JPH0599925A - Method for measuring concentration of antigen or antibody - Google Patents
Method for measuring concentration of antigen or antibodyInfo
- Publication number
- JPH0599925A JPH0599925A JP25784991A JP25784991A JPH0599925A JP H0599925 A JPH0599925 A JP H0599925A JP 25784991 A JP25784991 A JP 25784991A JP 25784991 A JP25784991 A JP 25784991A JP H0599925 A JPH0599925 A JP H0599925A
- Authority
- JP
- Japan
- Prior art keywords
- antigen
- antibody
- concentration
- absorbance
- calibration curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、試料中の抗原または抗
体の濃度の測定方法に関する。さらに詳しくは、分光分
析による吸光度の測定により抗原(または抗体)を定量
する方法に関する。FIELD OF THE INVENTION The present invention relates to a method for measuring the concentration of an antigen or antibody in a sample. More specifically, it relates to a method for quantifying an antigen (or antibody) by measuring the absorbance by spectroscopic analysis.
【0002】[0002]
【従来の技術】近年、医療分野においては、病気の診断
のために抗原あるいは抗体の濃度を定量的に検知するこ
とが重要な課題となっており、特に通常、試料(血液
等)中に微量しか存在しない成分、例えばβ2 M(β2
ミクログロブリン)などについて定量的に測定できる高
感度定量法の開発が課題となってきている。2. Description of the Related Art In recent years, in the medical field, it has become an important subject to quantitatively detect the concentration of an antigen or an antibody for diagnosing a disease. Components that only exist, for example β 2 M (β 2 M
The development of a highly sensitive quantitative method that can quantitatively measure (eg, microglobulin) has become an issue.
【0003】従来、(1)抗体(または抗原)を担持さ
せたラテックスを溶媒中に分散させ、これと抗原(また
は抗体)を反応させ、ラテックスの凝集反応に伴う濁度
(吸光度)増加を波長600〜2400nmで測定し
て、抗原(または抗体)を定量する方法(特開昭58−
11575号)、(2)前記方法は、ラテックス溶液自
信の吸光度に比べて、抗原−抗体反応によって生じるラ
テックス凝集による吸光度の変化が小さいため、この改
良方法として抗原−抗体反応開始後の一定時間後と、そ
の後更に一定時間経過後の2点間の吸光度の変化を測定
する2点法、(3)抗原−抗体複合物を含有する被検液
について2つの異なる波長λ1 、λ2 の光を照射し、各
波長の吸光度Aλ1 、Aλ2 を測定し、前記吸光度の比
Aλ1 /Aλ2 の変化により被検液(試料)中の抗原
(または抗体)の濃度を求める方法(エンドポイント
法)(特開昭63−138266号)等の方法が提案さ
れている。Conventionally, (1) a latex carrying an antibody (or an antigen) is dispersed in a solvent, and this is reacted with the antigen (or antibody) to increase the turbidity (absorbance) associated with the agglutination reaction of the latex at a wavelength. A method for quantifying an antigen (or antibody) by measuring at 600 to 2400 nm (JP-A-58-58).
11575), (2) In the above method, the change in the absorbance due to the latex aggregation caused by the antigen-antibody reaction is smaller than the absorbance of the latex solution. And a two-point method for measuring the change in absorbance between two points after a lapse of a certain period of time, and (3) light of two different wavelengths λ 1 and λ 2 for the test solution containing the antigen-antibody complex. Method of determining the concentration of the antigen (or antibody) in the test liquid (sample) by irradiating, measuring the absorbances Aλ 1 and Aλ 2 of each wavelength, and changing the ratio of the absorbances Aλ 1 / Aλ 2 (end point method) ) (JP-A-63-138266).
【0004】(4)また最近、凝集したラテックス粒子
を含む溶液をシ−スフロ−中1個1個の凝集塊に分け、
レ−ザ光源による光散乱検出法により凝集の度合を解析
して抗原(または抗体)を定量する方法も開発されてい
る。(4) Recently, a solution containing agglomerated latex particles is divided into one agglomerate in a sheet flow,
A method for quantifying an antigen (or antibody) by analyzing the degree of aggregation by a light scattering detection method using a laser light source has also been developed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
方法は次のような問題点がある。前記(1)の方法では
ラッテクス溶液自身の吸光度に比べて、ラテックス凝集
による吸光度の変化が小さく、測定波長の選択により吸
光度変化を大きくしようとしてもラテックス溶液自身の
吸光度も大きくなってしまうため、S/Nの改善にはな
らないと言った課題がある。However, the above method has the following problems. In the method (1), the change in absorbance due to latex aggregation is smaller than that in the latex solution itself, and even if an attempt is made to increase the absorbance change by selecting the measurement wavelength, the absorbance of the latex solution itself becomes large. There is a problem that it does not improve / N.
【0006】前記(2)の方法については、同一の反応
液について、抗原−抗体反応開始後の一定時間後と、そ
れから一定時間経過後の2点について吸光度の変化分だ
けを測定する2点法を採用するため、十分な反応時間後
の吸光度から試薬であるラッテクス溶液のみの吸光度を
差引く、いわゆるエンドポイント法(1点法)の採用が
むずかしく、試薬あるいは試料の分注から測定まで自動
的にコントロ−ルされる自動分析装置が必要となる。分
光光度計により測定も不可能ではないが、試料を吸入
後、フローセル中で長時間反応させないと測定値が安定
しないため、分光光度計にかけてから測定結果が出るま
でに長時間を要し、処理能力が低下するので病院などで
多数の試料を処理する場合に非能率的であると言う課題
がある。The method (2) is a two-point method in which the change in the absorbance is measured at a fixed time after the start of the antigen-antibody reaction in the same reaction solution and at two points after the fixed time has elapsed. Therefore, it is difficult to use the so-called end point method (1 point method), which subtracts the absorbance of only the Latex solution, which is the reagent, from the absorbance after a sufficient reaction time. An automatic analyzer controlled by the above is required. It is not impossible to measure with a spectrophotometer, but after inhaling the sample, it will take a long time to get the measurement result after the spectrophotometer, because the measured value is not stable unless it reacts in the flow cell for a long time. There is a problem that it is inefficient when treating a large number of samples in a hospital or the like because the ability is reduced.
【0007】前記(3)の方法は、汎用の分光光度計を
用いて比較的短時間で容易に測定が可能であり、低濃度
域では変化率が大きく高感度であるが、高濃度域では変
化率が小さいため、僅かの吸光度変化で測定値が大きく
変わり、精度が低下すると言う課題がある。The method (3) can be easily measured in a relatively short time by using a general-purpose spectrophotometer, and the change rate is large and the sensitivity is high in the low concentration range, but in the high concentration range. Since the rate of change is small, there is a problem that the measured value changes greatly even with a slight change in absorbance, and the accuracy decreases.
【0008】前記(4)の方法は、ラテックスの凝集と
測定結果が1対1に対応し、またエンドポイント法の採
用が可能であり反応時間を長くするほど凝集が進み高感
度となり、かつラテックス濃度を減少させても感度は変
わらないなどの前者の欠点は改善されているが、シ−ス
フロ−構造とすることが必要でかつ1個の粒子による散
乱光を検出するためレ−ザ光源が必要で専用装置となら
ざるを得ないという問題点があった。In the method (4), the agglutination of latex and the measurement result correspond to each other in a one-to-one manner, and the endpoint method can be adopted. The longer the reaction time, the higher the agglutination and the higher the sensitivity. Although the former drawbacks such as the fact that the sensitivity does not change even if the concentration is reduced are improved, a laser light source is required because it is necessary to have a seed flow structure and the scattered light from one particle is detected. There was a problem that it was necessary and it had to be a dedicated device.
【0009】この発明は、かかる状況に鑑みなされてい
るものであり専用装置を用いなくても、汎用の分光光度
計を用いて、エンドポイント法により抗原(または抗
体)の濃度を感度良く測定する方法を提供することを目
的とする。The present invention has been made in view of the above circumstances, and the concentration of an antigen (or antibody) can be measured with high sensitivity by an endpoint method using a general-purpose spectrophotometer without using a dedicated device. The purpose is to provide a method.
【0010】[0010]
【課題を解決するための手段】前記目的を達成するた
め、本発明の抗原または抗体の濃度の測定方法は、微細
粒子の不活性担体に抗体(または抗原)を担持したもの
を溶媒中に分散させ、これと抗原(または抗体)を反応
させて生成する抗体−抗原複合物に異なる波長λ 1 、λ
2 の光を照射し、各波長の吸光度Aλ1 、Aλ2 を測定
し、前記吸光度の比Aλ1 /Aλ2 および吸光度差(A
λ1 −Aλ1 ブランク)−(Aλ2 −Aλ 2 ブランク)
を求め、低濃度域では前記吸光度比の検量線を用い、高
濃度域では前記吸光度差の検量線を用いて抗体(または
抗原)の濃度を測定することを特徴とする。[Means for Solving the Problems]
Therefore, the method for measuring the concentration of an antigen or antibody of the present invention is
Inert carrier of particles carrying antibody (or antigen)
Dispersed in a solvent and reacted with the antigen (or antibody)
The resulting antibody-antigen complex has different wavelengths λ. 1, Λ
2The light of each wavelength, the absorbance of each wavelength Aλ1, Aλ2Measure
And the ratio of the absorbances Aλ1/ Aλ2And absorbance difference (A
λ1-Aλ1Blank)-(Aλ2-Aλ 2blank)
In the low concentration range, use the calibration curve of the absorbance ratio to
In the concentration range, the antibody (or
(Antigen) concentration is measured.
【0011】微細粒径の不溶性担体に抗体(または抗
原)を担持させ、溶媒中に分散させたラテックスは、特
に限定するものではないが、通常粒子径が0.1〜0.
8μm程度のものであり、各種抗体(または抗原)が担
持された市販品を容易に入手することができる。抗原−
抗体反応は、この様な抗体(または抗原)が担持されて
分散されたラテックスと、通常適宜の緩衝液ならびに例
えば血液や血清などの被検液(試料)を用いて抗体−抗
原反応により、抗体−抗原複合物となって、ラテックス
の凝集が生じる。The latex in which an antibody (or an antigen) is carried on a fine particle size insoluble carrier and dispersed in a solvent is not particularly limited, but usually has a particle size of 0.1 to 0.
It is about 8 μm, and a commercial product carrying various antibodies (or antigens) can be easily obtained. Antigen-
The antibody reaction is carried out by an antibody-antigen reaction using a latex in which such an antibody (or an antigen) is supported and dispersed, and usually an appropriate buffer solution and a test solution (sample) such as blood or serum. -Agglutination of the latex results in the antigen complex.
【0012】本発明においては、こうして得られた反応
ラテックス溶液に異なる波長λ1 、λ2 の光を照射す
る。分光光度計の種類にもよるが、通常の分光光度計に
おいては、波長範囲は例えば325〜1100nmの波
長の範囲から適宜の2つの波長を選定すれば良く、特に
長波長側の波長λ2 については、水による吸光をさける
ため、1000nm以下の波長を選定することが好まし
い。また、吸光度範囲は4ABS以下であるので、ラテ
ックス試薬としては、ラテックスの直径等により、通常
500nmの吸光度4ABS以下になるような濃度に調
整するのが望ましい。In the present invention, the reaction latex solution thus obtained is irradiated with light having different wavelengths λ 1 and λ 2 . Depending on the type of spectrophotometer, in a normal spectrophotometer wavelength range may be selected two wavelengths as appropriate over the range from the wavelength of for example 325~1100Nm, the wavelength lambda 2, especially long wavelength side In order to avoid absorption by water, it is preferable to select a wavelength of 1000 nm or less. Also, since the absorbance range is 4 ABS or less, it is desirable to adjust the concentration of the latex reagent so that the absorbance at 500 nm is usually 4 ABS or less depending on the diameter of the latex and the like.
【0013】本発明においては、まず濃度が既知の抗原
(または抗体)を含む試料の希釈系列を上記と同様に一
定時間反応させた時の、濃度と吸光度比Aλ1 /Aλ2
の関係、および濃度と吸光度差(Aλ1 −Aλ1 ブラン
ク)−(Aλ2 −Aλ2 ブランク)の関係を示す2つの
検量線を求めておき、これらの検量線を用いて、同様に
未知濃度の試料中の抗原(または抗体)の異なる2波長
の吸光度を測定し、測定項目ごとにあらかじめ定めた濃
度域に応じて、低濃度域においては吸光度比による検量
線を、高濃度域においては吸光度差による検量線を用い
て抗原(または抗体)の濃度を決定する。いかなる濃度
をもって低濃度域と高濃度域と定めるかについては、用
いるラテックスの種類、粒子径、抗原、抗体の種類など
によって異なるので、作成した吸光度比による検量線と
吸光度差による検量線に応じ、低濃度から高濃度に行く
に従って、吸光度比による検量線による感度が低下し、
吸光度差による検量線の感度が良くなる濃度で吸光度比
による検量線から吸光度差による検量線に切り替えて読
み取る点をあらかじめ定めておけば良い。In the present invention, first, a dilution series of a sample containing an antigen (or antibody) of known concentration is reacted for a certain period of time in the same manner as above, and then the concentration and the absorbance ratio Aλ 1 / Aλ 2
And the relationship between concentration and absorbance difference (Aλ 1 -Aλ 1 blank)-(Aλ 2 -Aλ 2 blank) are obtained in advance, and these calibration curves are used to similarly determine the unknown concentration. The absorbance of two different wavelengths of the antigen (or antibody) in the sample is measured, and the calibration curve is based on the absorbance ratio in the low concentration range and the absorbance in the high concentration range according to the concentration range determined in advance for each measurement item. A calibration curve based on the difference is used to determine the concentration of the antigen (or antibody). As to what concentration is to be defined as the low concentration region and the high concentration region, it depends on the type of latex used, particle size, antigen, type of antibody, etc., so depending on the calibration curve created by the absorbance ratio and the calibration curve created by the absorbance difference, From low concentration to high concentration, the sensitivity of the calibration curve by absorbance ratio decreases,
The point at which the calibration curve based on the absorbance ratio is switched to the calibration curve based on the absorbance difference and is read at a concentration at which the sensitivity of the calibration curve based on the absorbance difference is improved may be set in advance.
【0014】なお、吸光度差(Aλ1 −Aλ1 ブラン
ク)−(Aλ2 −Aλ2 ブランク)のAλ1 ブランク、
Aλ2 ブランクとは、抗体(または抗原)の濃度が0の
時のそれぞれ波長λ1 、λ2 における吸光度を示してい
るものである。このブランクの吸光度を測定するための
試料は、通常前述の抗体(または抗原)が担持されたラ
テックス溶液と緩衝液は同じものを同量用いるが、血清
などの検査の対象となる抗原(または抗体)が含有され
ている試料の代わりに、例えば生理食塩水を同量用いる
ことによって調整することができる。The difference in absorbance (Aλ 1 -Aλ 1 blank)-(Aλ 2 -Aλ 2 blank), Aλ 1 blank,
The A λ 2 blank indicates the absorbance at wavelengths λ 1 and λ 2 when the antibody (or antigen) concentration is 0. As a sample for measuring the absorbance of this blank, the same latex solution and buffer as the above-mentioned antibody (or antigen) are usually used in the same amount, but the antigen (or antibody) to be tested such as serum is used. It can be adjusted by using, for example, the same amount of physiological saline instead of the sample containing).
【0015】[0015]
【作用】本発明は、微細粒子の不活性担体に抗体(また
は抗原)を担持したものを溶媒中に分散させ、これと抗
原(または抗体)を反応させて生成する抗体−抗原複合
物に異なる波長λ1 、λ2 の光を照射し、各波長の吸光
度Aλ1 、Aλ2 を測定し、前記吸光度の比および吸光
度差を求め、低濃度域では吸光度比の検量線が変化率が
大きく、測定値のバラツキも少く、従って感度が良く、
より精度が高いこと、高濃度域では吸光度差の検量線の
方が吸光度比の検量線に比べて変化率が大きく、従って
感度が良く、より精度が高いことにより、低濃度域では
吸光度比の検量線を用い、高濃度域では吸光度差の検量
線を用いて、汎用の分光光度計で比較的短時間に、従来
と同様の容易な操作であるエンドポイント法により抗原
(または抗体)の濃度を感度良く測定する方法が提供で
きる。The present invention is different from an antibody-antigen complex formed by dispersing an antibody (or an antigen) supported on an inactive carrier of fine particles in a solvent and reacting this with the antigen (or the antibody). The light having wavelengths λ 1 and λ 2 is irradiated, the absorbances Aλ 1 and Aλ 2 of the respective wavelengths are measured, the absorbance ratio and the absorbance difference are determined, and the calibration curve of the absorbance ratio has a large change rate in the low concentration range, There is little variation in measured values, so sensitivity is good,
Higher accuracy, the calibration curve of the absorbance difference has a larger rate of change than the calibration curve of the absorbance ratio in the high concentration range, and thus the sensitivity is better and the accuracy is higher. Using the calibration curve and the absorbance difference calibration curve in the high concentration range, the concentration of the antigen (or antibody) is measured by a general-purpose spectrophotometer in a relatively short time by the endpoint method, which is the same easy operation as before. It is possible to provide a method for measuring with high sensitivity.
【0016】以下実施例によりこの発明を詳細に説明す
るが、これによりこの発明が限定されるものではない。The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.
【0017】[0017]
【実施例】表1はβ2 M(β2 −ミクログロブリン)抗
体を粒子径約0.2μmのラテックスに担持したラテッ
クス180μlとトリス塩酸緩衝液380μlからなる
試薬と、β2 M既知濃度の血清20μlとを室温で反応
させた時の15分後の各波長λ1 =700nm、λ2 =
950nmでの吸光度A700 とA950 および吸光度比A
700 /A950 、吸光度差(A700 −A700 ブランク)−
(A950 −A950 ブランク)を示す。なお、β2 Mの濃
度0ng/mlのブランクの試料は、上記において血清
20μlの代わりに生理食塩水20μlを用いて調整し
たものである。EXAMPLES Table 1 shows a reagent comprising 180 μl of latex in which a β 2 M (β 2 -microglobulin) antibody is supported on a latex having a particle size of about 0.2 μm and 380 μl of Tris-HCl buffer, and serum having a known concentration of β 2 M. After 15 minutes of reaction with 20 μl at room temperature, each wavelength λ 1 = 700 nm, λ 2 =
Absorbance at 950 nm A 700 and A 950 and absorbance ratio A
700 / A 950 , absorbance difference (A 700 -A 700 blank)-
Shows the (A 950 -A 950 blank). A blank sample having a concentration of β 2 M of 0 ng / ml was prepared by using 20 μl of physiological saline in place of 20 μl of serum in the above.
【0018】[0018]
【表1】 [Table 1]
【0019】図1に表1のデータに基づいて作成した吸
光度比と吸光度差の検量線を示した。図1中、実線Xが
吸光度差の検量線、実線Yが吸光度比の検量線を示すも
のである。また、点線X1 、X2 で示される範囲、なら
びに点線Y1 、Y2 で示される範囲はそれぞれβ2 M既
知濃度の血清を同様に測定した場合の各濃度での吸光度
差と吸光度比の値のバラツキを示す。FIG. 1 shows a calibration curve of the absorbance ratio and the absorbance difference created based on the data in Table 1. In FIG. 1, the solid line X shows the calibration curve of the absorbance difference, and the solid line Y shows the calibration curve of the absorbance ratio. The ranges indicated by the dotted lines X 1 and X 2 and the ranges indicated by the dotted lines Y 1 and Y 2 respectively represent the difference in absorbance and the absorbance ratio at each concentration when serum with a known concentration of β 2 M was similarly measured. Indicates the variation of the value.
【0020】図1からも明らかな様に、吸光度比の方は
低濃度域ではその変化率が大きく高感度であり、しかも
バラツキが小さいことがわかるが、高濃度域になると検
量線の変化率が小さくなり、測定の誤差を生みやすい。
一方吸光度差の方は高濃度域まで変化率が大きく、感度
が良いことがわかるが、吸光度のあまり上がらない低濃
度域においては、ラテックス添加量のバラツキによる試
薬ブランクの吸光度のバラツキが効いてくるため、誤差
を生じやすいという欠点がある。尚、高濃度において
は、試薬ブランクとの吸光度差が大きいため、測定値の
バラツキはあまり効いてこないのである。As is clear from FIG. 1, the absorbance ratio has a large change rate in the low concentration range and a high sensitivity, and the variation is small, but in the high concentration range, the change rate of the calibration curve is high. Is small and measurement errors are likely to occur.
On the other hand, the absorbance difference has a large rate of change up to the high concentration range, indicating that the sensitivity is good. Therefore, there is a drawback that an error is likely to occur. At a high concentration, the difference in absorbance with the reagent blank is large, and therefore the variation in the measured values does not work very well.
【0021】従って、ある程度の傾きがある濃度までは
吸光度比法の検量線を用い、その濃度以上については吸
光度差法の検量線を用いる事によって、抗体または抗原
の濃度を精度良く測定することができるのである。Therefore, the concentration of the antibody or the antigen can be accurately measured by using the calibration curve of the absorbance ratio method up to a concentration having a certain degree of inclination and using the calibration curve of the absorbance difference method above the concentration. You can do it.
【0022】表2に低濃度域で濃度が既知の(項目β2
M、濃度250ng/ml)場合の試料について比較の
ためにそれぞれ吸光度比法の検量線を用いた場合と、吸
光度差法の検量線を用いた場合の測定結果の再現性のデ
ータを、また、表3に高濃度域で濃度が既知の(項目β
2 M、濃度1200ng/ml)場合の試料について比
較のためにそれぞれ吸光度比法の検量線を用いた場合
と、吸光度差法の検量線を用いた場合の測定結果の再現
性のデータを示した。In Table 2, the concentration is known in the low concentration range (item β 2
M, concentration of 250 ng / ml) for the comparison, using the calibration curve of the absorbance ratio method and the reproducibility data of the measurement results when using the calibration curve of the absorbance difference method, respectively, Table 3 shows known concentrations in the high concentration range (item β
2 M, concentration of 1200 ng / ml), the reproducibility data of the measurement results using the calibration curve of the absorbance ratio method and the calibration curve of the absorbance difference method are shown for comparison. ..
【0023】表2、3においてnは各測定のn数(測定
実験数)を示す、Xは各測定値の算術平均、SDは標準
偏差、CVは変動係数で(標準偏差/算術平均)×10
0で示される。In Tables 2 and 3, n represents the n number of each measurement (measurement experiment number), X is the arithmetic mean of each measurement value, SD is the standard deviation, and CV is the coefficient of variation (standard deviation / arithmetic mean) × 10
It is indicated by 0.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】表2、3から明らかな様に、低濃度域にお
いては吸光度比法の方が算術平均値が実際の濃度により
近く、また変動係数も小さいことがわかる。一方、高濃
度域においては吸光度差法の方が算術平均値が実際の濃
度により近く、また変動係数も小さいことが認められ
る。このデータからも低濃度域においては吸光度比法に
よる検量線を用いることが好ましく、高濃度域において
は吸光度差法による検量線を用いることが好ましいこと
がわかる。As is clear from Tables 2 and 3, it is understood that in the low concentration region, the absorbance ratio method has an arithmetic mean value closer to the actual concentration and a smaller coefficient of variation. On the other hand, in the high concentration range, it is recognized that the absorbance difference method has an arithmetic mean value closer to the actual concentration and a smaller coefficient of variation. This data also shows that it is preferable to use the calibration curve by the absorbance ratio method in the low concentration range, and it is preferable to use the calibration curve by the absorbance difference method in the high concentration range.
【0027】[0027]
【発明の効果】本発明により、専用の自動吸光度変化測
定装置やシ−スフロ−とレ−ザ光散乱法をもちいた特殊
な装置を用いなくとも、汎用の分光光度計により、短時
間で容易にラテックス凝集を利用した抗原−抗体反応に
おける抗原(または抗体)の濃度を精度よく高感度に測
定することができる。According to the present invention, a general-purpose spectrophotometer can be used easily in a short time without using a dedicated automatic absorbance change measuring device or a special device using a sheath flow and laser light scattering method. In addition, the concentration of the antigen (or antibody) in the antigen-antibody reaction utilizing latex aggregation can be accurately measured with high sensitivity.
【図1】 吸光度比と吸光度差の検量線ならびに各濃度
での測定値のバラツキを示すグラフである。FIG. 1 is a graph showing a calibration curve of an absorbance ratio and an absorbance difference and variations in measured values at respective concentrations.
X 吸光度差の検量線 Y 吸光度比の検量線 Calibration curve for X absorbance difference Calibration curve for Y absorbance ratio
Claims (1)
原)を担持したものを溶媒中に分散させ、これと抗原
(または抗体)を反応させて生成する抗体−抗原複合物
に異なる波長λ1 、λ2 の光を照射し、各波長の吸光度
Aλ1 、Aλ2 を測定し、前記吸光度の比Aλ1 /Aλ
2 および吸光度差(Aλ1 −Aλ1 ブランク)−(Aλ
2 −Aλ2 ブランク)を求め、低濃度域では前記吸光度
比の検量線を用い、高濃度域では、前記吸光度差の検量
線を用いて抗体(または抗原)の濃度を測定することを
特徴とする抗原または抗体の濃度の測定方法。1. An antibody-antigen complex produced by dispersing fine particles of an inert carrier carrying an antibody (or an antigen) in a solvent and reacting this with the antigen (or an antibody) and different wavelengths λ. The light absorbency Aλ 1 and Aλ 2 at the respective wavelengths are measured by irradiating with light of 1 and λ 2 and the ratio of the light absorbency Aλ 1 / Aλ
2 and absorbance difference (Aλ 1 -Aλ 1 blank)-(Aλ
2- Aλ 2 blank) is determined, and the concentration of the antibody (or antigen) is measured using the calibration curve of the absorbance ratio in the low concentration range and the calibration curve of the absorbance difference in the high concentration range. Method for measuring the concentration of an antigen or antibody.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25784991A JPH0599925A (en) | 1991-10-04 | 1991-10-04 | Method for measuring concentration of antigen or antibody |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25784991A JPH0599925A (en) | 1991-10-04 | 1991-10-04 | Method for measuring concentration of antigen or antibody |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0599925A true JPH0599925A (en) | 1993-04-23 |
Family
ID=17312011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25784991A Pending JPH0599925A (en) | 1991-10-04 | 1991-10-04 | Method for measuring concentration of antigen or antibody |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0599925A (en) |
-
1991
- 1991-10-04 JP JP25784991A patent/JPH0599925A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4157871A (en) | System for rate immunonephelometric analysis | |
US4766083A (en) | Method for the photometric determination of biological agglutination | |
US8673576B2 (en) | Multi-wavelength analyses of sol-particle specific binding assays | |
JP6367942B2 (en) | Method for detecting prozone effects in photometric assays | |
US4203724A (en) | Method and apparatus for the measurement of antigens and antibodies | |
JP2007286053A (en) | Immunoassay method | |
CN101680876A (en) | Whole blood assay | |
CA1081497A (en) | System for rate immunonephelometric analysis | |
JPH0666808A (en) | Chromogen measurement method | |
JP2006119044A5 (en) | ||
US5093271A (en) | Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths | |
JPH0599925A (en) | Method for measuring concentration of antigen or antibody | |
JPH0233097B2 (en) | ||
JPH0635980B2 (en) | How to measure body fluid components | |
EP0433629B1 (en) | A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination | |
JPH076985B2 (en) | Method for measuring antigen-antibody reaction | |
JPH07113635B2 (en) | Method for determining prozone in immune reaction | |
JPH0635982B2 (en) | Sensitive assay for antigen-antibody reaction | |
JPH0421821B2 (en) | ||
JPH0635981B2 (en) | Sensitive assay for antigen-antibody reaction | |
GB1600069A (en) | Method for the measurement of antigens and antibodies | |
JPH0635976B2 (en) | Prozone determination method in immune reaction | |
JPH042906B2 (en) | ||
JPH01221668A (en) | Method and instrument for measuring antigen-antibody reaction | |
JPH0843393A (en) | Immunological measuring method and analyzing device |