JPH059630A - Sintered titanium alloy and production thereof - Google Patents
Sintered titanium alloy and production thereofInfo
- Publication number
- JPH059630A JPH059630A JP3250436A JP25043691A JPH059630A JP H059630 A JPH059630 A JP H059630A JP 3250436 A JP3250436 A JP 3250436A JP 25043691 A JP25043691 A JP 25043691A JP H059630 A JPH059630 A JP H059630A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- phase
- sintered
- titanium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 106
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 15
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 14
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 13
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 13
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 4
- 150000002367 halogens Chemical class 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 134
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 96
- 239000002245 particle Substances 0.000 claims description 75
- 229910045601 alloy Inorganic materials 0.000 claims description 43
- 239000000956 alloy Substances 0.000 claims description 43
- 239000010936 titanium Substances 0.000 claims description 31
- 239000002994 raw material Substances 0.000 claims description 28
- 238000005728 strengthening Methods 0.000 claims description 27
- 238000012856 packing Methods 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910052719 titanium Inorganic materials 0.000 claims description 20
- 238000000465 moulding Methods 0.000 claims description 18
- 239000010955 niobium Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 16
- 230000006911 nucleation Effects 0.000 claims description 13
- 238000010899 nucleation Methods 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 10
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 6
- 238000001953 recrystallisation Methods 0.000 claims description 4
- 150000004820 halides Chemical class 0.000 abstract description 24
- 229910052720 vanadium Inorganic materials 0.000 abstract description 15
- 229910052726 zirconium Inorganic materials 0.000 abstract description 7
- 239000012071 phase Substances 0.000 description 83
- 238000000034 method Methods 0.000 description 55
- 238000005245 sintering Methods 0.000 description 36
- 239000000203 mixture Substances 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 25
- 238000012545 processing Methods 0.000 description 24
- 239000000460 chlorine Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 21
- 239000011148 porous material Substances 0.000 description 21
- 229910052801 chlorine Inorganic materials 0.000 description 20
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 239000013078 crystal Substances 0.000 description 15
- 125000005843 halogen group Chemical group 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 8
- HBBATKAUXPHIQN-UHFFFAOYSA-N [Cl].[Ti] Chemical compound [Cl].[Ti] HBBATKAUXPHIQN-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 230000002301 combined effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000879 optical micrograph Methods 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- HZFDKBPTVOENNB-GAFUQQFSSA-N N-[(2S)-1-[2-[(2R)-2-chloro-2-fluoroacetyl]-2-[[(3S)-2-oxopyrrolidin-3-yl]methyl]hydrazinyl]-3-(1-methylcyclopropyl)-1-oxopropan-2-yl]-5-(difluoromethyl)-1,2-oxazole-3-carboxamide Chemical compound CC1(C[C@@H](C(NN(C[C@H](CCN2)C2=O)C([C@H](F)Cl)=O)=O)NC(C2=NOC(C(F)F)=C2)=O)CC1 HZFDKBPTVOENNB-GAFUQQFSSA-N 0.000 description 1
- -1 T a Inorganic materials 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QDMRQDKMCNPQQH-UHFFFAOYSA-N boranylidynetitanium Chemical compound [B].[Ti] QDMRQDKMCNPQQH-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 102220253765 rs141230910 Human genes 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高強度で安価な焼結チ
タン合金およびその製造方法に関し、さらに詳しくは、
α相とβ相と分散粒子の三相組織からなり強度特性に優
れた焼結チタン合金およびその製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, inexpensive sintered titanium alloy and a method for producing the same, more specifically,
The present invention relates to a sintered titanium alloy having a three-phase structure of α phase, β phase and dispersed particles and excellent in strength characteristics, and a method for producing the same.
【0002】[0002]
【従来の技術】チタン合金は、超強力鋼や高力アルミ合
金より高い比強度比靭性を有するが、素材価格が高い、
溶解・鋳造が困難、難加工性に起因する歩留まりの悪さ
などの理由により、これまで量産部品に適用することは
困難とされてきた。2. Description of the Related Art Titanium alloy has higher specific strength and specific toughness than ultra-high strength steel and high strength aluminum alloy, but the material price is high.
It has been difficult to apply it to mass-produced parts because of the difficulty of melting and casting and the poor yield due to difficult workability.
【0003】しかし、粉末冶金法によれば、 Near Net
Shapeの部品製造が可能であり、中でも、純チタン粉末
と強化成分粉末とを混合し、成形・焼結する素粉末混合
法は、原料粉末が安価である、材料歩留まりが高
い、製造プロセスが簡便であるなどの利点を有し、大
幅なコストダウンが期待できる。しかしながら、従来の
素粉末混合法では、得られた焼結チタン合金の機械的性
質、特に疲労強度が鋳造材なみに低い点が問題であっ
た。そのため、ナット類、ファスナー、フィルターなど
の小物類や、疲労強度がさほど問題とされないドームハ
ウジング、ジャイロジンバルなどのミサイル用部品には
多量に使用されているが、疲労強度が必要とされる重要
部品には適用できないという問題を有していた。However, according to the powder metallurgy method, Near Net
It is possible to manufacture Shape parts, and among them, the raw material powder is inexpensive, the material yield is high, and the manufacturing process is simple. It has advantages such as, and can be expected to significantly reduce costs. However, the conventional elemental powder mixing method has a problem in that the mechanical properties of the obtained sintered titanium alloy, particularly fatigue strength, are as low as those of cast materials. Therefore, it is used in large quantities for small items such as nuts, fasteners, filters, dome housings, gyro gimbals and other missile parts where fatigue strength is not a serious problem, but important parts that require fatigue strength. Had the problem that it was not applicable to.
【0004】そこで、これら問題を解決するため、最近
では不純物を極力除いた高純度チタン粉末を原料とし、
しかも焼結後HIP処理と熱処理とを施すことにより疲
労強度を改善しようとする試みが盛んに行われている。Therefore, in order to solve these problems, recently, a high-purity titanium powder from which impurities are removed as much as possible is used as a raw material,
Moreover, attempts have been actively made to improve fatigue strength by performing HIP treatment and heat treatment after sintering.
【0005】例えば、構成金属元素粉末を混合・成形・
真空焼結した焼結チタン合金を、さらに真空焼結温度以
下のβ温度域から室温以下の温度に焼入れし、その後、
800℃以上β変態温度までのα+β2相域で、加圧下
で加熱して残留空隙を除去する「素粉末混合法によるチ
タン合金の製造方法」(特公平1-29864号公報)が提案
されている。この方法では、HIP処理と熱処理とをう
まく組み合わせて焼結チタン合金の強化処理を行うこと
により、素粉末混合法でありながら合金粉末法と類似し
た微細均質組織を実現することができ、優れた疲労特性
を実現することができた。For example, the constituent metal element powders are mixed, molded,
Vacuum-sintered sintered titanium alloy is further quenched from the β temperature range below the vacuum sintering temperature to a temperature below room temperature, and thereafter,
"Titanium alloy manufacturing method by elemental powder mixing method" (Japanese Patent Publication No. 1-29864) has been proposed in which residual voids are removed by heating under pressure in the α + β2 phase region of 800 ° C or higher to β transformation temperature. . In this method, the HIP treatment and the heat treatment are successfully combined to strengthen the sintered titanium alloy, so that it is possible to realize a fine homogeneous structure similar to the alloy powder method even though it is the elementary powder mixing method. Fatigue characteristics could be realized.
【0006】すなわち、合金粉末法と素粉末混合法とで
は、同じようにHIP処理して作製したα+β合金であ
ってもその組織はかなり異なっている。なぜなら、HI
P処理前の組織状態が両者で異なるからである。前者の
合金粉末法の場合は、粉末製造時に急冷された合金粉末
をそのままβ転移点以下の温度で固化するために、HI
P処理中にマルテンサイトが焼き戻されて微細なα+β
組織となる。一方、後者の素粉末混合法の場合は、焼結
後の冷却過程でβ/α変態によって粗大な針状α相が形
成されるが、これをβ転移点以下の温度でHIP処理し
ても組織はほとんど変化しない。That is, the alloy powder method and the elemental powder mixing method have quite different structures even if they are α + β alloys produced by the same HIP treatment. Because HI
This is because the tissue state before P treatment differs between the two. In the case of the former alloy powder method, in order to solidify the alloy powder rapidly cooled at the time of powder production as it is at a temperature below the β transition point, HI
Martensite is tempered during P treatment, resulting in fine α + β
Become an organization. On the other hand, in the latter case of the raw powder mixing method, coarse acicular α phase is formed by β / α transformation in the cooling process after sintering, and even if this is HIP-treated at a temperature below the β transition point. The organization hardly changes.
【0007】そこで、特公平1-29864号では、焼結後β
焼入れを行って組織を一旦均一なマルテンサイトとして
からHIP処理を施している。ここで、残留空孔が重要
な役割を演じることになる。すなわち、β域での溶体化
を行う際に,焼結体中に5vol%程度残留している空孔が
β相の粒成長を完全に抑制するため、これを急冷して得
られるマルテンサイト組織は微細化する。したがって、
その後のα+β二相域でのHIP処理により、合金粉末
と同様な、微細かつアスペクト比の小さいα相が形成さ
れることになる。この特公平1-29864号では、極低塩素
チタン粉末を原料として、上記改良処理を施し残留空孔
を完全に除去することにより、合金粉末法となんら遜色
のない疲労特性を有するチタン合金を製造することがで
きる。Therefore, in Japanese Examined Patent Publication No. 1-29864, after sintering β
After quenching to make the structure once uniform martensite, HIP treatment is performed. Here, the residual vacancies play an important role. That is, when performing solution treatment in the β range, about 5 vol% of pores remaining in the sintered body completely suppress the β phase grain growth, so the martensite structure obtained by quenching this is obtained. Becomes finer. Therefore,
Subsequent HIP treatment in the α + β two-phase region results in the formation of a fine α-phase having a small aspect ratio similar to the alloy powder. In this Japanese Examined Patent Publication No. 1-29864, a titanium alloy having fatigue properties comparable to those of the alloy powder method is manufactured by using the ultra-low chlorine titanium powder as a raw material and performing the above-mentioned improvement treatment to completely remove the residual pores. can do.
【0008】また、高密度焼結チタン合金を製造するに
際して、a.合金形成粒子を高いエネルギーを付与できる
粉砕機を用いて平均粒径0.5ないし20ミクロンの大
きさに粉砕し、b.平均粒径40ないし177ミクロンの
チタン基金属粒子と該粉砕した合金形成粒子とを混合
し、チタン基金属粒子の重量配合比が70ないし95
%、残部が前記合金形成粒子を含有する粉末混合物を形
成し、c.該混合物を圧粉体に成形し、液相が形成する温
度未満で焼結する「高密度粉末焼結チタン合金の製造方
法」(特公平2-50172号公報)が提案されている。この
方法により、粉砕時に加えられた機械的エネルギが粉末
中に歪みエネルギとして蓄積されて焼結を促進し、粉末
成形+焼結工程のみで相対密度が99%以上と高密度に
なり、通常の方法に比べて機械的性質は著しく向上する
としている。In the production of the high density sintered titanium alloy, a. The alloy forming particles are pulverized by a pulverizer capable of imparting high energy to an average particle size of 0.5 to 20 μm, and b. Titanium-based metal particles having an average particle size of 40 to 177 microns and the crushed alloy-forming particles are mixed, and the weight ratio of titanium-based metal particles is 70 to 95.
%, Forming a powder mixture with the balance comprising the alloy-forming particles, and c. Molding the mixture into a green compact and sintering below the temperature at which the liquid phase forms. Method ”(Japanese Patent Publication No. 2-50172). By this method, the mechanical energy applied at the time of pulverization is accumulated as strain energy in the powder to promote the sintering, and the relative density becomes as high as 99% or more only in the powder molding + sintering process, which is a normal density. It is said that mechanical properties are significantly improved as compared with the method.
【0009】また、粒度325メッシュ以下の粉末を2
5重量%以上含むTiまたはTi合金粉末と、粒度32
5メッシュ以下の合金化用添加粉末とを所定量で混合し
た粉末を、機械的粉砕手段で処理し、圧粉成形・焼結す
る「高密度Ti焼結合金の製造方法」(特開昭63−1307
32号公報)が提案されている。この方法では、チタン粉
末と母合金粉末とを混合したものを、高エネルギーボル
ミル等の装置を用いて強加工を加えてチタン粉末と母合
金とを共に微粉化し、その後、これらの微粉末をメカニ
カルに結合して増粒する。このようにして製造した粉末
を成形・焼結することにより緻密な焼結体が得られると
している。In addition, 2 powders having a particle size of 325 mesh or less are used.
Ti or Ti alloy powder containing 5 wt% or more, and particle size 32
"Manufacturing method of high-density Ti sintered alloy" in which a powder obtained by mixing an alloying additive powder having a size of 5 mesh or less in a predetermined amount is processed by a mechanical pulverizing means, and compacted and sintered. -1307
No. 32) is proposed. In this method, a mixture of titanium powder and master alloy powder is subjected to strong working using a device such as a high-energy volmill to finely pulverize the titanium powder and master alloy together, and then these fine powders are mixed. The particles are mechanically combined to increase the size. It is said that a dense sintered body can be obtained by molding and sintering the powder thus produced.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、前記特
公平1-29864号では、焼結チタン合金でもHIP処理と
熱処理とを併用することにより、機械的な性質を改善す
ることが可能であるものの、このような方法では、原
料として高価な極低塩素粉末を用いる必要がある、焼
結後に、HIP処理と熱処理とを必要とする、など大幅
なコストアップが避けられず、自動車部品などの安価な
量産品には適用できないという問題を有していた。However, according to Japanese Patent Publication No. 1-29864, the mechanical properties of sintered titanium alloy can be improved by using HIP treatment and heat treatment together. In such a method, it is necessary to use expensive ultra-low chlorine powder as a raw material, HIP treatment and heat treatment are required after sintering, and a large increase in cost is inevitable. It has a problem that it cannot be applied to mass-produced products.
【0011】また、特公平2-50172号では、一般に用い
られるAl3 Vのような母合金には塑性変形能がほとん
どないため、粉砕処理中に焼結を促進させるほどの歪み
エネルギを粉末内部に蓄積させることはできない。従っ
て、この方法で達成される高密度化は、母合金の粉砕工
程で母合金粉末の平均粒径が減少し、単に表面エネルギ
が増大したためである。しかしながら、このような微粉
化による焼結促進は公知の事実であり、また、この方法
で得られる疲労強度は、通常の方法に比べれば高いもの
の、成形圧力を増大させてもせいぜい40kg/mm2 に満
たない程度でしかないという問題を有している。Further, in Japanese Examined Patent Publication No. 2-50172, since a commonly used master alloy such as Al 3 V has almost no plastic deformability, strain energy enough to accelerate sintering during pulverization is applied to the inside of the powder. Cannot be stored in. Therefore, the densification achieved by this method is due to a decrease in the average particle size of the mother alloy powder in the crushing process of the mother alloy and merely an increase in the surface energy. However, it is a known fact that such pulverization promotes sintering, and although the fatigue strength obtained by this method is higher than that by the usual method, it is at most 40 kg / mm 2 even if the molding pressure is increased. It has a problem that it is less than the above.
【0012】また、特開昭63−130732号では、母合金粉
末と共にチタン粉末をも微粉化するものであるが、延性
の高いチタン粉末を微粉化するためには、極めて高いエ
ネルギを投入し、チタン粉末を強変形させることが必要
となる。このように強変形を受けたチタン粉末は著しく
加工硬化するため粉末の圧縮性が低下し、成形体密度を
上げるためには、通常の方法よりもはるかに高い成形圧
力を必要とする。また、微粉化後さらに強加工を継続す
ると再び増粒するが、このような増粒粉末は一般に形状
が単純であり、極めて成形性に劣ることが知られてい
る。さらに、チタン粉末は活性なため、これを微粉化す
る工程で多量の酸素を取り込むことは避けられず、焼結
後の機械的性質、特に延性を著しく低下させるという問
題を有している。Further, in Japanese Patent Laid-Open No. 63-130732, the titanium powder is finely powdered together with the mother alloy powder, but in order to finely powder the highly ductile titanium powder, extremely high energy is applied, It is necessary to strongly deform the titanium powder. Titanium powder that has undergone such strong deformation is significantly work-hardened, so the compressibility of the powder decreases, and a much higher molding pressure is required in order to increase the density of the compact, as compared with the ordinary method. Further, after further pulverization and further intense processing, the particle size increases again, but it is known that such a particle size-increased powder generally has a simple shape and is extremely inferior in moldability. Further, since titanium powder is active, it is unavoidable to take in a large amount of oxygen in the step of pulverizing the titanium powder, and there is a problem that mechanical properties after sintering, particularly ductility, are significantly reduced.
【0013】さらに、これら従来技術では、いずれも溶
製鍛造用に開発された公知の合金組成物を対象としてお
り、素粉末混合法の製造方法の特徴を活かした合金組成
物については何ら開示されていない。Further, all of these prior arts are directed to known alloy compositions developed for melt forging, and there is no disclosure of alloy compositions utilizing the features of the production method of the elementary powder mixing method. Not not.
【0014】そこで、本発明者らは、上述の如き従来技
術の問題点を解決すべく鋭意研究し、各種の系統的実験
を重ねた結果、本発明を成すに至ったものである。Therefore, the inventors of the present invention have earnestly studied to solve the above-mentioned problems of the prior art, and as a result of various systematic experiments, the present invention has been accomplished.
【0015】(発明の目的)本発明の目的は、高強度で
安価な焼結チタン合金およびその製造方法を提供するに
ある。(Object of the Invention) An object of the present invention is to provide a high-strength, inexpensive sintered titanium alloy and a method for producing the same.
【0016】本発明者らは、上述の従来技術の問題に対
して、以下のことに着眼した。すなわち、素粉末混合法
焼結チタン合金で、HIP処理や熱処理を行わずに高強
度化するための必須条件として、焼結のままで残留空
孔が微細であること、及び焼結後徐冷の状態で組織が
微細化していること、さらに、このような焼結体を得る
ためには、合金組成と製造プロセスの最適な組み合わせ
が不可欠である点に着目した。The present inventors have focused their attention on the following problems of the prior art. That is, in the powder titanium mixed method sintered titanium alloy, as the essential conditions for strengthening without performing HIP treatment or heat treatment, residual pores are fine as they are as sintered, and slow cooling after sintering. Attention was paid to the fact that the microstructure is refined in the above state, and further, in order to obtain such a sintered body, the optimal combination of the alloy composition and the manufacturing process is indispensable.
【0017】そこで、上記の条件を満足させるために、
前記従来技術のように通常の溶製鍛造用に開発された合
金組成をそのまま用いるのではなく、素粉末混合法に適
した合金組成の原料粉末を用いること、また、製造プロ
セス的には、原料チタン粉末の形状を制御して粉末の充
填密度を所定の値に向上させることにより残留空孔の微
細化を図ること、さらに従来法では特性を悪化させる成
分として厄介者扱いされてきたチタンに含まれる不純物
や介在物を、逆に特性改善・向上剤として積極的に利用
するなど、従来とは異なった新しい視点に立ったアプロ
ーチから問題を解決することに着眼し、本発明を成すに
至った。Therefore, in order to satisfy the above conditions,
Instead of using the alloy composition developed for ordinary melting and forging as it is as in the prior art, use a raw material powder having an alloy composition suitable for the elementary powder mixing method, and in terms of the manufacturing process, By controlling the shape of the titanium powder and improving the packing density of the powder to a specified value, the residual pores can be made finer. In addition, it has been included in titanium, which has been treated as a troublesome component by the conventional method, which deteriorates the characteristics. The present invention was achieved by focusing on solving problems from an approach from a new perspective different from the conventional ones, such as positively utilizing the impurities and inclusions that are generated as a property improving / improving agent. .
【0018】[0018]
(第1発明)第1発明の焼結チタン合金は、mass%で、
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、酸素(O)0.15〜0.8%と、少なくと
も硼素(B)0.2〜5%、モリブデン(Mo),タン
グステン(W),タンタル(Ta),ジルコニウム(Z
r),ニオブ(Nb),ハフニウム(Hf)の一種以上
0.5〜3%、Ia属,IIa属, IIIa属元素の一種以
上0.05〜2%、ハロゲン属元素の一種以上0.05
〜0.5%から選択された所定量の元素を一種以上を含
み、残部がチタニウム(Ti)と不可避物質からなり、
α相とβ相と少なくとも硼化物,酸化物,ハロゲン化物
の一種以上の粒子との三相組織を有してなることを特徴
とする。(First invention) The sintered titanium alloy of the first invention is mass%,
Aluminum (Al) 4-8% and vanadium (V) 2
~ 6%, oxygen (O) 0.15 to 0.8%, at least boron (B) 0.2 to 5%, molybdenum (Mo), tungsten (W), tantalum (Ta), zirconium (Z
r), one or more of niobium (Nb) and hafnium (Hf) 0.5 to 3%, one or more of Ia group, IIa and IIIa group elements 0.05 to 2%, one or more of halogen group element 0.05
Contains one or more elements in a predetermined amount selected from ~ 0.5%, the balance consisting of titanium (Ti) and an unavoidable substance,
It is characterized by having a three-phase structure of α phase and β phase and at least one kind of particles of boride, oxide and halide.
【0019】(第2発明)第2発明の焼結チタン合金の
製造方法は、チタン粉末と強化用母合金粉末とを混合、
成形すると共に該成形体を無加圧で焼成することにより
α+β型焼結チタン合金を製造する方法であって、前記
成形前に、前記チタン粉末を加圧すると共にこすり合わ
せ、原料粉末の充填密度を所定値とするとともに該チタ
ン粉末の再結晶時及び/又はαからβへの変態時の均一
核生成サイトを増加させたことを特徴とする。(Second invention) A method for producing a sintered titanium alloy according to the second invention comprises mixing titanium powder and a strengthening mother alloy powder,
A method for producing an α + β type sintered titanium alloy by compacting and firing the compact without pressure, wherein the titanium powder is pressurized and rubbed together before the compacting, and the packing density of the raw material powder is It is characterized in that the uniform nucleation site is increased at the time of recrystallization of the titanium powder and / or the transformation from α to β, while maintaining a predetermined value.
【0020】[0020]
【作用】第1発明の焼結チタン合金および第2発明の焼
結チタン合金の製造方法が、優れた効果を発揮するメカ
ニズムについては、未だ必ずしも明らかではないが、次
のように考えられる。The mechanism by which the method for producing a sintered titanium alloy according to the first aspect of the invention and the method for producing a sintered titanium alloy according to the second aspect of the invention exhibit excellent effects is not clear yet, but it is considered as follows.
【0021】(第1発明の作用)本焼結チタン合金にお
いて、Alの含有量は、4〜8mass%である。このAl
は、チタン合金の強化元素として最も一般的な元素であ
って、固溶強化とα相安定化の役割を有している。該含
有量が4%未満では強化作用が不十分であり、8%を超
えると延性を極端に低下させる。(Operation of the First Invention) In the present sintered titanium alloy, the Al content is 4 to 8 mass%. This Al
Is an element most commonly used as a strengthening element for titanium alloys, and has the roles of solid solution strengthening and α-phase stabilization. If the content is less than 4%, the strengthening effect is insufficient, and if it exceeds 8%, the ductility is extremely reduced.
【0022】Vの含有量は、2〜6mass%である。この
Vも、チタン合金の強化元素として一般的であって、固
溶強化とβ相安定化の作用を有する元素である。該含有
量が2%未満では強化作用、β安定化作用が不十分であ
り、6%を超えるとβ安定化作用が強すぎる。The V content is 2 to 6 mass%. This V is also an element that is generally used as a strengthening element for titanium alloys and has the effects of solid solution strengthening and β-phase stabilization. When the content is less than 2%, the strengthening effect and β-stabilizing effect are insufficient, and when the content exceeds 6%, the β-stabilizing effect is too strong.
【0023】Oの含有量は、0.15〜0.8mass%で
ある。このOは、チタン合金の延性を低下させる元素と
して、通常はその上限値が0.15%程度に厳しく限定
されているが、素粉末混合法焼結チタン合金の場合は、
その理由は明らかではないが、延性低下作用が小さく、
強化用合金成分として有効な元素である。該含有量が、
0.15%未満では強化作用が小さすぎ、0.8%を超
えると焼結チタン合金の場合でも延性が極端に低下す
る。The O content is 0.15 to 0.8 mass%. This O is an element that lowers the ductility of the titanium alloy, and its upper limit value is usually strictly limited to about 0.15%. However, in the case of the elemental powder mixed method sintered titanium alloy,
The reason is not clear, but the ductility-lowering effect is small,
It is an effective element as a strengthening alloy component. The content is
If it is less than 0.15%, the strengthening effect is too small, and if it exceeds 0.8%, the ductility is extremely lowered even in the case of a sintered titanium alloy.
【0024】Bの含有量は、0.2〜5mass%である。
このBは、チタン合金中にほとんど固溶せず、したがっ
て焼結体中のBの大部分はTiBの形でマトリックス中
に微細に分散する(ただし,炭素が僅かでも共存する場
合はTiBの一部がTiB2 に置き換わることもあ
る)。微細TiB粒子は、焼結過程ではβ結晶粒の成長
を抑制し、焼結後の冷却過程ではα相の均一核生成を促
進する。これらの複合効果により、焼結体組織中のα相
は等軸化し、また、粒界α相は消失する。該含有量が、
0.2%未満ではTiBの析出量が少なすぎ、5%を超
えるとTiBの析出量が多すぎて十分な延性が得られな
い。The content of B is 0.2 to 5 mass%.
This B hardly forms a solid solution in the titanium alloy, and therefore most of the B in the sintered body is finely dispersed in the matrix in the form of TiB (provided that even if a small amount of carbon coexists, it is Part may be replaced with TiB 2 ). The fine TiB particles suppress the growth of β crystal grains during the sintering process and promote the uniform nucleation of the α phase during the cooling process after sintering. Due to these combined effects, the α phase in the sintered body structure becomes equiaxed, and the grain boundary α phase disappears. The content is
If it is less than 0.2%, the amount of TiB deposited is too small, and if it exceeds 5%, the amount of TiB deposited is too large to obtain sufficient ductility.
【0025】Mo、W、Ta、Zr、Nb、Hfの含有
量は、その一種以上が、0.5〜3mass%である。これ
ら元素は、いずれもチタン合金中での拡散が極めて遅
く、β転移温度を低下させ、さらに、β/α界面の易動
度を低下させる、等の理由で、冷却後の粒内α相を著し
く微細化させる効果がある。これらのうち1種以上の含
有量の合計が、0.5%未満では上記効果が不十分であ
り、3%を超えると焼結過程で成分の均質化が不十分と
なり、また、β転移温度が低下し過ぎる。The content of Mo, W, Ta, Zr, Nb, and Hf is 0.5 to 3 mass% for one or more of them. All of these elements diffuse extremely slowly in the titanium alloy, lower the β transition temperature, and further lower the mobility of the β / α interface. It has the effect of significantly reducing the size. If the total content of at least one of these is less than 0.5%, the above effect is insufficient, and if it exceeds 3%, the homogenization of the components is insufficient in the sintering process, and the β transition temperature Is too low.
【0026】Ia属,IIa属, IIIa属元素の含有量
は、その一種以上が、0.05〜2mass%である。これ
ら元素は、一般に酸素やハロゲン属元素との結合力がT
iよりも強いため、チタン合金中に酸素やハロゲン属元
素と共存して、その大部分が酸化物やハロゲン化物とし
て存在している。この酸化物粒子やハロゲン化物粒子
は、焼結過程ではβ結晶粒の成長を抑制し、焼結後の冷
却過程ではα相の均一核生成を促進する。これらの複合
効果により、焼結体組織中のα相は等軸化し、また、粒
界α相は消失する。これらの元素のうち一種以上の含有
量の合計が、0.05%未満では酸化物やハロゲン化物
の析出量が少なすぎ、2%を超えると酸化物粒子やハロ
ゲン化物粒子が粗大化し、また、その分散も不均一にな
る。The content of the elements of group Ia, group IIa, and group IIIa is 0.05 to 2 mass% for one or more of them. These elements generally have a T bond strength with oxygen or a halogen group element.
Since it is stronger than i, it coexists with oxygen and halogen group elements in the titanium alloy, and most of them exist as oxides or halides. The oxide particles and the halide particles suppress the growth of β crystal grains in the sintering process and promote the uniform nucleation of the α phase in the cooling process after sintering. Due to these combined effects, the α phase in the sintered body structure becomes equiaxed, and the grain boundary α phase disappears. If the total content of one or more of these elements is less than 0.05%, the amount of oxides or halides deposited is too small, and if it exceeds 2%, the oxide particles or halide particles become coarse, and Its distribution is also non-uniform.
【0027】ハロゲン属元素の含有量は、その一種以上
が、0.05〜0.5mass%である。これら元素は、チ
タン合金の中でIa属,IIa属, IIIa属元素と結合し
て微細なハロゲン化物を形成している。このハロゲン化
物は、NaCl,MgCl2 ,CaCl2 ,YCl3 ,
KCl,BaCl2 などである。これら元素のうち、一
種以上の含有量の合計が、0.05%未満ではハロゲン
化物の析出量が不十分であり、0.5%を超えるとハロ
ゲン化物粒子が粗大化し、また、その分散も不均一にな
るとともに、延性が低下する。The content of one or more halogen group elements is 0.05 to 0.5 mass%. These elements combine with the elements of group Ia, group IIa, and group IIIa in the titanium alloy to form fine halides. The halide is NaCl, MgCl 2 , CaCl 2 , YCl 3 ,
Examples thereof include KCl and BaCl 2 . If the total content of one or more of these elements is less than 0.05%, the amount of halide precipitation is insufficient, and if it exceeds 0.5%, the halide grains become coarse, and their dispersion is also large. It becomes non-uniform and the ductility decreases.
【0028】前記元素を含有する焼結チタン合金は、α
相とβ相と少なくとも硼化物,酸化物,ハロゲン化物の
一種以上の粒子との三相組織を有してなる。このよう
に、三相組織とすることにより、疲労強度を低下させる
要素要因の一つである粗大針状のα相ならびに粒界α相
がなくなり、均一な等軸α+β組織となっている。以上
により、高強度な焼結チタン合金となっているものと考
えられる。Sintered titanium alloys containing the above elements are α
It has a three-phase structure of a phase, a β phase, and at least one kind of particles of boride, oxide, and halide. As described above, the three-phase structure eliminates the coarse needle-shaped α phase and the grain boundary α phase, which are one of the factors that reduce the fatigue strength, and has a uniform equiaxed α + β structure. From the above, it is considered that the sintered titanium alloy has high strength.
【0029】(第2発明の作用)第2発明の焼結チタン
合金の製造方法は、無加圧焼成によりα+β型焼結チタ
ン合金を製造するに際して、チタン粉末と強化用母合金
粉末とからなる混合粉末を成形する前に、前記チタン粉
末を加圧すると共にこすり合わせる加工を施し原料粉末
の充填密度を所定値とする。(Operation of the Second Invention) In the method for producing a sintered titanium alloy of the second invention, when an α + β type sintered titanium alloy is produced by pressureless firing, it comprises titanium powder and mother alloy powder for strengthening. Before molding the mixed powder, the titanium powder is pressed and rubbed to make the packing density of the raw material powder a predetermined value.
【0030】このように、チタン粉末に加圧を行うとと
もにこすり合わせることにより、変形を与えると粉末粒
子の突起部が潰され表面が平滑化する。これにより、粉
末の流動性が向上して原料粉末の粒子間における空隙が
微細化し、充填密度が向上する。この粉末を成形、焼結
すると残留空孔は著しく孤立微細化する。As described above, when the titanium powder is pressed and rubbed together, deformation causes the protrusions of the powder particles to be crushed and the surface to be smoothed. As a result, the fluidity of the powder is improved, the voids between the particles of the raw material powder are made fine, and the packing density is improved. When this powder is molded and sintered, the residual pores become extremely isolated and fine.
【0031】また、前記加工処理により、チタン粉末に
適度な歪エネルギが蓄積され、焼結時及び/又はαから
βへの変態時の均一核生成サイトが増加するため、初期
β結晶粒径分布が均一化し、β領域における結晶粒成長
速度(定常粒成長速度)が著しく低下するとともに異常
粒成長(二次再結晶)が抑制される。その結果、長時間
の焼結過程においてもβ結晶粒径は粗大化しにくい。な
お、チタン粉末に対する加工度が大きすぎると、下部組
織(転位の集合体)が形成され、初期β結晶粒径分布が
不均一化し易くなる。このような合金をβ領域で加熱す
ると、定常粒成長速度が増大するとともに異常粒成長も
起こり易くなり、結果的にβ結晶粒は著しく粗大化して
しまい、高強度の焼結体が得られない。Further, by the above-mentioned processing, an appropriate strain energy is accumulated in the titanium powder and the number of uniform nucleation sites during sintering and / or transformation from α to β is increased, so that the initial β crystal grain size distribution is obtained. Are uniformed, the crystal grain growth rate in the β region (steady grain growth rate) is significantly reduced, and abnormal grain growth (secondary recrystallization) is suppressed. As a result, the β crystal grain size is unlikely to coarsen even during the long-term sintering process. If the workability of the titanium powder is too large, a lower structure (aggregate of dislocations) is formed, and the initial β crystal grain size distribution is likely to be nonuniform. When such an alloy is heated in the β region, the steady grain growth rate increases and abnormal grain growth easily occurs, resulting in the β crystal grains becoming significantly coarse, and a high-strength sintered body cannot be obtained. .
【0032】また、一般に塩素含有量の多いチタン粉末
を使用した焼結チタン合金には、焼結後、たとえHIP
処理を施しても粗大な空孔が残留し、疲労強度が向上は
望めないことが知られている。このため、従来は塩素含
有量を下げることが、焼結チタン合金の機械的性質向上
のための必須条件と考えられてきた。しかし、高塩素チ
タン粉末を使用した場合に粗大空孔が形成されるのは、
塩素そのものではなく、NaCl,MgCl2 等の粗大
な介在物粒子が存在するためである。従って、安価な高
塩素チタン粉末であっても、本発明のように上記の加工
処理を施すことにより、粗大介在物が破砕・微粉化され
た状態でチタン粉末と均一に混合される。これより、高
塩素チタン粉末使用材では避けられないと考えられてい
た粗大残留空孔は、除去することができる。In addition, in general, a sintered titanium alloy using titanium powder having a high chlorine content may be used even after HIP.
It is known that even if the treatment is performed, coarse pores remain and the fatigue strength cannot be improved. For this reason, it has been conventionally considered that reducing the chlorine content is an essential condition for improving the mechanical properties of the sintered titanium alloy. However, the reason why coarse pores are formed when high chlorine titanium powder is used is
This is because coarse inclusion particles such as NaCl and MgCl 2 exist instead of chlorine itself. Therefore, even the inexpensive high chlorine titanium powder is uniformly mixed with the titanium powder in the state in which the coarse inclusions are crushed and pulverized by performing the above-mentioned processing as in the present invention. From this, it is possible to remove the coarse residual pores which were considered to be inevitable in the material using the high chlorine titanium powder.
【0033】また、焼結後の冷却時に、α相はβ相の粒
界から核生成するが、その成長はβ相粒界によって止め
られる。従って、焼結時のβ粒成長を抑制すれば、従来
のような粗大な針状結晶となることを抑制することがで
きる。When cooled after sintering, the α phase nucleates from the β phase grain boundaries, but its growth is stopped by the β phase grain boundaries. Therefore, by suppressing the β-grain growth during sintering, it is possible to suppress the formation of coarse needle-shaped crystals as in the conventional case.
【0034】このように、チタン粉末を加圧すると共に
こすり合わせる加工を施すことにより、原料粉末の充填
密度を所定値とするとともに該チタン粉末の再結晶時及
び/又はαからβへの変態時の均一核生成サイトを増加
させることができ、その結果、残留空孔が孤立微細化
し、かつ組織も微細化した高密度で疲労強度の向上した
焼結チタン合金が得られるものと考えられる。As described above, by pressing the titanium powder and rubbing it together, the packing density of the raw material powder is set to a predetermined value and the titanium powder is recrystallized and / or transformed from α to β. It is considered that a uniform nucleation site can be increased, and as a result, a sintered titanium alloy with high density and improved fatigue strength, in which residual pores are isolated and fine and the structure is fine, is obtained.
【0035】[0035]
(第1発明の効果)本第1発明の焼結チタン合金は、高
強度な焼結チタン合金である。(Effect of First Invention) The sintered titanium alloy of the first invention is a high-strength sintered titanium alloy.
【0036】(第2発明の効果)本第2発明の焼結チタ
ン合金の製造方法により、不純物を多く含む安価なチタ
ン粉末を原料として用いても、コストアップを招くHI
P処理や熱処理を一切を行わずに、焼結のみで、高価な
溶製鍛造材なみに高強度化したチタン合金を得ることが
できる。このため、焼結合金本来のコストメリットが十
分発揮でき、コスト最優先の自動車用部品等の量産品に
も適用することが可能となる。(Effect of the Second Invention) Even if an inexpensive titanium powder containing a large amount of impurities is used as a raw material by the method for producing a sintered titanium alloy according to the second invention, the cost is increased.
It is possible to obtain a titanium alloy having a high strength like an expensive ingot forged material by only sintering without performing P treatment or heat treatment. Therefore, the original cost merit of the sintered alloy can be fully exerted, and it can be applied to mass-produced products such as automobile parts where cost is the highest priority.
【0037】[0037]
【実施例】以下に、第1発明および第2発明をさらに具
体的にした具体例について説明する。EXAMPLES Specific examples of the first and second inventions will be described below.
【0038】先ず、本具体例の焼結チタン合金につい
て、以下に説明する。First, the sintered titanium alloy of this example will be described below.
【0039】第1具体例の焼結チタン合金は、mass%で
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、硼素(B)0.2〜5%と、酸素(O)0.
15〜0.5%とを含み、残部がチタンと不可避物質か
らなり、α相とβ相と硼化物粒子との三相組織を有して
なることを特徴とする。The sintered titanium alloy of the first specific example has a mass% of aluminum (Al) of 4 to 8% and vanadium (V) 2.
.About.6%, boron (B) 0.2 to 5%, and oxygen (O) 0.
It is characterized by containing 15 to 0.5%, the balance consisting of titanium and an unavoidable substance, and having a three-phase structure of α phase, β phase and boride particles.
【0040】この第1具体例の焼結チタン合金は、チタ
ン硼化物粒子の存在によりα相が等軸化しており、高強
度で安価な焼結チタン合金である。なお、さらに、アス
ペクト比が2以下の場合には、さらに高強度の焼結チタ
ン合金とすることができる。The sintered titanium alloy of the first example is a high-strength, inexpensive sintered titanium alloy in which the α phase is equiaxed due to the presence of titanium boride particles. Further, when the aspect ratio is 2 or less, a sintered titanium alloy having higher strength can be obtained.
【0041】第2具体例の焼結チタン合金は、mass%で
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、硼素(B)0.2〜5%と、酸素(O)0.
15〜0.5%と、モリブデン(Mo),タングステン
(W),タンタル(Ta),ジルコニウム(Zr),ニ
オブ(Nb),ハフニウム(Hf)の一種以上0.5〜
3%とを含み、残部がチタンと不可避物質からなり、α
相とβ相と硼化物粒子との三相組織を有してなることを
特徴とする。The sintered titanium alloy of the second specific example has a mass% of aluminum (Al) of 4 to 8% and vanadium (V) 2.
.About.6%, boron (B) 0.2 to 5%, and oxygen (O) 0.
15-0.5% and one or more of molybdenum (Mo), tungsten (W), tantalum (Ta), zirconium (Zr), niobium (Nb), hafnium (Hf) 0.5-
3%, and the balance consisting of titanium and unavoidable substances, α
It is characterized by having a three-phase structure of a phase, a β phase, and boride particles.
【0042】この第2具体例の焼結チタン合金は、チタ
ン硼化物粒子の存在によりα相が等軸化し、また、M
o,W,Ta,Zr,Nb,Hfの一種以上の物質の存
在により粒内α相が著しく微細化しており、より高強度
で安価な焼結チタン合金である。In the sintered titanium alloy of the second specific example, the α phase is equiaxed by the presence of titanium boride particles, and M
Owing to the presence of one or more substances of o, W, Ta, Zr, Nb, and Hf, the intragranular α phase is remarkably refined, and it is a sintered titanium alloy having higher strength and lower cost.
【0043】第3具体例の焼結チタン合金は、mass%で
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、酸素(O)0.25〜0.8%と、ナトリウ
ム(Na),カリウム(K)などのIa属,マグネシウ
ム(Mg),カルシウム(Ca),ストロンチウム(S
r)などのIIa属,スカンジウム(Sc),イットリウ
ム(Y),セリウム(Ce)などの IIIa属元素の群か
ら選択された元素の一種以上0.05〜2%とを含み、
残部がチタンと不可避物質からなり、α相とβ相と酸化
物粒子との三相組織を有してなることを特徴とする。The sintered titanium alloy of the third specific example contains 4 to 8% by mass of aluminum (Al) and vanadium (V) 2.
.About.6%, oxygen (O) 0.25 to 0.8%, group Ia such as sodium (Na) and potassium (K), magnesium (Mg), calcium (Ca), strontium (S)
r) or the like, and at least one element selected from the group of the group IIIa elements such as scandium (Sc), yttrium (Y), and cerium (Ce), such as scandium (Sc), 0.05 to 2%,
The balance is composed of titanium and an unavoidable substance, and has a three-phase structure of α phase, β phase and oxide particles.
【0044】Ia属,IIa属, IIIa属元素は酸素との
結合力がTiよりも強いため、その大部分が酸化物とし
て存在している。この酸化物粒子により、β相の結晶粒
成長を抑制し、また、β→α変態時の均一核生成サイト
なるため、粒内α相を等軸化させ、また粒界α相を生成
させない。従って、より高強度で安価な焼結チタン合金
である。Most of the elements of Group Ia, Group IIa, and Group IIIa exist as oxides because they have a stronger bond with oxygen than Ti. The oxide particles suppress the growth of β-phase crystal grains and serve as a uniform nucleation site during β → α transformation, so that the intra-grain α phase is equiaxed and no grain boundary α phase is generated. Therefore, it is a sintered titanium alloy having higher strength and lower cost.
【0045】第4具体例の焼結チタン合金は、mass%で
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、硼素(B)0.2〜5%と、酸素(O)0.
25〜0.8%と、モリブデン(Mo),タングステン
(W),タンタル(Ta),ジルコニウム(Zr),ニ
オブ(Nb),ハフニウム(Hf)の一種以上0.5〜
3%と、Ia属,IIa属, IIIa属元素の一種以上0.
05〜2%とを含み、残部がチタンと不可避物質からな
り、α相と,β相と,硼化物粒子および酸化物粒子との
三相組織を有してなることを特徴とする。The sintered titanium alloy of the fourth specific example contains 4 to 8% by mass of aluminum (Al) and vanadium (V) 2.
.About.6%, boron (B) 0.2 to 5%, and oxygen (O) 0.
25 to 0.8% and one or more of molybdenum (Mo), tungsten (W), tantalum (Ta), zirconium (Zr), niobium (Nb), hafnium (Hf) 0.5 to 0.8%
3% and one or more elements of genus Ia, genus IIa, and genus IIIa.
It is characterized in that it has a three-phase structure of α phase, β phase, boride particles and oxide particles, with the balance comprising titanium and unavoidable substances.
【0046】この第4具体例の焼結チタン合金では、微
細なチタン硼素物粒子と酸化物粒子の存在により、β相
の結晶粒成長が抑制され、また、これらの粒子はβ→α
変態時の均一核生成サイトなるため、粒内α相を等軸化
させ、また、粒界α相を生成させない。従って、より高
強度で安価な焼結チタン合金である。In the sintered titanium alloy of the fourth specific example, the presence of fine titanium boron particles and oxide particles suppresses the growth of β-phase crystal grains, and these particles have β → α.
Since it becomes a uniform nucleation site at the time of transformation, the intragranular α phase is made equiaxed, and the grain boundary α phase is not generated. Therefore, it is a sintered titanium alloy having higher strength and lower cost.
【0047】第5具体例の焼結チタン合金は、mass%で
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、酸素(O)0.15〜0.5%と、Ia属,
IIa属, IIIa属元素の一種以上0.05〜2%と、ハ
ロゲン属元素の一種以上0.05〜0.5%とを含み、
残部がチタンと不可避物質からなり、α相とβ相とハロ
ゲン化物粒子との三相組織を有してなることを特徴とす
る。The sintered titanium alloy of the fifth specific example contains 4 to 8% by mass of aluminum (Al) and vanadium (V) 2.
.About.6%, oxygen (O) 0.15 to 0.5%, and genus Ia,
Includes at least 0.05 to 2% of Group IIa and Group IIIa elements and at least 0.05 to 0.5% of Group Halogen elements,
The balance is composed of titanium and an unavoidable substance, and has a three-phase structure of α phase, β phase and halide grains.
【0048】この第5具体例の焼結チタン合金は、より
高強度で安価な焼結チタン合金である。The sintered titanium alloy of the fifth example is a sintered titanium alloy of higher strength and lower cost.
【0049】第6具体例の焼結チタン合金は、mass%で
アルミニウム(Al)4〜8%と、バナジウム(V)2
〜6%と、酸素(O)0.15〜0.5%と、モリブデ
ン(Mo),タングステン(W),タンタル(Ta),
ジルコニウム(Zr),ニオブ(Nb),ハフニウム
(Hf)の一種以上0.5〜3%と、Ia属,IIa属,
IIIa属元素の一種以上0.05〜2%と、ハロゲン属
元素の一種以上0.05〜0.5%とを含み、残部がチ
タンと不可避物質からなり、α相とβ相とハロゲン化物
粒子との三相組織を有してなることを特徴とする。The sintered titanium alloy of the sixth specific example has a mass% of aluminum (Al) of 4 to 8% and vanadium (V) 2.
~ 6%, oxygen (O) 0.15 to 0.5%, molybdenum (Mo), tungsten (W), tantalum (Ta),
0.5 to 3% of one or more of zirconium (Zr), niobium (Nb), and hafnium (Hf), and Ia group, IIa group,
IIIa group element or more 0.05 to 2%, and halogen group element 1 or more 0.05 to 0.5%, the balance consisting of titanium and inevitable substances, α phase, β phase and halide grains And a three-phase structure of
【0050】この第6具体例の焼結チタン合金は、より
高強度で安価な焼結チタン合金である。The sintered titanium alloy of the sixth example is a sintered titanium alloy of higher strength and lower cost.
【0051】ここで、この焼結チタン合金の組織状態の
具体的一例を、図1〜図3を用いて説明する。Here, a specific example of the microstructure of this sintered titanium alloy will be described with reference to FIGS.
【0052】図1は、上記第1具体例、第3具体例、第
5具体例に示した焼結チタン合金の組織を模式的に示し
た図である。これらの合金は、等軸化したα相とβ相、
および少なくともチタンの硼化物,酸化物,ハロゲン化
物の一種以上の微細粒子とから構成されている。FIG. 1 is a diagram schematically showing the structures of the sintered titanium alloys shown in the first concrete example, the third concrete example and the fifth concrete example. These alloys have equiaxed α and β phases,
And at least one kind of fine particles of titanium boride, oxide, and halide.
【0053】図2は、上記第2具体例、第4具体例、第
6具体例に示した焼結チタン合金の組織をを模式的に示
した図である。これらの合金は、上記第1具体例、第3
具体例、第5具体例に示した焼結チタン合金に、さらに
Mo,W,Ta,Zr,Nb,Hfの一種以上の物質が
存在しているので、該第1具体例、第3具体例、第5具
体例よりもα相がさらに微細化されている。FIG. 2 is a diagram schematically showing the structures of the sintered titanium alloys shown in the second concrete example, the fourth concrete example and the sixth concrete example. These alloys are used in the first concrete example and the third concrete
Since the sintered titanium alloys shown in the concrete examples and the fifth concrete examples further contain one or more substances of Mo, W, Ta, Zr, Nb, and Hf, the first concrete example and the third concrete example. , The α phase is further miniaturized as compared with the fifth specific example.
【0054】図1は、従来法によるα+β型チタン合金
の組織を模式的に示したものである。該合金は、旧β粒
界に沿った粒界α相と粒内の粗大な針状α相とβ相とか
ら構成されている。FIG. 1 schematically shows the structure of an α + β type titanium alloy prepared by the conventional method. The alloy is composed of a grain boundary α phase along the old β grain boundary and coarse acicular α phase and β phase in the grain.
【0055】本第2発明の焼結チタン合金の製造方法の
好適な具体例について説明する。A preferred specific example of the method for producing a sintered titanium alloy of the second invention will be described.
【0056】本焼結チタン合金の好適な製造方法は、実
質的に、mass%で、アルミニウム(Al)4〜8%と、
バナジウム(V)2〜6%と、酸素(O)0.15〜
0.5%と、少なくとも硼素(B)0.2〜5%、モリ
ブデン(Mo),タングステン(W),タンタル(T
a),ジルコニウム(Zr),ニオブ(Nb),ハフニ
ウム(Hf)の一種以上0.5〜3%、Ia属,IIa
属, IIIa属元素の一種以上0.05〜2%、ハロゲン
属元素の一種以上0.05〜0.5%から選択された所
定量の元素を一種以上を含み、残部がチタニウム(T
i)と不可避物質となるように、チタン粉末と強化用粉
末とからなる原料粉末を準備する工程(原料粉末準備工
程)と、前記原料粉末のうちチタン粉末を加圧すると共
にこすり合わせ、原料粉末の充填密度を所定値とすると
ともに該チタン粉末の再結晶時及び/又はαからβへの
変態時の均一核生成サイトを増加させるための工程(加
工工程)と、前記原料粉末を混合する工程(原料粉末混
合工程)と、前記混合粉末を成形する工程(成形工程)
と、前記成形体を無加圧で焼成する工程(焼結工程)
と、からなる焼結チタン合金の製造方法である。A preferred method for producing the present sintered titanium alloy is, substantially in mass%, aluminum (Al) 4 to 8%,
Vanadium (V) 2-6% and oxygen (O) 0.15-
0.5%, at least boron (B) 0.2 to 5%, molybdenum (Mo), tungsten (W), tantalum (T
a), one or more of zirconium (Zr), niobium (Nb) and hafnium (Hf) 0.5 to 3%, Group Ia, IIa
Species, containing at least one element of a group IIIa of 0.05 to 2% and at least one element of halogen group of 0.05 to 0.5%, and a balance of titanium (T
i) and a step of preparing a raw material powder composed of titanium powder and a strengthening powder so as to become an unavoidable substance (a raw material powder preparation step), and pressing and rubbing the titanium powder among the raw material powders to prepare a raw material powder. A step (processing step) of increasing the packing density to a predetermined value and increasing the uniform nucleation site during recrystallization of the titanium powder and / or during the transformation from α to β, and a step of mixing the raw material powder ( Raw material powder mixing step) and a step of molding the mixed powder (molding step)
And a step of firing the molded body without pressure (sintering step)
And a method for producing a sintered titanium alloy.
【0057】ここで、チタン粉末と強化用粉末とは、焼
結チタン合金の原料となる粉末である。チタン粉末は、
一般に純チタン粉末と呼ばれるものであり、どのような
種類のものでもよい。例えば、(a)ナトリウム還元法
スポンジチタンの副産物であるスポンジファイン、
(b)マグネシウム還元法スポンジチタンを水素化→粉
砕→脱水素して製造される水素化・脱水素チタン粉末、
(c)マグネシウム還元法スポンジチタンを一旦溶解し
て不純物を除去した後、水素化→粉砕→脱水素して製造
される極低塩素チタン粉末の3種類が代表的なものであ
る。Here, the titanium powder and the reinforcing powder are powders which are raw materials of the sintered titanium alloy. Titanium powder is
It is generally called pure titanium powder and may be of any kind. For example, (a) sponge fine, which is a by-product of sodium reduction sponge titanium,
(B) Hydrogenated and dehydrogenated titanium powder produced by hydrogenating → pulverizing → dehydrogenating magnesium reduction sponge titanium,
(C) Magnesium reduction method Three types of ultra-low chlorine titanium powder, which are produced by once dissolving titanium sponge titanium to remove impurities and then hydrogenating, pulverizing, and dehydrogenating, are typical.
【0058】一般に、強化用母合金粉末は、プラズマ溶
解あるいはアーク溶解などによって作製されたインゴッ
トを粉砕して製造する。したがって、容易に粉砕しうる
組成のものがよい。例えば、代表的なα+β合金を作製
する際に使用される合金としては、Al−V、Al−V
−Fe、Al−Sn−Zr−Mo、Al−V−Sn、A
l−Fe等からなる基本合金組成が知られている。本具
体例では、原料粉末が実質的にmass%で、アルミニウム
(Al)4〜8と、バナジウム(V)2〜6と、酸素
(O)0.15〜0.5と、少なくとも硼素(B)0.
2〜5、モリブデン(Mo),タングステン(W),タ
ンタル(Ta),ジルコニウム(Zr),ニオブ(N
b),ハフニウム(Hf)の一種以上0.5〜3、Ia
属,IIa属,IIIa属元素の一種以上0.05〜2、ハ
ロゲン属元素の一種以上0.05〜0.5から選択され
た所定量の元素を一種以上を含み、残部がチタニウム
(Ti)と不可避物質となるように、所定の物質を添加
したり予め合金として用意するなど、適宜の方法や形態
で強化用粉末となるように準備する。例えば、所定の組
成の合金を作製したり、必要な物質を、硼化物粉末、酸
化物粉末、ハロゲン化物粉末、あるいは純金属粉末の形
態で添加するなどの方法がある。Generally, the strengthening master alloy powder is produced by crushing an ingot produced by plasma melting or arc melting. Therefore, a composition that can be easily crushed is preferable. For example, Al-V and Al-V are used as alloys used for producing typical α + β alloys.
-Fe, Al-Sn-Zr-Mo, Al-V-Sn, A
A basic alloy composition including l-Fe and the like is known. In this specific example, the raw material powder is substantially mass%, aluminum (Al) 4 to 8, vanadium (V) 2 to 6, oxygen (O) 0.15 to 0.5, and at least boron (B). ) 0.
2 to 5, molybdenum (Mo), tungsten (W), tantalum (Ta), zirconium (Zr), niobium (N
b), one or more of hafnium (Hf) 0.5 to 3, Ia
A predetermined amount of one or more elements selected from the group consisting of genus, genus IIa, one or more elements of group IIIa 0.05 to 2 and one or more elements of halogen group 0.05 to 0.5, and the balance titanium (Ti) In order to become an unavoidable substance, a predetermined substance is added, or an alloy is prepared in advance so as to prepare a powder for strengthening by an appropriate method and form. For example, there is a method of producing an alloy having a predetermined composition or adding a necessary substance in the form of boride powder, oxide powder, halide powder, or pure metal powder.
【0059】ここで、前記原料物質の好適な組成および
数値範囲の限定理由について、以下に説明する。Here, the reason why the preferable composition of the raw material and the limitation of the numerical range are limited will be described below.
【0060】Alの添加量は、4〜8mass%である。こ
のAlは、チタン合金の強化元素として最も一般的な元
素であって、固溶強化とα相安定化の役割を有してい
る。該添加量が4%未満では強化作用が不十分であり、
8%を超えると延性を極端に低下させる。The amount of Al added is 4 to 8 mass%. This Al is the most general element as a strengthening element for titanium alloys, and has the roles of solid solution strengthening and α-phase stabilization. If the addition amount is less than 4%, the strengthening effect is insufficient,
If it exceeds 8%, the ductility is extremely reduced.
【0061】Vの添加量は、2〜6mass%である。この
Vも、チタン合金の強化元素として一般的であって、固
溶強化とβ相安定化の作用を有する元素である。該添加
量が2%未満では強化作用、β安定化作用が不十分であ
り、6%を超えるとβ安定化作用が強すぎる。The amount of V added is 2 to 6 mass%. This V is also an element that is generally used as a strengthening element for titanium alloys and has the effects of solid solution strengthening and β-phase stabilization. If the amount added is less than 2%, the strengthening action and β-stabilizing action are insufficient, and if it exceeds 6%, the β-stabilizing action is too strong.
【0062】Oの添加量は、0.15〜0.8mass%で
ある。このOは、チタン合金の延性を低下させる元素と
して、通常はその上限値が0.15%程度に厳しく限定
されているが、素粉末混合法焼結チタン合金の場合は、
その理由は明らかではないが、延性低下作用が小さく、
強化用合金成分として有効な元素である。該添加量が、
0.15%未満では強化作用が小さすぎ、0.8%を超
えると焼結チタン合金の場合でも延性が極端に低下す
る。The amount of O added is 0.15 to 0.8 mass%. This O is an element that lowers the ductility of the titanium alloy, and its upper limit value is usually strictly limited to about 0.15%. However, in the case of the elemental powder mixed method sintered titanium alloy,
The reason is not clear, but the ductility-lowering effect is small,
It is an effective element as a strengthening alloy component. The amount added is
If it is less than 0.15%, the strengthening effect is too small, and if it exceeds 0.8%, the ductility is extremely lowered even in the case of a sintered titanium alloy.
【0063】Bの添加量は、0.2〜5mass%である。
このBは、チタン合金中にほとんど固溶せず、したがっ
て焼結体中のBの大部分はTiBの形でマトリックス中
に微細に分散する(ただし,炭素が僅かでも共存する場
合はTiBの一部がTiB2 に置き換わることもあ
る)。微細TiB粒子は、焼結過程ではβ結晶粒の成長
を抑制し、焼結後の冷却過程ではα相の核生成を促進す
る。これらの複合効果により、焼結体組織中のα相は等
軸化し、また、粒界α相は消失する。該添加量が、0.
2%未満ではTiBの析出量が少なすぎ、5%を超える
とTiBの析出量が多すぎて十分な延性が得られない。The amount of B added is 0.2 to 5 mass%.
This B hardly forms a solid solution in the titanium alloy, and therefore most of the B in the sintered body is finely dispersed in the matrix in the form of TiB (provided that even if a small amount of carbon coexists, it is Part may be replaced with TiB 2 ). The fine TiB particles suppress the growth of β crystal grains during the sintering process, and promote the nucleation of the α phase during the cooling process after sintering. Due to these combined effects, the α phase in the sintered body structure becomes equiaxed, and the grain boundary α phase disappears. When the addition amount is 0.
If it is less than 2%, the TiB precipitation amount is too small, and if it exceeds 5%, the TiB precipitation amount is too large, and sufficient ductility cannot be obtained.
【0064】Mo、W、Ta、Zr、Nb、Hfの添加
量は、その一種以上が、0.5〜3mass%である。これ
ら元素は、いずれもチタン合金中での拡散が極めて遅
く、β転移温度を低下させ、さらに、β/α界面の易動
度を低下させる、等の理由で、冷却後の粒内α相を著し
く微細化させる効果がある。これらのうち1種以上の添
加量の合計が、0.5%未満では上記効果が不十分であ
り、3%を超えると焼結過程で成分の均質化が不十分と
なり、また、β転移温度が低下し過ぎる。The addition amount of Mo, W, Ta, Zr, Nb, and Hf is 0.5 to 3 mass% for one or more of them. All of these elements diffuse extremely slowly in the titanium alloy, lower the β transition temperature, and further lower the mobility of the β / α interface. It has the effect of significantly reducing the size. If the total amount of one or more of these added is less than 0.5%, the above effect is insufficient, and if it exceeds 3%, the homogenization of the components becomes insufficient during the sintering process, and the β transition temperature Is too low.
【0065】ナトリウム(Na),カリウム(K)など
のIa属,マグネシウム(Mg),カルシウム(C
a),ストロンチウム(Sr)などのIIa属,スカンジ
ウム(Sc),イットリウム(Y),セリウム(Ce)
などの IIIa属元素の添加量は、その一種以上が、0.
05〜2mass%である。これら元素は、一般に酸素およ
びハロゲン属元素との結合力がTiよりも強いため、チ
タン合金中に酸素あるいはハロゲン属元素と共存する
と、その大部分が酸化物あるいはハロゲン化物となる。
この酸化物粒子は、焼結過程ではβ結晶粒の成長を抑制
し、焼結後の冷却過程ではα相の核生成を促進する。こ
れらの複合効果により、焼結体組織中のα相は等軸化
し、また、粒界α相は消失する。これらの元素のうち一
種以上の添加量の合計が、0.05%未満では酸化物あ
るいはハロゲン化物の析出量が少なすぎ、2%を超える
と酸化物粒子あるいはハロゲン化物粒子が粗大化し、ま
た、その分散も不均一になる。Group Ia such as sodium (Na) and potassium (K), magnesium (Mg), calcium (C)
a), Group IIa such as strontium (Sr), scandium (Sc), yttrium (Y), cerium (Ce)
The addition amount of the group IIIa element such as 1 or more is 0.
It is 05-2 mass%. Since these elements generally have a stronger binding force with oxygen and halogen group elements than Ti, when they coexist with oxygen or halogen group elements in the titanium alloy, most of them become oxides or halides.
The oxide particles suppress the growth of β crystal grains during the sintering process and promote the nucleation of the α phase during the cooling process after sintering. Due to these combined effects, the α phase in the sintered body structure becomes equiaxed, and the grain boundary α phase disappears. If the total amount of one or more of these elements added is less than 0.05%, the amount of precipitated oxides or halides is too small, and if it exceeds 2%, the oxide particles or halide particles become coarse, and Its distribution is also non-uniform.
【0066】ハロゲン属元素の添加量は、その一種以上
が、0.05〜0.5mass%である。これら元素は、チ
タン合金の中でIa属,IIa属, IIIa属元素と結合し
て微細なハロゲン化物を形成する役割を有する。このハ
ロゲン化物粒子は、焼結過程ではβ結晶粒の成長を抑制
し、焼結後の冷却過程ではα相の核生成を促進する。こ
れらの複合効果により、焼結体組織中のα相は等軸化
し、また、粒界α相は消失する。これら元素のうち、一
種以上の添加量の合計が、0.05%未満ではハロゲン
化物の析出量が不十分であり、0.5%を超えるとハロ
ゲン化物粒子が粗大化し、また、その分散も不均一にな
るとともに、延性が低下する。The amount of the halogen group element added is 0.05 to 0.5 mass% for one or more of them. These elements have a role of forming fine halides by combining with elements of group Ia, group IIa, and group IIIa in the titanium alloy. The halide grains suppress the growth of β crystal grains during the sintering process and promote the nucleation of the α phase during the cooling process after sintering. Due to these combined effects, the α phase in the sintered body structure becomes equiaxed, and the grain boundary α phase disappears. If the total amount of one or more of these elements added is less than 0.05%, the precipitation amount of the halide is insufficient, and if it exceeds 0.5%, the halide grains become coarse, and their dispersion is also large. It becomes non-uniform and the ductility decreases.
【0067】なお、好適な原料粉末として、実施的に前
記焼結チタン合金の第1具体例〜第6具体例の組成とな
るようにチタン粉末と強化用母合金粉末とからなる原料
粉末を準備することにより、より優れた効果を奏するこ
とができる。As a preferable raw material powder, a raw material powder composed of titanium powder and a strengthening mother alloy powder is prepared so that the compositions of the first to sixth specific examples of the sintered titanium alloy are practically obtained. By doing so, a more excellent effect can be achieved.
【0068】焼結チタン合金の疲労強度を決定するの
は、残留空孔の量(密度)、残留空孔の大きさ、合金そ
のものの強度、合金の切り欠き感受性(疲労亀裂の発生
しやすさ)等がある。残留空孔の量は成形体密度と焼結
性とによって、また、残留空孔の大きさは原料粉末の粒
度と粉末の充填性と焼結性とによって、それぞれ決定さ
れる。チタン粉末の粒径が大きすぎると、疲労強度を低
下させる粗大空孔が生成しやすく、一方、強化用母合金
粉末の平均粒径が大きい場合は、焼結性が低下するため
十分な焼結体密度が得られない。従って、チタン粉末の
最大粒径は150μm 以下、強化用母合金粉末の平均粒
径は10μm 以下が、それぞれこの好ましい。The fatigue strength of a sintered titanium alloy is determined by the amount of residual voids (density), the size of the residual voids, the strength of the alloy itself, the notch susceptibility of the alloy (the likelihood of fatigue cracking). ) Etc. The amount of residual voids is determined by the density of the compact and the sinterability, and the size of the residual voids is determined by the particle size of the raw material powder, the filling property of the powder, and the sinterability. If the particle size of the titanium powder is too large, coarse pores that reduce the fatigue strength tend to be generated, while if the average particle size of the strengthening mother alloy powder is large, the sinterability will decrease and sufficient sintering will occur. Body density cannot be obtained. Therefore, it is preferable that the maximum particle size of the titanium powder is 150 μm or less and the average particle size of the strengthening master alloy powder is 10 μm or less.
【0069】次に、加工工程において、チタン粉末にあ
る程度の加圧を行うと共にチタン粉末をこすり合わせ、
チタン粉末の充填率(充填密度)を所定値とする。この
工程により、チタン粉末個々の粒子の突起部が潰されて
表面が平滑化する。そのため粉末の流動性が向上し、所
望の充填密度とすることができる。Next, in the processing step, the titanium powder is pressed to some extent and the titanium powder is rubbed together.
The filling rate (filling density) of titanium powder is set to a predetermined value. By this step, the projections of the individual particles of titanium powder are crushed and the surface is smoothed. Therefore, the fluidity of the powder is improved, and the desired packing density can be achieved.
【0070】粉末の充填密度は、粉末の粒度分布と粒子
形状とによって左右される。すなわち、粗大粒子の空隙
を満たすのに最適な粒度を有する中小粒子が適量存在す
るような粒度分布が望ましいが、たとえ粒度分布が最適
であっても、粉末の流動性が悪いと粉末の充填率は向上
しない。スポンジファインの場合、粉末の形状はポーラ
スかつ不定形であって流動性は著しく悪いため、充填密
度は1.5g/cm3 程度である。また、水素化・脱水素チ
タン粉末の場合は、粉砕粉末のため角張った形状をして
おり、スポンジファインと比べると若干優れてはいる
が、通常のアトマイズ粉末などと比較すると流動性は著
しく劣っており、せいぜい2.0g/cm3 程度である。こ
のような状態のままで原料粉末を形成しても、粒子間の
摩擦力のため粒子はほとんど移動できず、そのまま変形
を受けるので成形体中には粗大空孔が形成されやすい。
さらにこの成形体を焼成した場合、焼結体中にも粗大空
孔は受け継がれ、疲労破壊の起点となりやすい。成形圧
力を上げて密度を向上させても焼結体中の残留空孔を微
細化させることは困難である。これらの粉末の流動性を
向上させるためには、本加工工程により粉末の形状を変
化させ、前記所定値の充填密度を有するようにする必要
がある。The packing density of the powder depends on the particle size distribution and the particle shape of the powder. That is, it is desirable that the particle size distribution be such that there is an appropriate amount of small and medium particles having the optimum particle size to fill the voids of the coarse particles, but even if the particle size distribution is optimum, if the fluidity of the powder is poor, the packing rate of the powder will be low. Does not improve. In the case of sponge fine, the powder has a porous and amorphous shape and has extremely poor fluidity, so the packing density is about 1.5 g / cm 3 . In addition, the hydrogenated / dehydrogenated titanium powder has a square shape because it is a crushed powder, and although it is slightly superior to sponge fine, its fluidity is significantly inferior to ordinary atomized powder. It is about 2.0 g / cm 3 at most. Even if the raw material powder is formed in such a state, the particles hardly move due to the frictional force between the particles and are deformed as they are, so that coarse pores are easily formed in the molded body.
Further, when this molded body is fired, coarse pores are inherited in the sintered body, which easily becomes a starting point of fatigue fracture. Even if the molding pressure is increased to improve the density, it is difficult to make the residual pores in the sintered body fine. In order to improve the fluidity of these powders, it is necessary to change the shape of the powders by the main processing step so that the powders have a packing density of the predetermined value.
【0071】本工程において、現在市販されているチタ
ン粉末に対して15%以上、より望ましくは、チタン粉
末としてスポンジファインを用いる場合は30%以上、
水素化・脱水素チタン粉末または極低塩素チタン粉末を
用いる場合は20%以上、充填密度を向上させるよう
に、チタン粉末に変形を与えることが好適である。In this step, 15% or more, more preferably 30% or more, when sponge fine is used as the titanium powder, based on the titanium powder currently on the market.
When the hydrogenated / dehydrogenated titanium powder or the ultra-low chlorine titanium powder is used, it is preferable to deform the titanium powder by 20% or more so as to improve the packing density.
【0072】この充填密度は、2.0g/cm3 〜3.0g/
cm3 であることが好適である。充填密度がこの数値範囲
内の場合、適度な流動性およびタップ密度を有するもの
とすることができる。該充填密度が2.0g/cm3 未満の
場合は、粗大空孔を完全には消失させることができない
ため、焼結体の疲労破壊強度を十分に向上することがで
きず、3.0g/cm3 を越える場合には粉末の成形性が著
しく低下するため共に好ましくない。The packing density is 2.0 g / cm 3 to 3.0 g /
It is preferably cm 3 . When the packing density is within this numerical range, it can have appropriate fluidity and tap density. If the packing density is less than 2.0 g / cm 3 , the coarse pores cannot be completely eliminated, so that the fatigue fracture strength of the sintered body cannot be sufficiently improved, and 3.0 g / cm 3 If it exceeds cm 3 , the powder formability is remarkably reduced, which is not preferable.
【0073】なお、チタン粉末としてスポンジファイン
を用いる場合は、粉末の充填密度が2.0g/cm3 〜2.5
g/cm3 が、水素化・脱水素チタン粉末または極低塩素
チタン粉末を用いる場合は、粉末の充填密度が2.3〜
3.0g/cm3 となるように、加工を与えることが好まし
い。これにより、疲労破壊の起点となりうる直径50μ
m以上の粗大空孔を消失させることができ、最大でも2
0μm程度の独立空孔とすることができる。これより、
機械的性質、特に、延性と疲労強度が大幅に向上する。When sponge fine is used as the titanium powder, the packing density of the powder is 2.0 g / cm 3 to 2.5.
When the hydrogenated / dehydrogenated titanium powder or the ultra low chlorine titanium powder is used, the packing density of the powder is 2.3 to g / cm 3.
It is preferable to give processing so that the amount becomes 3.0 g / cm 3 . As a result, the diameter of 50μ, which can be the starting point of fatigue fracture
Coarse vacancies of m or more can be eliminated, and at most 2
It is possible to make independent pores of about 0 μm. Than this,
Mechanical properties, especially ductility and fatigue strength, are significantly improved.
【0074】しかも、充填率を前記数値範囲とすること
により、成形圧力を下げて多量の空孔を残留させた場合
でも、個々の空孔は粗大化しにくくすることができる。
なお、前記加工処理は、チタン粉末のみに与えた方が粉
末の汚染を避けることができるので好ましいが、場合に
よっては、チタン粉末と強化用母合金粉末とを混合した
混合物に行っても、高強度で安価な焼結チタン合金を得
ることができる。Moreover, by setting the filling rate within the above numerical range, it is possible to prevent the individual pores from coarsening even when the molding pressure is lowered and a large number of pores remain.
In addition, it is preferable that the above-mentioned processing is given only to titanium powder because contamination of the powder can be avoided, but in some cases, even if it is performed on a mixture of titanium powder and strengthening mother alloy powder, high A strong and inexpensive sintered titanium alloy can be obtained.
【0075】前記加工を与える方法としては次のような
方法がある。すなわち、この工程は粉末表面の突起部を
平滑にする、あるいはスポンジファインのような凝集粉
末を壊砕する程度の軽度な加工であり、例えば、鋼球を
含むボールミルやアトライター中に原料粉末を投入し
て、ごく短時間(1〜20min.)攪拌する方法などによ
り行う。このような処理により、チタン粉末はこすり合
うとともに、その突起部が加圧され平坦化する。なお、
繰り返し述べるように、チタン粉末粒子を粉砕微細化さ
せたり、著しい加工硬化を生じさせるような強加工を与
えることは、圧縮性が低下し、また酸素量も増加するた
め避けなければならない。As a method of giving the above-mentioned processing, there are the following methods. That is, this step is a light processing such as smoothing the protrusions on the powder surface or crushing agglomerated powder such as sponge fine. For example, the raw material powder is placed in a ball mill or an attritor containing steel balls. It is carried out by, for example, a method of charging and stirring for a very short time (1 to 20 min.). By such a treatment, the titanium powder is rubbed against each other, and the projections thereof are pressed and flattened. In addition,
As will be described repeatedly, crushing and refining the titanium powder particles and subjecting the titanium powder to strong working that causes remarkable work hardening must be avoided because the compressibility decreases and the oxygen content also increases.
【0076】原料粉末混合工程における前記原料粉末の
混合は、ボールミル、V型混合機等の装置を用いる等、
どのような混合方法でもよい。For mixing the raw material powders in the raw material powder mixing step, a device such as a ball mill or a V-type mixer is used.
Any mixing method may be used.
【0077】成形工程において、前記加工を施した原料
粉末を成形する方法としては、金型プレス成形、CIP
(冷間静水圧プレス)成形などの方法がある。In the molding step, as a method of molding the raw material powder that has been subjected to the above-mentioned processing, die press molding, CIP
(Cold isostatic press) There are methods such as molding.
【0078】焼結工程において、前記成形体を焼成す
る。焼成温度および焼成時間は、焼結体の緻密化、合金
組成の均質化、炉の耐久性、経済性等を考慮すると、1
000〜1350℃、1〜20時間の範囲が望ましい。
また、焼成雰囲気としては、チタン合金は雰囲気ガス
(酸素,窒素,その他還元性ガス)と反応しやすいた
め、10-3 torr 以上の真空中あるいはアルゴン、ヘリ
ウム等の不活性ガス中とするのがよい。In the sintering step, the molded body is fired. Considering the densification of the sintered body, homogenization of the alloy composition, durability of the furnace, economic efficiency, etc., the firing temperature and firing time are 1
The range of 000 to 1350 ° C. and 1 to 20 hours is desirable.
Further, as the firing atmosphere, the titanium alloy is liable to react with the atmosphere gas (oxygen, nitrogen, other reducing gas), so that it should be in a vacuum of 10 -3 torr or more or in an inert gas such as argon or helium. Good.
【0079】一般にα+β型チタン合金の組織は、焼結
後徐冷した状態では、旧β粒界に沿った網目状の粒界α
相と旧β粒内の粗大針状α相とで構成されている。しか
し、本具体例の方法のように、微量成分(硼素、酸素、
Ia属,IIa属, IIIa属元素、ハロゲン属元素)を適
宜組み合わせて添加すると、硼化物,酸化物,あるいは
ハロゲン化物粒子がマトリックス中に微細に析出し、こ
れらが焼結過程でのβ結晶粒の粗大化を抑制するととも
に、冷却の際のβ→α変態時にα相の核生成を容易なら
しめる。その結果、冷却後の組織は、α相が等軸化する
と共に粒界α相は消失する。Generally, the structure of α + β type titanium alloy has a mesh-like grain boundary α along the old β grain boundary in the state of being gradually cooled after sintering.
Phase and coarse acicular α phase in old β grains. However, as in the method of this specific example, trace components (boron, oxygen,
(Ia group, IIa group, IIIa group element, halogen group element) are appropriately combined and added, and boride, oxide, or halide particles are finely precipitated in the matrix, and these are β crystal grains in the sintering process. It suppresses the coarsening of Al and facilitates the nucleation of α phase during β → α transformation during cooling. As a result, in the microstructure after cooling, the α phase becomes equiaxed and the grain boundary α phase disappears.
【0080】また、特定の遷移金属元素(Mo、W、T
a、Zr、Nb、Hf)は,チタン合金中での拡散が極
めて遅く、β転移温度を低下させ、さらに、β/α界面
の易動度を低下させる、などより、冷却後の粒内α相を
著しく微細化させる効果がある。Further, specific transition metal elements (Mo, W, T
a, Zr, Nb, Hf) are extremely slow in diffusion in the titanium alloy, lower the β transition temperature, and further lower the mobility of the β / α interface. It has the effect of significantly refining the phase.
【0081】また、合金元素のうち酸素は、延性を低下
させる元素として、従来ではなるべく低く押さえるよう
に努力が払われてきた。しかし、素粉末混合法による焼
結チタン合金においては、その理由は明らかではない
が、溶製鍛造材などで通常考えられている許容量(0.
15%程度)以上含有させても、延性を低下させずに強
化しうる重要な合金元素である。Further, among the alloying elements, oxygen is an element that reduces ductility, and efforts have been made so far to keep it as low as possible. However, in the sintered titanium alloy prepared by the raw powder mixing method, although the reason is not clear, the allowable amount (0.
It is an important alloying element that can be strengthened without lowering the ductility even if it is contained in about 15% or more).
【0082】以下に、本発明の実施例を説明する。Examples of the present invention will be described below.
【0083】第1実施例
−100メッシュの高塩素純チタン粉末(スポンジファ
イン;Ti:99.6%,O:0.1%,Cl:0.1%,N
a:0.08%)を、鋼球と共にアトライタ中に装入し、
10分間加工処理を行った後、これに平均粒径7μmの
Al−40%V粉末を、チタン粉末:Al−40%V粉
末=9:1の割合(重量比)で混合した。このとき、加
工処理後のTi粉末の充填密度は、2.30g/cm3 で
あり、43%向上した。 First Embodiment 100 mesh high chlorine pure titanium powder (sponge fine; Ti: 99.6%, O: 0.1%, Cl: 0.1%, N
a: 0.08%) is charged into an attritor together with a steel ball,
After processing for 10 minutes, Al-40% V powder having an average particle size of 7 μm was mixed in the ratio of titanium powder: Al-40% V powder = 9: 1 (weight ratio). At this time, the packing density of the Ti powder after the processing was 2.30 g / cm 3 , which was an improvement of 43%.
【0084】次いで、混合物をCIPにて圧力4ton/cm
2 で成形し、得られた成形体を10-5 torr の真空中に
て、1300℃で4時間焼結して、本実施例にかかる焼
結チタン合金を得た(試料番号:1)。なお、図4に上
記加工処理を行った後のチタン粉末の粒子構造を示すS
EM(走査型電子顕微鏡)写真(倍率500倍)を、ま
た、図5に製造した焼結体の金属組織を示す光学顕微鏡
写真(倍率200倍)を、それぞれ示す。図4より明ら
かの如く、本実施例のチタン粉末は、加工により粉末に
適度な変形を受けて凸凹が小さくなっていることが分か
る。また、図5により明らかのごとく、本実施例により
得られた焼結チタン合金は、残留空孔が微細化してお
り、またα相が等軸化していることが分かる。Then, the mixture was subjected to CIP at a pressure of 4 ton / cm.
The molded body obtained in Example 2 was sintered in a vacuum of 10 −5 torr at 1300 ° C. for 4 hours to obtain a sintered titanium alloy according to this example (Sample No. 1). Incidentally, FIG. 4 shows S showing the particle structure of the titanium powder after the above-mentioned processing treatment.
An EM (scanning electron microscope) photograph (magnification: 500 times) and an optical microscope photograph (magnification: 200 times) showing the metal structure of the produced sintered body are shown in FIG. 5, respectively. As is clear from FIG. 4, it is found that the titanium powder of the present example is subjected to appropriate deformation in the powder due to processing and the irregularities are reduced. Further, as is clear from FIG. 5, in the sintered titanium alloy obtained in this example, the residual pores are made finer and the α phase is equiaxed.
【0085】第2実施例
−100メッシュの低塩素純チタン粉末(水素化・脱水
素チタン粉末;Ti:99.8%,O:0.2%,Cl:0.
01%)と0.2%のY2 O3 粉末とを、鋼球とともにア
トライタ中に装入し、10分間加工処理を行った。な
お、チタン粉末は、平均粒径が60μmのもの(試料番
号:2)と80μmのもの(試料番号:3)の二種類を
用いた。また、このときの、加工処理後のTi粉末の充
填密度は、2.7g/cm3 であり、24%向上した。そ
の後、平均粒径7μmのAl−40%V粉末を、チタン
粉末:Al −40%V粉末=9:1の割合(重量比)で
混合した。次いで、第1実施例と同様な成形・焼結法に
より、本実施例にかかる焼結チタン合金を作製した(試
料番号:2および3)。 Second Embodiment 100 mesh low chlorine pure titanium powder (hydrogenated / dehydrogenated titanium powder; Ti: 99.8%, O: 0.2%, Cl: 0.
(01%) and 0.2% of Y 2 O 3 powder were charged into an attritor together with steel balls, and processed for 10 minutes. Two types of titanium powder were used, one having an average particle size of 60 μm (sample number: 2) and one having an average particle size of 80 μm (sample number: 3). The packing density of the Ti powder after processing at this time was 2.7 g / cm 3 , which was an improvement of 24%. Then, Al-40% V powder having an average particle size of 7 μm was mixed at a ratio (weight ratio) of titanium powder: Al-40% V powder = 9: 1. Then, a sintered titanium alloy according to this example was manufactured by the same forming / sintering method as in the first example (sample numbers: 2 and 3).
【0086】第3実施例
第2実施例と同様な低塩素純チタン粉末(平均粒径が6
0μm)と0.2%のYCl3 粉末とを、第1実施例と同
様の加工処理により処理し、これに10%のAl−40
%V粉末とを混合した。その後、該混合物を実施例1と
同様にして成形、焼成して、本実施例にかかる焼結チタ
ン合金を作製した(試料番号:4)。 Third Embodiment Low chlorine pure titanium powder (average particle size 6
0 .mu.m) and a 0.2% YCl 3 powder was treated by the same processing as in the first embodiment, this 10% Al-40
% V powder. Then, the mixture was molded and fired in the same manner as in Example 1 to produce a sintered titanium alloy according to this example (Sample No. 4).
【0087】第4実施例
第2実施例と同様な低塩素純チタン粉末(平均粒径が8
0μm)を、第1実施例と同様の方法により加工処理
し、これに0.2%のYCl3 粉末と10%のAl−40
%V粉末とを混合した。その後、該混合物を実施例1と
同様にして成形、焼成して、本実施例にかかる焼結チタ
ン合金を作製した(試料番号:5)。 Fourth Embodiment Low chlorine pure titanium powder (average particle size 8
0 μm) was processed by the same method as in the first embodiment, to which 0.2% YCl 3 powder and 10% Al-40 were added.
% V powder. Then, the mixture was molded and fired in the same manner as in Example 1 to produce a sintered titanium alloy according to this example (Sample No. 5).
【0088】第5実施例
第1実施例と同様な高塩素純チタン粉末を、第1実施例
と同様の方法により処理し、これに0.5%のTiB2 粉
末と、1%のMo粉末と、10%のAl −40%V粉末
とを混合した。その後、該混合物を第1実施例と同様に
して成形、焼成して、本実施例にかかる焼結チタン合金
を作製した(試料番号:6)。なお、図6に製造した焼
結体の金属組織を示す光学顕微鏡写真(倍率200倍)
を示す。図6より明らかの如く、本実施例により得られ
た焼結チタン合金は、第1実施例の焼結チタン合金より
もさらに残留空孔が微細化しており、また組織も著しく
微細化していることが分かる。 Fifth Example The same high chlorine pure titanium powder as in the first example was treated in the same manner as in the first example, to which 0.5% TiB 2 powder and 1% Mo powder were applied. And 10% Al-40% V powder were mixed. Then, the mixture was molded and fired in the same manner as in Example 1 to produce a sintered titanium alloy according to this example (Sample No. 6). An optical micrograph (magnification of 200) showing the metal structure of the produced sintered body is shown in FIG.
Indicates. As is clear from FIG. 6, the sintered titanium alloy obtained in this example has finer residual pores and a significantly finer structure than the sintered titanium alloy of the first example. I understand.
【0089】第6実施例
第2実施例と同様な低塩素純チタン粉末を、第1実施例
と同様の方法により処理し、これに0.2%のYCl3 粉
末と、1%のW粉末と、10%のAl −40%V粉末と
を混合した。その後、該混合物を第1実施例と同様にし
て成形、焼成して、本実施例にかかる焼結チタン合金を
作製した(試料番号:7)。 Sixth Embodiment The same low chlorine pure titanium powder as in the second embodiment was treated in the same manner as in the first embodiment, to which 0.2% YCl 3 powder and 1% W powder were applied. And 10% Al-40% V powder were mixed. Then, the mixture was molded and fired in the same manner as in Example 1 to produce a sintered titanium alloy according to this example (Sample No. 7).
【0090】第7実施例
第2実施例よりも酸素量の高い、−100メッシュの低
塩素純チタン粉末(水素化・脱水素チタン粉末;Ti:
99.8%,O:0.3%,Cl、0.01%)を、第1実施
例と同様の方法により処理し、これに10%のAl−4
0%V−2%Ca粉末を混合した。その後、該混合物を
第1実施例と同様にして成形、焼成して、本実施例にか
かる焼結チタン合金を作製した(試料番号:8)。 Seventh Example -100 mesh low chlorine pure titanium powder (hydrogenated / dehydrogenated titanium powder; Ti:
99.8%, O: 0.3%, Cl, 0.01%) was treated in the same manner as in the first example, and 10% Al-4 was added thereto.
0% V-2% Ca powder was mixed. After that, the mixture was molded and fired in the same manner as in Example 1 to produce a sintered titanium alloy according to this example (Sample No. 8).
【0091】第8実施例
第7実施例と同様な高酸素・低塩素純チタン粉末を、第
1実施例と同様の方法により処理し、これに1%のMo
粉末と、10%のAl−40%V−2%Ca粉末を混合
した。その後、混合物を第1実施例と同様にして成形、
焼成して、本実施例にかかる焼結チタン合金を作製した
(試料番号:9)。 Eighth Example The same high oxygen and low chlorine pure titanium powder as in the seventh example was treated in the same manner as in the first example, and 1% Mo was added thereto.
The powder was mixed with 10% Al-40% V-2% Ca powder. Then, the mixture is molded in the same manner as in the first embodiment,
Firing was performed to produce a sintered titanium alloy according to this example (sample number: 9).
【0092】第1比較例
前記第1実施例と同様な高塩素純チタン粉末と平均粒径
40μmのAl−40%V粉末を混合した。該混合物を
加工処理を行うことなく、第1実施例と同様にして成
形、焼成を行い、比較用焼結体(試料番号:C1)を製
造した。なお、図7に、上記チタン粉末の粒子構造を示
すSEM写真(倍率500倍)を、また、図8に、製造
した焼結体の金属組織を示す光学顕微鏡写真(倍率20
0倍)を、それぞれ示す。図7より明らかのごとく、チ
タン粉末の凸凹が激しく、また、粒子間の空隙も多いこ
とが分かる。また、図8より明らかのごとく、比較用焼
結体の残留空孔は粗大で、その量も多く、また、α相は
粗大な針状晶となっていることが分かる。 First Comparative Example The same high chlorine pure titanium powder as in the first example was mixed with Al-40% V powder having an average particle size of 40 μm. The mixture was molded and fired in the same manner as in Example 1 without any processing, to produce a comparative sintered body (Sample No. C1). It is to be noted that FIG. 7 is a SEM photograph (magnification: 500 times) showing the particle structure of the titanium powder, and FIG. 8 is an optical micrograph (magnification: 20) showing the metal structure of the produced sintered body.
0 times each). As is clear from FIG. 7, it is found that the titanium powder is highly uneven and that there are many voids between the particles. Further, as is clear from FIG. 8, the residual pores of the comparative sintered body are coarse and the amount thereof is large, and the α phase is coarse acicular crystals.
【0093】第2比較例
前記第1実施例と同様な高塩素純チタン粉末と平均粒径
7μmのAl−40%V粉末を混合した。該混合物を加
工処理を行うことなく、第1実施例と同様にして成形、
焼成を行い、比較用焼結体(試料番号:C2)を製造し
た。 Second Comparative Example The same high chlorine pure titanium powder as in the first example was mixed with Al-40% V powder having an average particle size of 7 μm. Molding the mixture in the same manner as in the first embodiment, without processing.
Firing was performed to manufacture a comparative sintered body (sample number: C2).
【0094】第3比較例
前記第2実施例と同様な低塩素純チタン粉末と平均粒径
40μmのAl−40%V粉末を混合した。該混合物を
加工処理を行うことなく、第1実施例と同様にして成
形、焼成を行い、比較用焼結体(試料番号:C3)を製
造した。 Third Comparative Example The same low chlorine pure titanium powder as in the second example was mixed with Al-40% V powder having an average particle size of 40 μm. The mixture was molded and fired in the same manner as in Example 1 without any processing, to produce a comparative sintered body (Sample No. C3).
【0095】第4比較例
前記第2実施例と同様な低塩素純チタン粉末と平均粒径
7μmのAl −40%V粉末を混合した。該混合物を加
工処理を行うことなく、第1実施例と同様にして成形、
焼成を行い、比較用焼結体(試料番号:C4)を製造し
た。 Fourth Comparative Example The same low chlorine pure titanium powder as in the second example was mixed with Al-40% V powder having an average particle size of 7 μm. Molding the mixture in the same manner as in the first embodiment, without processing.
Firing was performed to manufacture a comparative sintered body (Sample No. C4).
【0096】第5比較例
前記第1実施例と同様な高塩素純チタン粉末と平均粒径
7μmのAl−40%V粉末とを鋼球とともにアトライ
ター中に装入し、60分間加工処理を行った。その後、
該混合物を、第1実施例と同様に成形・焼成して比較用
焼結体(試料番号:C5)を製造した。なお、図9に、
上記加工処理を行った後の混合粉末の粒子構造を示すS
EM写真(倍率500倍)を、また、図10に、製造し
た比較用焼結体の金属組織を示す光学顕微鏡写真(倍率
200倍)を、それぞれ示す。図9より明らかのごと
く、本比較例の粉末は、上記加工処理が長すぎるため、
著しく強加工を受け、粉末全体が扁平化し、粉末の充填
密度は1.50g/cm3 と、原料粉末なみに低下してい
る。さらに、図10より明らかのように、本比較例によ
り得られた比較用焼結チタン合金は、残留空孔が粗大化
し、密度も98.0%に低下しているのみならず、本比
較例は過剰に粉末の強加工処理を行うことにより、本発
明の優れた特性が失われている。 Fifth Comparative Example The same high chlorine pure titanium powder as in the first example and Al-40% V powder having an average particle size of 7 μm were placed in an attritor together with a steel ball and processed for 60 minutes. went. afterwards,
The mixture was molded and fired in the same manner as in Example 1 to produce a comparative sintered body (Sample No. C5). In addition, in FIG.
S showing the particle structure of the mixed powder after performing the above-mentioned processing
An EM photograph (magnification: 500 times) is shown in FIG. 10, and an optical microscope photograph (magnification: 200 times) showing the metal structure of the produced comparative sintered body is shown in FIG. As is clear from FIG. 9, the powder of this comparative example was processed for too long,
The powder was remarkably strongly processed and the whole powder was flattened, and the packing density of the powder was 1.50 g / cm 3, which was as low as the raw powder. Further, as is clear from FIG. 10, in the comparative sintered titanium alloy obtained by this comparative example, not only the residual pores became coarse and the density also decreased to 98.0%, but also this comparative example. Is excessively hard-processed to lose the excellent characteristics of the present invention.
【0097】焼結体の特性評価試験
上記第1実施例1〜第7実施例、および第1比較例〜第
5比較例により得られた焼結体の充填密度、組織、引張
り強さ、疲労強度等の諸特性を測定した。その結果を、
図7に示す。図7より明らかなように、本実施例の焼結
体は、比較例のものに比べて、密度、引張り強さ、伸
び、および疲労強度等の特性に優れていることが分か
る。 Characteristic Evaluation Test of Sintered Body The packing density, structure, tensile strength and fatigue of the sintered bodies obtained by the above-mentioned first to seventh examples and the first to fifth comparative examples. Various properties such as strength were measured. The result is
It shows in FIG. As is clear from FIG. 7, the sintered body of this example is superior in properties such as density, tensile strength, elongation, and fatigue strength to those of the comparative example.
【図1】本発明の一具体例における、焼結チタン合金の
組織を模式的に示す説明図である。FIG. 1 is an explanatory view schematically showing the structure of a sintered titanium alloy in one specific example of the present invention.
【図2】本発明の一具体例における、他の焼結チタン合
金の組織を模式的に示す説明図である。FIG. 2 is an explanatory view schematically showing the structure of another sintered titanium alloy in one specific example of the present invention.
【図3】従来法により得られたα+β型焼結チタン合金
の組織を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing the structure of an α + β type sintered titanium alloy obtained by a conventional method.
【図4】本発明の第1実施例における加工処理を行った
後のチタン粉末の粒子構造を示すSEM写真図(倍率:
500倍)である。FIG. 4 is a SEM photograph showing the particle structure of titanium powder after the processing treatment in the first embodiment of the present invention (magnification:
500 times).
【図5】本発明の第1実施例において得られた焼結チタ
ン合金の金属組織を示す光学顕微鏡写真図(倍率:20
0倍)である。FIG. 5 is an optical micrograph showing the metal structure of the sintered titanium alloy obtained in the first example of the present invention (magnification: 20).
0 times).
【図6】本発明の第5実施例において得られた焼結チタ
ン合金の金属組織を示す光学顕微鏡写真図(倍率:20
0倍)である。FIG. 6 is an optical microscope photograph (magnification: 20) showing the metal structure of the sintered titanium alloy obtained in the fifth example of the present invention.
0 times).
【図7】第1比較例におけるチタン粉末の粒子構造を示
すSEM写真図(倍率:500倍)である。FIG. 7 is an SEM photograph (magnification: 500 times) showing a particle structure of titanium powder in the first comparative example.
【図8】第1比較例において製造した比較用焼結体の金
属組織を示す光学顕微鏡写真図(倍率:200倍)であ
る。FIG. 8 is an optical micrograph (magnification: 200 times) showing a metal structure of a comparative sintered body manufactured in a first comparative example.
【図9】第5比較例における加工処理後の混合粉末の粒
子構造を示すSEM写真図(倍率:500倍)である。FIG. 9 is a SEM photograph (magnification: 500 times) showing a particle structure of a mixed powder after processing in a fifth comparative example.
【図10】第5比較例において製造した比較用焼結体の
金属組織を示す光学顕微鏡写真図(倍率:200倍)で
ある。FIG. 10 is an optical micrograph (magnification: 200 times) showing a metal structure of a comparative sintered body manufactured in a fifth comparative example.
【図11】本発明の第1実施例〜第8実施例、および第
1比較例〜第5比較例において得られた焼結体の性能評
価試験結果を示す図である。FIG. 11 is a diagram showing performance evaluation test results of the sintered bodies obtained in the first to eighth examples of the present invention and the first to fifth comparative examples.
1 ・・・ α相
2 ・・・ β相
3 ・・・ 硼化物粒子または酸化物粒子またはハロゲ
ン化物粒子
4 ・・・ 粒界α相
5 ・・・ 粒内α相1 ... α phase 2 ... β phase 3 ... Boride particles or oxide particles or halide particles 4 ... Grain boundary α phase 5 ... Intra-grain α phase
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/18 H 9157−4K Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22F 1/18 H 9157-4K
Claims (2)
%と、バナジウム(V)2〜6%と、酸素(O)0.1
5〜0.8%と、 少なくとも硼素(B)0.2〜5%、モリブデン(M
o),タングステン(W),タンタル(Ta),ジルコ
ニウム(Zr),ニオブ(Nb),ハフニウム(Hf)
の一種以上0.5〜3%、Ia属,IIa属, IIIa属元
素の一種以上0.05〜2%、ハロゲン属元素の一種以
上0.05〜0.5%から選択された所定量の元素を一
種以上を含み、残部がチタニウム(Ti)と不可避物質
からなり、 α相とβ相と少なくとも硼化物,酸化物,ハロゲン物の
一種以上の粒子との三相組織を有してなることを特徴と
する焼結チタン合金。1. Aluminum (Al) 4 to 8 in mass%
%, Vanadium (V) 2 to 6%, and oxygen (O) 0.1
5 to 0.8%, at least boron (B) 0.2 to 5%, molybdenum (M
o), tungsten (W), tantalum (Ta), zirconium (Zr), niobium (Nb), hafnium (Hf)
A predetermined amount selected from the group consisting of one or more of 0.5 to 3%, one or more of Ia, IIa and IIIa elements of 0.05 to 2% and one or more of halogen elements of 0.05 to 0.5%. Containing one or more elements, the balance consisting of titanium (Ti) and unavoidable substances, and having a three-phase structure of α phase and β phase and at least one or more particles of boride, oxide and halogen Sintered titanium alloy characterized by.
合、成形すると共に該成形体を無加圧で焼成することに
よりα+β型焼結チタン合金を製造する方法であって、 前記成形前に、前記チタン粉末を加圧すると共にこすり
合わせ、原料粉末の充填密度を所定値とするとともに該
チタン粉末の再結晶時及び/又はαからβへの変態時の
均一核生成サイトを増加させたことを特徴とする焼結チ
タン合金の製造方法。2. A method for producing an α + β type sintered titanium alloy by mixing and molding titanium powder and strengthening mother alloy powder and firing the molded body without pressure, wherein before the molding. The titanium powder is rubbed while being pressed, and the packing density of the raw material powder is set to a predetermined value and the number of uniform nucleation sites during the recrystallization of the titanium powder and / or the transformation from α to β is increased. A method for producing a sintered titanium alloy, which is characterized.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25043691A JP3223538B2 (en) | 1990-11-09 | 1991-09-02 | Sintered titanium alloy and method for producing the same |
DE69128692T DE69128692T2 (en) | 1990-11-09 | 1991-11-06 | Titanium alloy made of sintered powder and process for its production |
EP91118948A EP0484931B1 (en) | 1990-11-09 | 1991-11-06 | Sintered powdered titanium alloy and method for producing the same |
US07/789,822 US5409518A (en) | 1990-11-09 | 1991-11-08 | Sintered powdered titanium alloy and method of producing the same |
US08/371,417 US5520879A (en) | 1990-11-09 | 1995-01-11 | Sintered powdered titanium alloy and method of producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-304874 | 1990-11-09 | ||
JP30487490 | 1990-11-09 | ||
JP25043691A JP3223538B2 (en) | 1990-11-09 | 1991-09-02 | Sintered titanium alloy and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH059630A true JPH059630A (en) | 1993-01-19 |
JP3223538B2 JP3223538B2 (en) | 2001-10-29 |
Family
ID=26539773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25043691A Expired - Lifetime JP3223538B2 (en) | 1990-11-09 | 1991-09-02 | Sintered titanium alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3223538B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11172362A (en) * | 1997-12-12 | 1999-06-29 | Sumitomo Sitix Amagasaki:Kk | Oxide dispersion type sintered titanium base composite material and its production |
WO2002050324A1 (en) * | 2000-12-20 | 2002-06-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy having high elastic deformation capacity and method for production thereof |
JP3375083B2 (en) * | 1999-06-11 | 2003-02-10 | 株式会社豊田中央研究所 | Titanium alloy and method for producing the same |
JP2011503361A (en) * | 2008-07-24 | 2011-01-27 | エムティーアイジー カンパニー リミテッド | Method for producing powder injection molded body |
WO2011152553A1 (en) | 2010-05-31 | 2011-12-08 | 東邦チタニウム株式会社 | Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof |
JP2012007223A (en) * | 2010-06-28 | 2012-01-12 | Seiko Epson Corp | Titanium sintered compact and method for manufacturing titanium sintered compact |
CN103551523A (en) * | 2013-11-04 | 2014-02-05 | 李茜 | Method for preparing Al-Ti alloy impeller |
CN103993199A (en) * | 2014-06-10 | 2014-08-20 | 天津大学 | Ti-Nb-xB-system high damping alloy and preparation method thereof |
JP2017214643A (en) * | 2016-03-29 | 2017-12-07 | セイコーエプソン株式会社 | Titanium sintered compact, ornament, and heat resistant component |
US9969004B2 (en) | 2011-11-29 | 2018-05-15 | Toho Titanium Co., Ltd. | α+β or β titanium alloy and method for producing same |
CN113046591A (en) * | 2021-03-12 | 2021-06-29 | 中国航空制造技术研究院 | In-situ self-generated TiB reinforced beta titanium alloy composite material and preparation method thereof |
US11857034B2 (en) * | 2017-08-31 | 2024-01-02 | Seiko Epson Corporation | Titanium sintered body, ornament, and timepiece |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5625946A (en) * | 1979-08-06 | 1981-03-12 | Tech Res & Dev Inst Of Japan Def Agency | Sintered titanium alloy excellent in strength |
US4968348A (en) * | 1988-07-29 | 1990-11-06 | Dynamet Technology, Inc. | Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding |
-
1991
- 1991-09-02 JP JP25043691A patent/JP3223538B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5625946A (en) * | 1979-08-06 | 1981-03-12 | Tech Res & Dev Inst Of Japan Def Agency | Sintered titanium alloy excellent in strength |
US4968348A (en) * | 1988-07-29 | 1990-11-06 | Dynamet Technology, Inc. | Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11172362A (en) * | 1997-12-12 | 1999-06-29 | Sumitomo Sitix Amagasaki:Kk | Oxide dispersion type sintered titanium base composite material and its production |
JP3375083B2 (en) * | 1999-06-11 | 2003-02-10 | 株式会社豊田中央研究所 | Titanium alloy and method for producing the same |
US6607693B1 (en) | 1999-06-11 | 2003-08-19 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy and method for producing the same |
WO2002050324A1 (en) * | 2000-12-20 | 2002-06-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy having high elastic deformation capacity and method for production thereof |
US7261782B2 (en) | 2000-12-20 | 2007-08-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy having high elastic deformation capacity and method for production thereof |
JP2011503361A (en) * | 2008-07-24 | 2011-01-27 | エムティーアイジー カンパニー リミテッド | Method for producing powder injection molded body |
WO2011152553A1 (en) | 2010-05-31 | 2011-12-08 | 東邦チタニウム株式会社 | Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof |
JP2012007223A (en) * | 2010-06-28 | 2012-01-12 | Seiko Epson Corp | Titanium sintered compact and method for manufacturing titanium sintered compact |
US9969004B2 (en) | 2011-11-29 | 2018-05-15 | Toho Titanium Co., Ltd. | α+β or β titanium alloy and method for producing same |
CN103551523A (en) * | 2013-11-04 | 2014-02-05 | 李茜 | Method for preparing Al-Ti alloy impeller |
CN103993199A (en) * | 2014-06-10 | 2014-08-20 | 天津大学 | Ti-Nb-xB-system high damping alloy and preparation method thereof |
JP2017214643A (en) * | 2016-03-29 | 2017-12-07 | セイコーエプソン株式会社 | Titanium sintered compact, ornament, and heat resistant component |
US11857034B2 (en) * | 2017-08-31 | 2024-01-02 | Seiko Epson Corporation | Titanium sintered body, ornament, and timepiece |
CN113046591A (en) * | 2021-03-12 | 2021-06-29 | 中国航空制造技术研究院 | In-situ self-generated TiB reinforced beta titanium alloy composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3223538B2 (en) | 2001-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5520879A (en) | Sintered powdered titanium alloy and method of producing the same | |
JP5855565B2 (en) | Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same | |
KR101237122B1 (en) | Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys | |
CN109108273B (en) | Preparation method of NbZrTiTa refractory high-entropy alloy powder and NbZrTiTa refractory high-entropy alloy powder | |
CN110093548B (en) | Ultrafine-grained high-toughness high-entropy alloy containing rare earth Gd and preparation method thereof | |
JP3223538B2 (en) | Sintered titanium alloy and method for producing the same | |
CN113373363B (en) | Refractory high-entropy composite material and preparation method thereof | |
CN115572881B (en) | Method for regulating toughness and failure mode of TiZrHfNbTa system refractory high-entropy alloy | |
JP2014019945A (en) | Titanium alloy and method for producing the same | |
JP3056306B2 (en) | Titanium-based composite material and method for producing the same | |
EP0577116B1 (en) | Process for producing a composite material consisting of gamma titanium aluminide as matrix with titanium diboride as perserdoid therein | |
CN115354204B (en) | Grain bimodal distribution synergistic oxide dispersion strengthening and toughening high-entropy alloy and preparation thereof | |
JP3354468B2 (en) | Method for producing particle-dispersed sintered titanium matrix composite | |
CN113403517B (en) | Heterostructure CrCoNi-Al 2 O 3 Nano composite material and preparation method thereof | |
CN111424187B (en) | Oxygen solid solution titanium sintering material with both strength and plasticity and preparation method thereof | |
JP3625928B2 (en) | Method for producing Ta / Si based sintered alloy | |
JP3413921B2 (en) | Method for producing Ti-Al based intermetallic compound sintered body | |
JP2852414B2 (en) | Particle-reinforced titanium-based composite material and method for producing the same | |
JPH06100969A (en) | Production of ti-al intermetallic compound sintered body | |
JPH0688153A (en) | Production of sintered titanium alloy | |
KR100222388B1 (en) | Intermetallic dispersion strengthened alumunum alloy and same method | |
Lu et al. | Microstructure and compressive properties of in situ synthesized (TiB+ TiC)/Ti composites | |
JPH07188701A (en) | Al3ti dispersion strengthened aluminum alloy, its powder, and their production | |
JP3499142B2 (en) | Manufacturing method of iron-based structural materials | |
WO1999015705A1 (en) | Hard material titanium carbide based alloy, method for the production and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |