分散してなる中間層5、及び、樹脂中
に小径の中実微小粒状絶縁物14を分散してなる内層
4、の3層からなる樹脂モールド層3が形成されるので
ある。As a result, as shown in FIG. 1, the outer layer 6 in which the large-diameter hollow minute granular insulator 11 is dispersed in the resin,
An intermediate layer 5 in which a hollow fine granular insulator 12 and a solid fine granular insulator 13 having a medium diameter are dispersed in a resin, and an inner layer 4 in which a solid fine granular insulator 14 having a small diameter is dispersed in a resin. Thus, the resin mold layer 3 including the three layers is formed.
【0017】ここで、樹脂中に中空の微小粒状絶縁物1
1,12を含む場合には、比誘電率が1.0程度の気泡
が樹脂中に分散されることになるため、樹脂層の誘電率
は、見掛上樹脂本来の比誘電率に比べて小さくなる。一
方、樹脂中に中実の微小粒状絶縁物13,14を含む場
合には、比誘電率が5.0程度の絶縁物が樹脂中に分散
されることになるため、樹脂層の誘電率は、見掛上樹脂
本来の比誘電率に比べて大きくなる。Here, the fine granular insulating material 1 hollow in the resin 1
When 1 and 12 are included, bubbles having a relative dielectric constant of about 1.0 are dispersed in the resin, so that the dielectric constant of the resin layer is apparently lower than that of the resin. Get smaller. On the other hand, when the resin contains solid fine granular insulators 13 and 14, an insulator having a relative dielectric constant of about 5.0 is dispersed in the resin, so that the dielectric constant of the resin layer is Apparently, the relative permittivity becomes larger than the original relative permittivity of the resin.
【0018】従って、上記樹脂モールド層3にあって
は、見掛けの誘電率が、外層6<中間層5<内層4の順
に傾斜を有するようになり、外側に位置する外層6の誘
電率が、空気の比誘電率1.0に近い値となるのであ
る。これにより、電圧印加時の電圧の分担が均等化を図
ることができ、機器端部における電界集中が抑えられ、
ひいては、変圧器の高電圧化,小形化を図ることができ
るものである。Therefore, in the resin mold layer 3, the apparent dielectric constant has a gradient in the order of outer layer 6 <intermediate layer 5 <inner layer 4, and the outer layer 6 located outside has a dielectric constant of The relative permittivity of air is close to 1.0. As a result, it is possible to equalize the sharing of the voltage when the voltage is applied, and suppress the electric field concentration at the device end,
As a result, it is possible to increase the voltage and size of the transformer.
【0019】このように本実施例によれば、従来では適
切な方法が存在しなかった樹脂モールド層3に対する誘
電傾斜の形成を、容易に行うことが可能となった。この
結果、樹脂モールド層3の比誘電率を任意に調整するこ
とが可能となり、樹脂モールド機器の端部への電界集中
等を抑制することができ、ひいては機器の絶縁性能の向
上を図ることができるものである。As described above, according to the present embodiment, it is possible to easily form the dielectric gradient with respect to the resin mold layer 3 which has not been available by the conventional method. As a result, the relative permittivity of the resin mold layer 3 can be arbitrarily adjusted, electric field concentration and the like at the end of the resin mold device can be suppressed, and the insulation performance of the device can be improved. It is possible.
【0020】尚、上記実施例では、4種類の微小粒状絶
縁物11〜14と2種類のメッシュ7,8を用いて3層
の樹脂層を形成するようにしたが、微小粒状絶縁物の種
類や数、メッシュの穴径や数等は、用途等に応じて任意
に変更することができる。例えば粒度分布の広い1種類
の微小粒状絶縁物を用いて誘電傾斜を形成することもで
きる。その他、樹脂モールド変圧器に限らず、モールド
PT,CT等の他のモールド機器全般にも適用すること
ができる等、本発明は要旨を逸脱しない範囲内で適宜変
更して実施し得るものである。In the above embodiment, four kinds of fine granular insulators 11 to 14 and two kinds of meshes 7 and 8 are used to form three resin layers. The number of holes, the hole diameter of the mesh, the number of holes, and the like can be arbitrarily changed according to the application. For example, the dielectric gradient can be formed by using one kind of fine granular insulator having a wide particle size distribution. Besides, the present invention is not limited to resin-molded transformers, but can be applied to other molding equipment such as molds PT and CT in general, and the present invention can be appropriately modified and implemented without departing from the scope of the invention. .
【0021】[0021]
【発明の効果】以上の説明にて明らかなように、本発明
の絶縁物の製造方法によれば、成形型内に、中空あるい
は中実の微小粒状絶縁材を混合した樹脂を注入し硬化さ
せることにより、内部に前記微小粒状絶縁材が分散した
絶縁物を製造する方法であって、成形型内を、微小粒状
絶縁材の通過を制限するためのメッシュにより仕切った
状態で、樹脂を注入するようにしたので、樹脂絶縁物に
誘電傾斜を容易に形成することができるという優れた実
用的効果を奏するものである。As is apparent from the above description, according to the method for producing an insulator of the present invention, a resin mixed with a hollow or solid fine particulate insulating material is injected into a molding die and cured. A method of manufacturing an insulator in which the fine granular insulating material is dispersed by injecting a resin in a state in which the molding die is partitioned by a mesh for limiting passage of the fine granular insulating material. As a result, the excellent practical effect that the dielectric gradient can be easily formed in the resin insulator is exhibited.
【図1】本発明の一実施例を示すもので、モールド成形
時の様子を模式的に示す図FIG. 1 is a view schematically showing an embodiment of the present invention, showing a state during molding.
【図2】樹脂モールド変圧器の巻線の構成を示す図FIG. 2 is a diagram showing a winding structure of a resin mold transformer.
図面中、1は巻線、3は樹脂モールド層(絶縁物)、4
は内層、5は中間層、6は外層、7は第1のメッシュ、
8は第2のメッシュ、10は樹脂材料、11,12は中
空微小粒状絶縁材、13,14は中実微小粒状絶縁材を
示す。In the drawing, 1 is a winding wire, 3 is a resin mold layer (insulator), 4
Is an inner layer, 5 is an intermediate layer, 6 is an outer layer, 7 is a first mesh,
Reference numeral 8 is a second mesh, 10 is a resin material, 11 and 12 are hollow fine granular insulating materials, and 13 and 14 are solid fine granular insulating materials.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:34 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location B29L 31:34 4F
Claims (1)
状絶縁材を混合した樹脂を注入し硬化させることによ
り、内部に前記微小粒状絶縁材が分散した絶縁物を製造
する方法であって、前記成形型内を、前記微小粒状絶縁
材の通過を制限するためのメッシュにより仕切った状態
で、前記樹脂を注入するようにしたことを特徴とする絶
縁物の製造方法。1. A method for producing an insulating material in which the fine granular insulating material is dispersed by injecting a resin in which a hollow or solid fine granular insulating material is mixed into a molding die and curing the resin. A method for manufacturing an insulator, wherein the resin is injected in a state in which the molding die is partitioned by a mesh for restricting passage of the fine granular insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4250927A JPH06104135A (en) | 1992-09-21 | 1992-09-21 | Manufacture of insulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4250927A JPH06104135A (en) | 1992-09-21 | 1992-09-21 | Manufacture of insulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06104135A true JPH06104135A (en) | 1994-04-15 |
Family
ID=17215093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4250927A Pending JPH06104135A (en) | 1992-09-21 | 1992-09-21 | Manufacture of insulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06104135A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008153665A (en) * | 2006-12-15 | 2008-07-03 | General Electric Co <Ge> | Insulation system and insulation method for transformer |
WO2016059827A1 (en) * | 2014-10-17 | 2016-04-21 | 株式会社 日立メディコ | Transformer and high-voltage generation device |
JP2019161196A (en) * | 2018-03-17 | 2019-09-19 | 株式会社村田製作所 | Coil component |
-
1992
- 1992-09-21 JP JP4250927A patent/JPH06104135A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008153665A (en) * | 2006-12-15 | 2008-07-03 | General Electric Co <Ge> | Insulation system and insulation method for transformer |
WO2016059827A1 (en) * | 2014-10-17 | 2016-04-21 | 株式会社 日立メディコ | Transformer and high-voltage generation device |
JPWO2016059827A1 (en) * | 2014-10-17 | 2018-02-08 | 株式会社日立製作所 | Transformer and high voltage generator |
JP2019161196A (en) * | 2018-03-17 | 2019-09-19 | 株式会社村田製作所 | Coil component |
US11664155B2 (en) | 2018-03-17 | 2023-05-30 | Murata Manufacturing Co., Ltd. | Coil component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602004005103T2 (en) | Coil component and method of manufacture | |
CN105679473B (en) | The layered manufacturing method of dielectric function gradient insulator | |
DE112015003006T5 (en) | Core element, inductor and method of manufacturing the core element | |
JPH06104135A (en) | Manufacture of insulator | |
CH261736A (en) | Method of manufacturing a dry-type transformer. | |
DE69926787T2 (en) | METHOD FOR REDUCING PARTIAL DISCHARGE IN THE ROLEBAG FILLING MATERIAL OF A HIGH VOLTAGE STATE DEVELOPMENT | |
US3626587A (en) | Methods of constructing electrical transformers | |
Kurimoto et al. | Finite element modeling of effective permittivity in nanoporous epoxy composite filled with hollow nanosilica | |
JP2003168607A (en) | Dust inductor | |
US4565591A (en) | Method and apparatus for making a magnetically loaded insulated electrical conductor | |
DE1120003B (en) | Cast-resin-insulated electrical transducer, implementation or the like. | |
JPS62104112A (en) | Transformer and manufacture thereof | |
GB2197744A (en) | An insulated conductor comprising a polytetrafluoroethylene coating | |
WO2020207687A1 (en) | Inductive component and method for producing an inductive component | |
JPH0465027A (en) | Foam plastic-insulating electric cable and manufacture thereof | |
JPS6372106A (en) | Resin molded coil | |
JPH02198106A (en) | Resin ferrite and manufacture thereof | |
CN215704109U (en) | Magnetic conduction wave-absorbing material's making devices | |
JPS6221205A (en) | Resin-molded coil | |
DE102024104651A1 (en) | INSULATING SPACER ELEMENT AND METHOD FOR PRODUCING THE INSULATING SPACER ELEMENT | |
JPH06188130A (en) | Molded electric apparatus and manufacture thereof | |
JPH03159084A (en) | Power cable connection method | |
JPS5615011A (en) | Coil for electric device and manufacture thereof | |
JPS6024008A (en) | Resin mold coil | |
JPH05198208A (en) | Insulating supporter and molded electrical equipment |