[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0598341A - Method for cleaning molten metal - Google Patents

Method for cleaning molten metal

Info

Publication number
JPH0598341A
JPH0598341A JP3281841A JP28184191A JPH0598341A JP H0598341 A JPH0598341 A JP H0598341A JP 3281841 A JP3281841 A JP 3281841A JP 28184191 A JP28184191 A JP 28184191A JP H0598341 A JPH0598341 A JP H0598341A
Authority
JP
Japan
Prior art keywords
slag
molten metal
molten
inclusions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3281841A
Other languages
Japanese (ja)
Inventor
Akihiko Ebihara
明彦 海老原
Kaoru Masame
薫 真目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3281841A priority Critical patent/JPH0598341A/en
Publication of JPH0598341A publication Critical patent/JPH0598341A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

(57)【要約】 【構成】 溶融金属を真空槽内に流出させ、微細化した
溶融金属が槽の底部に落下するまでの間に、その表面に
介在物吸収能のあるスラグを吹き付ける溶融金属の清浄
化法。 【効果】 溶融金属中のガスおよび介在物を効果的に除
去し、高清浄度金属を得ることができる。
(57) [Summary] [Structure] Molten metal that blows molten metal into a vacuum tank and sprays slag with the ability to absorb inclusions on its surface until the atomized molten metal falls to the bottom of the tank. Cleaning method. [Effect] The gas and inclusions in the molten metal can be effectively removed, and a high cleanliness metal can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、減圧下での溶融金属の
清浄化に関するものである。
FIELD OF THE INVENTION This invention relates to cleaning molten metal under reduced pressure.

【従来の技術】[Prior Art]

【0002】溶融金属をスラグ層中を通過させる精錬法
としては、エレクトロスラグ再溶解法(ESR法)がよ
く知られている。ESR法は精錬する金属を電極とし
て、水冷鋳型内の溶融スラグ中に浸漬し、電流を流すこ
とにより発生するジュール熱にて電極を再溶解し、更に
水冷鋳型内に積層凝固させる再溶解法である。
An electroslag remelting method (ESR method) is well known as a refining method for passing molten metal through a slag layer. The ESR method is a remelting method in which the metal to be refined is used as an electrode, immersed in molten slag in a water-cooled mold, the electrode is remelted by Joule heat generated by passing an electric current, and further laminated and solidified in a water-cooled mold. is there.

【0003】ESR法は溶融スラグ中で再溶解するため
に、雰囲気からの汚染が少なく、また再溶解された金属
は小さな粒子状になり、溶融スラグ中を滴下するため、
スラグ−メタル界面積が大きくなり良好な精錬効果が得
られる。しかしながら、ESR法は一度凝固させた鋼塊
を再溶解するため、高コストとなる。また、再溶解した
溶鋼を溶融スラグ中を滴下させながら精錬するため、処
理速度も制限される。
Since the ESR method re-melts in the molten slag, there is little pollution from the atmosphere, and the re-melted metal becomes small particles and drops in the molten slag.
The slag-metal interface area becomes large and a good refining effect can be obtained. However, since the ESR method remelts the steel ingot once solidified, the cost becomes high. Further, since the remelted molten steel is refined while being dropped in the molten slag, the processing speed is also limited.

【0004】また、溶融スラグ中を金属を通過させる精
錬法としては、特開昭59−21453号公報、特開昭
52−42412号公報、特開昭52−143922号
公報等がある。これらの手法は、あらかじめ溶融したス
ラグの上から溶融金属を細粒化して滴下し、溶融スラグ
内を通過させる際に精錬を行なうものであり、スラグ−
メタル界面積の増大により大きな精錬効果(介在物除去
効果)を得ている。
Further, as refining methods for passing metal through molten slag, there are JP-A-59-21453, JP-A-52-42412 and JP-A-52-143922. In these methods, the molten metal is atomized and dropped from above the molten slag, and refining is performed when the molten metal is passed through the molten slag.
A large refining effect (inclusion removal effect) is obtained by increasing the metal boundary area.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0005】しかしながら、ESR法はその高コストと
処理速度の面から大量生産には不適である。また上記各
公報記載の手法では大量生産は可能であるが、あらかじ
め多量のスラグを溶融しておく必要がある。従って本発
明は迅速かつ効果的にスラグ−メタル反応を進行させ、
溶融金属中の介在物を除去することを本発明の課題とす
る。
However, the ESR method is not suitable for mass production because of its high cost and processing speed. Further, the methods described in the above publications enable mass production, but it is necessary to melt a large amount of slag in advance. Therefore, the present invention allows the slag-metal reaction to proceed rapidly and effectively,
It is an object of the present invention to remove inclusions in molten metal.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、 1.溶融金属を真空槽内に流出させて真空脱ガスを行う
方法において、真空槽内にて微細化した溶融金属が落下
するまでの間に、その表面に介在物吸収能のあるスラグ
を吹付けることを特徴とした清浄鋼溶製方法、および、 2.微細化した溶融金属にスラグを吹付ける際に、プラ
ズマを用いスラグを溶融状態にすることを特徴とする請
求項1記載の溶融金属の清浄化方法、を提供するもので
ある。
In order to solve the above problems, the present invention provides: In the method of performing vacuum degassing by flowing molten metal into a vacuum tank, spray slag capable of absorbing inclusions on the surface of the molten metal that has become finer in the vacuum tank before it falls. 1. A method for melting clean steel, characterized by 1. The method for cleaning molten metal according to claim 1, wherein when the slag is sprayed on the finely divided molten metal, plasma is used to bring the slag into a molten state.

【0007】[0007]

【作用】本発明者らは溶融金属のガスーメタル反応界面
積を増大させ、脱ガス反応を促進させるために、減圧下
で溶融金属を微細化させる技術について出願を行なっ
た。(特願平2ー99813号、特願平2ー18850
8号、特願平3ー93196号) 溶融金属の微細化を促進させるとその溶融金属粒滴内の
圧力Pは、減少する粒滴半径rに反比例して増大する。
従って粒滴の微細化が進行するに伴い、粒滴内圧力と雰
囲気圧力の差は増大する。そしてその圧力差の作用によ
り粒滴内の介在物は粒滴表面に排出される。
The present inventors applied for a technique for refining the molten metal under reduced pressure in order to increase the gas-metal reaction interface area of the molten metal and accelerate the degassing reaction. (Japanese Patent Application No. 2-99813, Japanese Patent Application No. 2-18850)
No. 8, Japanese Patent Application No. 3-93196) When the refinement of the molten metal is promoted, the pressure P in the molten metal droplet increases in inverse proportion to the decreasing droplet radius r.
Therefore, as the miniaturization of the droplets progresses, the difference between the pressure inside the droplets and the atmospheric pressure increases. Then, due to the pressure difference, inclusions in the droplets are discharged to the surface of the droplets.

【0008】このようにして、粒滴表面に排出された介
在物は、粒滴が真空槽内の溶融金属中に落下する際に、
その溶融金属表面に留まり、溶融金属と分離される。こ
れは粒滴径が小さい場合、落下時溶融金属内への侵入深
さが小さくなり、その結果介在物も溶融金属表面の近傍
で浮上するためである。この溶融金属の微細化による介
在物の排出、除去作用を促進させるためにはスラグを利
用し粒滴表面の介在物を吸収させることが有効である。
In this way, the inclusions discharged to the surface of the droplets, when the droplets drop into the molten metal in the vacuum chamber,
It remains on the surface of the molten metal and is separated from the molten metal. This is because when the diameter of the droplet is small, the depth of penetration into the molten metal becomes small when dropped, and as a result, the inclusions also float near the surface of the molten metal. In order to accelerate the discharge and removal action of inclusions by refining the molten metal, it is effective to use slag to absorb the inclusions on the surface of the droplet.

【0009】本発明では微細化した溶融金属の粒滴に、
介在物吸収能のあるスラグの粉体を吹き付け、粒滴表面
に付着させることにより、介在物除去効果を向上させ
た。粒滴表面に付着したスラグは介在物を吸収し、粒滴
と共に落下する。落下後、スラグは真空槽内の溶融金属
表面に留まり、スラグ層を形成するため、粒滴がスラグ
層を通過する際の介在物除去効果も同時に得られる。し
たがって、短い処理時間で、前述のESRと同程度の介
在物除去効果を得ることができる。
In the present invention, finely divided droplets of molten metal are
The effect of removing inclusions was improved by spraying slag powder capable of absorbing inclusions and adhering them to the surface of the droplets. The slag adhering to the surface of the droplets absorbs inclusions and drops with the droplets. After dropping, the slag stays on the surface of the molten metal in the vacuum chamber and forms a slag layer, so that an effect of removing inclusions when the droplets pass through the slag layer can be obtained at the same time. Therefore, in a short processing time, it is possible to obtain the same effect of removing inclusions as the ESR described above.

【0010】さらにスラグを吹き付ける際に、プラズマ
の熱を利用しスラグを溶融状態にし吹き付け(プラズマ
照射)、粒滴表面に付着させることにより、更にスラグ
ーメタル反応が促進でき、介在物除去効果も向上する。
またプラズマの熱エネルギーにより、溶融金属の温度降
下も低減できる。
Further, when the slag is sprayed, the heat of the plasma is used to bring the slag into a molten state and sprayed (plasma irradiation), and the slag is adhered to the surface of the droplets, whereby the slag metal reaction can be further promoted and the inclusion removing effect is improved. .
Further, the thermal energy of the plasma can reduce the temperature drop of the molten metal.

【0011】図1に示す真空処理装置を用いて本発明の
方法を実施し、溶鋼の清浄度の調査を行なった。取鍋1
内のAl脱酸鋼2tonをタンディッシュ2を介して下
ノズル3から真空度約1torrに保持した真空槽内に
流出させた。ここで、下ノズル3としては、次の2つの
形式のものを使用した。1つは本発明者らが特願平2ー
99813号として出願したArガス混合ノズルであ
り、図2に示すようにノズル内を通過する溶鋼にノズル
側壁部からArガスを吹込み、そのガスが真空下におい
て膨張、破裂を利用して、溶鋼を微細化し飛散させるも
のである。
The method of the present invention was carried out by using the vacuum processing apparatus shown in FIG. 1, and the cleanliness of molten steel was investigated. Ladle 1
2 ton of Al deoxidized steel in the above was discharged from the lower nozzle 3 through the tundish 2 into a vacuum chamber maintained at a vacuum degree of about 1 torr. Here, as the lower nozzle 3, the following two types were used. One is an Ar gas mixing nozzle filed by the present inventors as Japanese Patent Application No. 2-99813, in which Ar gas is blown into the molten steel passing through the nozzle from the side wall of the nozzle as shown in FIG. , Which expands and bursts in a vacuum to make molten steel fine and scatter.

【0012】また、他の形式は、本発明者らが特願平2
ー188508号として出願したスパイラル型ノズルで
ある。これは、図3に示すように、スパイラル形状部5
を内臓したノズルを使用するものであり、ノズル中を通
過する溶鋼に旋回力を与えて溶鋼を微細化し、飛散させ
るものである。ここで、スパイラル形状部5としては、
図4に拡大見取図を示すものを内臓させて使用した。こ
のような下ノズルを用いて真空槽内で溶鋼を微細化させ
ると共に、スラグ供給装置4から微細化した溶鋼にスラ
グを吹付けまたは、プラズマにより照射し、本法の介在
物除去効果を調査した。
For other formats, the present inventors have filed Japanese Patent Application No. 2
It is a spiral type nozzle filed as No. 188508. As shown in FIG.
It uses a nozzle with a built-in nozzle, and imparts a swirling force to the molten steel passing through the nozzle to atomize the molten steel and scatter it. Here, as the spiral shaped portion 5,
The one shown in the enlarged schematic view of FIG. The molten steel was refined in a vacuum chamber using such a lower nozzle, and the refined molten steel was sprayed from the slag feeder 4 or irradiated with plasma to investigate the effect of removing inclusions in the present method. .

【0013】本装置の溶鋼処理速度は約4kg/secであ
る。また、用いたスラグはCaO−CaF2系、CaO
−CaF2−Al23、CaO−CaF2−Al23−S
iO3系等であるが、下記の実施例では45%CaO−
10%CaF2−45%Al23のスラグを用いた場合
のものについて記載した。
The molten steel processing speed of this apparatus is about 4 kg / sec. The slag used was CaO-CaF 2 system, CaO.
-CaF 2 -Al 2 O 3, CaO -CaF 2 -Al 2 O 3 -S
Although it is an iO 3 system, in the following examples, 45% CaO-
The case of using the slag of 10% CaF 2 -45% Al 2 O 3 is described.

【比較例】[Comparative example]

【0014】スラグの吹付けまたは照射を実施しない場
合の実験結果を表1に示す。No.1は通常の下ノズル
を用い溶鋼の微細化をしなかった場合である。タンディ
ッシュから真空槽への溶鋼の移し替えにより約50%の
T.O(全酸素量)の低減及び約60%の介在物数の減
少が観察された。
Table 1 shows the experimental results when the slag was not sprayed or irradiated. No. 1 is a case where the molten steel was not refined using a normal lower nozzle. A transfer of molten steel from the tundish to the vacuum chamber was observed to reduce the TO (total oxygen content) by about 50% and the number of inclusions by about 60%.

【0015】No.2は下ノズルArガス混合法により
真空槽内で溶鋼を微細化した場合である。溶鋼の微細化
に伴う介在物の排出作用により、スラグなしでも、T.
O及び介在物の低減が促進されている。また、溶鋼の微
細化による脱ガス界面積の増大に伴い、脱ガス率も
[H]で約90%、[N]で約30%と高い値を示して
いる。
No. 2 is a case where the molten steel is refined in the vacuum chamber by the lower nozzle Ar gas mixing method. Even without slag, the T.O.
Reduction of O and inclusions is promoted. Further, as the degassing interface area increases due to the refinement of molten steel, the degassing rate also shows a high value of about 90% for [H] and about 30% for [N].

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【実施例1】Arガス混合法にて微細化した溶鋼にCa
O−CaF2−Al23系スラグを吹付けた場合の実験
結果を表2に示す。No.3はスラグを2kg/ton ,N
o.4はスラグ5kg/ton 吹付けた場合である。スラグ
を用いない比較例の場合に比べT.O及び介在物の低減
効果が向上している。さらにスラグの脱S効果により
[S]も約1/2にまで低減されている。またこれらの
効果はスラグ供給量の増加に伴い増大する傾向にある。
[Example 1] Ca was added to molten steel refined by an Ar gas mixing method.
O-CaF 2 -Al 2 O 3 slag experimental results in the case of blowing shown in Table 2. No.3 is 2kg / ton slag, N
o. No. 4 is the case of spraying 5 kg / ton of slag. Compared to the case of the comparative example not using slag, The effect of reducing O and inclusions is improved. Furthermore, [S] is reduced to about 1/2 due to the effect of removing S from the slag. In addition, these effects tend to increase as the slag supply increases.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【実施例2】次に、微細化した溶鋼にスラグをプラズマ
により溶融し溶射した場合の実験結果を表3に示す。プ
ラズマ溶射はCaO−CaF2−Al23系のスラグを
用い出力500kwのプラズマ溶射トーチを用い実施し
た。プラズマ照射の対象となる溶鋼が微細化され空間中
にあるため、プラズマの電極とすることができない。し
たがって、プラズマトーチ内に+極と−極の両方を装備
した非移行型のプラズマ装置を用いた。プラズマトーチ
先端と溶鋼を流出させるノズル中心軸との距離は300
mmとした。
Example 2 Next, Table 3 shows the experimental results in the case where slag is melted by plasma in finely divided molten steel and sprayed. The plasma spraying was performed using a CaO—CaF 2 —Al 2 O 3 system slag and a plasma spraying torch with an output of 500 kw. Since the molten steel to be plasma-irradiated is miniaturized and is present in the space, it cannot be used as a plasma electrode. Therefore, a non-transfer type plasma device equipped with both + and − electrodes in the plasma torch was used. The distance between the tip of the plasma torch and the central axis of the nozzle through which molten steel flows out is 300
mm.

【0020】No.5はArガス混合法により微細化し
た溶鋼にスラグを2kg/ton 、No.6はスラグを5kg
/ton 溶射した場合である。単にスラグを吹付ける場合
に比べ、溶射した場合は、スラグが溶融しておりスラグ
−メタル反応が促進されるため、更にT.O及び介在物
除去効果が向上している。
No. 5 is 2 kg of slag in molten steel refined by Ar gas mixing method, and No. 6 is 5 kg of slag.
/ Ton When sprayed. In the case of thermal spraying, the slag is molten and the slag-metal reaction is promoted as compared with the case of simply spraying slag, so the TO and inclusion removal effect is further improved.

【0021】No.7は溶鋼の微細化にスパイラル・ノ
ズル法を用いた場合である。この手法では微細化した溶
鋼周りにArガスの流れがないため、溶射されたスラグ
と溶鋼との付着効率が向上し、T.O及び介在物除去効
果も若干増大する傾向にある。
No. 7 is a case where the spiral nozzle method is used for refining molten steel. In this method, since there is no flow of Ar gas around the refined molten steel, the adhesion efficiency between the sprayed slag and the molten steel is improved, and the effect of removing TO and inclusions tends to be slightly increased.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】本発明によれば、溶融金属中の介在物を
迅速かつ効果的に除去し、高清浄度金属の溶製を可能に
する。
According to the present invention, inclusions in molten metal can be removed quickly and effectively, and high-cleanliness metal can be melted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の実施に使用する溶融金属の真空
処理装置である。
FIG. 1 is a vacuum processing apparatus for molten metal used for carrying out the method of the present invention.

【図2】不活性ガスを吹き込んで溶鋼を微細化させる型
式のノズルを示す図である。
FIG. 2 is a diagram showing a nozzle of a type that blows an inert gas to atomize molten steel.

【図3】スパイラル形状部を内臓し、溶鋼を微細化させ
る型式の下ノズルを示す図である。
FIG. 3 is a diagram showing a lower nozzle of a type in which a spiral-shaped portion is incorporated to refine molten steel.

【図4】スパイラル形状部を拡大した見取図である。FIG. 4 is an enlarged schematic view of a spiral-shaped portion.

【符号の説明】[Explanation of symbols]

1:取鍋 2:タンディッシュ 3:下ノズル 4:スラグ供給装置(兼プラズマ溶射トーチ) 5:スパイラル形状部 1: Ladle 2: Tundish 3: Lower nozzle 4: Slag feeder (also plasma spray torch) 5: Spiral shaped part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属を真空槽内に流出させて真空脱
ガスを行う方法において、真空槽内にて微細化した溶融
金属が落下するまでの間に、その表面に介在物吸収能の
あるスラグを吹付けることを特徴とする溶融金属の清浄
化方法。
1. In a method of outflowing molten metal into a vacuum chamber for vacuum degassing, the surface of the molten metal having a capability of absorbing inclusions until the finely divided molten metal falls. A method for cleaning molten metal, which comprises spraying slag.
【請求項2】 微細化した溶融金属にスラグを吹付ける
際に、プラズマを用いスラグを溶融状態にすることを特
徴とする請求項1記載の溶融金属の清浄化方法。
2. The method for cleaning molten metal according to claim 1, wherein when the slag is sprayed on the finely divided molten metal, plasma is used to bring the slag into a molten state.
JP3281841A 1991-10-03 1991-10-03 Method for cleaning molten metal Pending JPH0598341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3281841A JPH0598341A (en) 1991-10-03 1991-10-03 Method for cleaning molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281841A JPH0598341A (en) 1991-10-03 1991-10-03 Method for cleaning molten metal

Publications (1)

Publication Number Publication Date
JPH0598341A true JPH0598341A (en) 1993-04-20

Family

ID=17644761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281841A Pending JPH0598341A (en) 1991-10-03 1991-10-03 Method for cleaning molten metal

Country Status (1)

Country Link
JP (1) JPH0598341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275326B1 (en) * 1996-12-03 2000-12-15 이구택 The removing method of oxidation inclusion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275326B1 (en) * 1996-12-03 2000-12-15 이구택 The removing method of oxidation inclusion

Similar Documents

Publication Publication Date Title
US3627293A (en) Apparatus for purifying metals by pouring through slag
KR20020086909A (en) Clean melt nucleated casting systems and methods with cooling of the casting
JPH06271922A (en) Production of high cleanliness metal by making molten metal drips
JP2001293552A5 (en)
KR100628591B1 (en) Casting apparatus and casting method for performing auxiliary cooling on the liquidus portion of the casting
JP2017166026A (en) Manufacturing method of high cleanliness steel
JP2001212662A5 (en)
JP2003521377A5 (en)
JPS6320421A (en) Apparatus and method for purifying melt
JPH0598341A (en) Method for cleaning molten metal
GB2117417A (en) Producing high-purity ceramics- free metallic powders
US3251680A (en) Method and apparatus for treating steels
JPH01180764A (en) Continuous casting method for high-clean steel
JP6547638B2 (en) Method of manufacturing high purity steel
JP2003211255A (en) Method for continuously casting aluminum cast block
CN112296343A (en) Method for preparing ultrafine metal powder by hollow electrode smelting
JP2896198B2 (en) Casting method for steel with excellent resistance to hydrogen-induced cracking
JP2614915B2 (en) Melting method of clean steel using droplet degassing method
JPH02179813A (en) Method for refining molten metal into high purity and high cleanliness
JP3892569B2 (en) Method for cleaning molten steel
JP3054897B2 (en) Cleaning method for molten steel in tundish
EP1218553A1 (en) Purification hearth
SU981384A1 (en) Method for refining structural and alloy steels
JPH10193050A (en) Method for continuously casting molten metal
Hohmann et al. New concepts for inter gas atomization plants